ADVANCED CLASSIFICATION AND
IDENTIFICATION OF PL UGGED-IN
ELECTRIC LOADS

A Dissertation
Presented to
The Academic Faculty

by

LIANG Du

In Partial Fulfillment
Of the Requirements for the Degree
Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
Decembef013

Copyright © Liang Du 2013



ADVANCED CLASSIFICAT ION AND
IDENTIFICATION OF PL UGGED-IN
ELECTRIC LOADS

Approved by:

Dr. Ronald G. Harley, Advisor Dr. Thomas G. Habete€o-Advisor
School of ECE Scdhool of ECE

Georgia Institute of Technology Georgia Institute of Technology
Dr. Miroslav M. Begovic Dr. Jennifer E. Michaels

School ofECE School of ECE

Georgia Institute of Technology Georgia Institute of Technology
Dr. David G. Taylor Dr. Lei Zhu

School ofECE School of ME

Georgia Institute of Technology Georgia Institute of Technology
Dr. Yi Yang

Global Research and Technology
Eaton Corporation

Date Approved:[October 31, 2013]



To
my mother, Guan Liu,
my father, Re@giang Du,
my lovely wife, Wei Liu, and
my beloved daughter, Lindsay Du,

for their love and support.



ACKNOWLEDGEMENTS

A doctoral dissertation is usually considered to be a personal accomplishment.
However, it would not have been possible for me to finish this dissertation without the
inspiration, encouragement, and support from manpleeo

First of all, I would like to express my most sincere thanks to my dissertation advisor
Dr. Ronald G. Harley. He has been a wise and trusted advisor throughout the entire
process. It is due to his constant inspiration and encouragement that | heee gai
deeper understanding of engineering and made progress toward solving problems and
improving my communication skills as a researcher. Had it not been for his vision,
encouragement, and his confidence in my ability, much of this dissertation would not
have been completed. | am deeply grateful for his guidance.

| would also like to express my gratitude to myambvisor Dr. Thomas G. Habetler.

His invaluable guidance and constant encouragement provide me with tremendous
motivation. Special appreciation ahl also be devoted to my committee members, Dr.
Jennifer E. Michaels, Dr. Miroslav M. Begovy. Lei Zhu,and Dr. David G. Taylor.

| am indebted to Dr. Bin Land Dr. Yi Yang theirsupport Bin gave me thigreat
opportunityto work on thisresearch priect, and this dissertation would not exigtho ut
his trust in the beginning. Yi is alwatfsere to discuss every technical detath me and
provide valuable comments. | had an opportunity to spend the summer of 2011 and work
with Yi as an intern at Han Innovation Center (now Eaton Global Research and
Technology). A large part of this dissertation was formulated during that pavitet her

guidance



| am also indebted to Dr. Jose Restpetro for his help and assistance to my
experimental workJose isa great mentor to work with and learn froham fortunate to
work with many exceptionally brilliant colleagyemclude but not limit toHao Chen,
Zhaoyu Wang, Yi Du, Dr. Pinjia Zhang, Dr. Jing Dai, Dr. Swei Cheng, Dr. Jiaqgi Liang,
Andrew Paquette, DDiogenes Molina, Dustin Howard, Jorge Hernandez, Dr. Wei Qiao,
Dr. Zhi Gao, Nan Liu, Dawei He, Lijun He, Taizi Liu, Jie Dang, Zhenyu Bai,Cui, Yi
Deng, Dongbo Zhao, Qin Sun, Dr. Yao Duan, Zhenkai Wu, and Rui Fan for their
friendship and support.

Thereare numerous names of faculty, family and friends that | should mention here,
who have helped me during my syeas and ten monthat Georgia Tech. | want to
express my gratitude to all of the people | kndwhould thank Dr. Wassim Haddad to
bring me © Georgia Tech. Life goes up and down, and | had my difficult time in"fhy 2
and 3% years.Dr. Eric Ferorsupported me with patience. Thank y&uic.

Most of all, | owe the greatest debt of gratitude to my family. My parents and parents
in law have alwgs been the source of encouragement and support throughout my life.
My parents always understand me angport me with no conditionsly dear wife, Wei
Liu, has shared every single step in this long journey with me. Without their great love,
encouragemenand understanding, everything would not have been possible.

The financial supports from the following institutions/organizations are gratefully
acknowledged:

(1) U.S. Department of Energy

(2) Eaton Corporation



TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ...iiiiiiiiiiiiiiiiieee ettt e e s rmmme e e e e e e e e e n s s a e \VA
LIST OF FIGURES. ... ..ttt ee et e e e e e e e aeeeeeees Xiii
LIST OF TABLES ...ttt e e XVii
LIST OF ABBREVIATIONS ...ttt eeeeieietrree e e e e e e e e e e e e e sneeeeeaaaaeaaaaaae s Xix
SUMM AR i ee bbbt e e enanannnnrrrrrrne e XXii
Chapter1 Introduction and ODJECIVES .......cevvviieiiiiiiiie e 1
1.1 Electricity Consumption of Pluggekh Electric Loads.............cccccvvvvviiiiennnnns 1
1.2 Needs and Opportunities for PluggedLoad Management...............ccc........ 5.
1.2.1 Energy saving by regulations and direct PEL contral.................... 5.
1.2.2 Management of PELs insmart buildings............ccooooiiieennne 6
1.2.3 PEL managment for demand reSPONSE...........euveeeeereeeieemiuvrnnennnnnnn. 7
1.2.4 Needs for smart power QULIBLS...........ueiiiiiiiiiiiiceeiee e 8
1.3 NonIntrusive PELS IdentifiCation..........ccouuieieeeeeeisieeeee e eeeeeeeeeeeeevveeee 10
1.4 Challenges of Pluggeth Electric Load Identification.................coooeivieenn. 12

1.4.1 Diversity within each PELs type and similarity between different
[ IS Y 1PN 13

1.4.2 Utilizing long-term waveforms for PEL identification.................... 16

Vi



1.5 Problem S atemMeIL . ... e e 17

1.6 Hierarchical Identification Framework..............ccccooiiiiiemniiiiiee e, 18
1.7 Dissertation OULINE. ..........c.vviiiiiiiieee e 20
1.7.1 Feature extraction for PELS..........ccoooiiiiiiiiiiice e 20
1.7.2 Classification of PELS into categories...........cccccveiiieeieeeeeeeeiieeeen, 20
1.7.3 lIdentification of PELS in each category..........ccccceeevviviiieeneccceenne, 21
Chapter2  Literature REVIBW .......coiiiiiiiiiiiiieiie e e eeees bbb 22
2.1 INTOTUCTIO N ..ttt e 22
2.2 General Framework for Electric Load Identification Systems.................. 23
2.3 Review of Event Detection Methods.............ccvvvviiiiiiecce e 25
2.3.1 Event detection using steadtate values...............ccccvvviriieeeniinnnne 25
2.3.2 Event detection using transient characteristics................cccccvveeen. 25

2.4 Review of Features for Electric LOads...........ccooviviiiiiieeeiiieeeiiiiieecee e, 26
2.4.1 Active and reactive POWEL..........uerriiiiiiiiieieeeerieeeieeee e e e e e e e e e e e e e e e e 27
2.4.2 Peak, average, and RMS current values.............cccevvvieenneeeeneneen. 27
2.4.3 INStantanEouUS VAIUES............ocuuiiiiieiiiee e 27
2.4.4 Harmonics spectrum of the current waveform..............cccvvvvieeee. 28
2.4.5 Total harmonic distortion (THD).........ccoooiiiiiiiiii e 28
2.4.6 POWET fACIOL.......coiiiiiiiiii et 29
2.4.7 Crest factor or peato-average ratio...............ccoevvvvvvviieeeeeeeeeeeeeeennnns 29
2.4.8 TranSieNt fFEALUIES ......uuuueiiiiiiiiii ittt 30
2.4.9 Grgohical featUres.......ccoooeiiiiiiiiiee e 31
2.4.10 Summary of features.........ccoooviiiiiiiii e 35

vii



2.5 Review of Identification MethodS .........oouvieieeii e 35

2.5.1 P-QPIANE...... e 35
2.5.2 DECISIONIEE....... ittt 36
2.5.3 Optimization MEtNOUS.........ccviiiiiiiiiiii e 37
2.5.4 EXPEIt SYSIEML. ..ttt eeeee e e 37
2.5.5 Atrtificial Neural Networks (ANNS).........uceiiiiiiiiieeeeirieeeie e 38
2.5.6 Summary of identification methods.........c.ccceeeeeviivieeee e 38
2.6 Review of Operating Mode Identification Methods..............ccceeeevvvieeenennn. 39
2.7 Summary of Chapter........ccccceeeeiiiiiie e eeeeeeeeeeevveeee e AL

Chapter3 PluggedIn Electric Loads Classification by Features from /I

THAJE CIOMES .ttt 42
I T 1 (o To [§03 10 o APPSO PP PP PPPPPP PP 42

3.2 Classification of PluggeeIn Electric Loads by FrofiEnd Power Supply
CIrCUIL TOPOIOGY .ttt tee ettt e eeebe e e e e e e e e e e aeeee s 43
3.3 Typical V-1 Trajectories of Each PEL Category.......cccccceevveeeeeeeeceeecenennn.... 45

3.4 Feature Extaction by Mapping M Trajectories to Cell Grids with
BiNary ValUes........ccoooiiiiiiiii e A8

3.4.1 Limitation in performance of existing graphical load signatures....48

3.4.2 Binary mapping from M trajectories to cell grids.........cccccceeeveeenen 50
3.4.3 Application of proposed mapping algorithm to collected data......56
3.4.4 Features extracted from the binary cell grid...........cccccvvviiiieeennnne. 57
3.5 Determining the Number of Se@rossing Intersections..............cccvvveeeeeeand 60
3.6 Computatonal Complexity Analysis for Proposed Signatuwres.................. 62

viii



3.7 Expected Values of Proposed Features for All PELs Categotries............. 65

3.8 Chapter SIMAIY.......ccooiiiiieeeeee e e eeee e e e e e e e e e e aeaeaeees 66

Chapter4 SelfOrganizing Classification and Identification of Pluggedin

ElECHHC LOAAS. .. .uuiiiiiiiiiiiiiiiee e 67

4.1 INErOAUCTIONL ...ttt ee et e e eees e e et e e e e e e e e e e e s ammeeees 67
4.2 SelfOrganizing MapPS........cuuuuuuiiiiiiiee e eeeeiiss e s e e e e e e e e e eeaeeesieeeeeaeeaaeeeeenannnnnd 6.7
4.2.1 Neurons and their assigned values..............cccuevviimeeiiiiiiiiiininnnnd 63
4.2.2 Sequentifitraining algorithm...........cccccooeiiiiiiiind 69
4.2.3 Batch training algorithm............cccoooeiiiiiiriceei e, 70
4.2.4 Representations of the SOM..........ccoooiiiiiiiii e 71

4.3 Supervised SOM (SSOM) for PELs Classification and Identificatian.......73
4.3.1 Supervised SOM.......oouiiiiiii e e e 73
4.3.2 SSOM for PEs classification and identificatian..................cc.ee.... 75
4.3.3 Discussion on performance of the SSOM identifier...................... 76

4.4 Tests on Performance of the SSOMPELs Classification......................... 77
4.4.1 PELs features used iNteSS........ccouiiuiiiiiiiieenee e, 78
4.4.2 Testonthe necessary amount of data to train SSQM.................. 81
4.4.3 Performance of the proposed graphical features.....................cee. 82

4.5 Chapter SUMMALY........oiiiiiiiie e eenr e e 85
Chapter5 Probabilistic Identification of Plugged-in electric Loads...................... 87
5.1 INTOTUCTIO N ..ttt eeee s 87
5.2 Overview of Bayesian Decision Theory andPability Estimation.............. 87



5.3 Probabillistic Identification of an Unknown PEL Represented by a Single
FEALUIe VECIAL. ... .ot 89
5.4 Hybrid SSOM /Bayesian CIlasSIfier.............uuuuuiiiiiiiieeeiiiiiiinne e e e eeeeeeeaens,) 92

5.5 Estimation of Conditional Probabilities with an Unknown PEL

Represented by a Set of Feature VeCtOIS..........ccovvvviiiiiceeii e, 93
5.6 DireCt EStIMALION.......iiiiiiiiii e eieee e 94
5.7 Tests onthe Hybrid SSOM/Bayesian ldentifier.............ccccccvviieeeneiieiienne 95
5.8 Chapter SUMIMALY ... ...ueiiiiiiiiiiiiie ettt 102

Chapter6 Multi -Class Identification of Pluggedin Electric Loads by

Support Vector Maching...........cceeeeeiiiiic e 104

6.1 INTOTUCTIO N e 104
6.2 In-Category PEL Identification by SVM..........ccooiiiiiiiiceei 106
6.2.1 Introduction to Support Vector Machine (SVM)..........cccceevvvvvinnnee 106
6.2.2 Multi-class identitation by SVM........ccoooiiiiiie, 109

6.3 In-Category PEL Identification by OnggainstAll SVM ... 110
6.4 Comparison of Timébomain and Frequenepomain Fatures for SVM.....112

6.5 Testing the Performance of the Hybrid SSOM/SVM Classifier on a
Large NUMDETr OT PELS.....ccoiiiiiiiiiieee e 116
6.5.1 Comparison of pdormance of the SSOM identifier and the

hybrid SSOM/SVM identifier on iktategory PEL identification.....116
6.5.2 Testing the performance of the hybrid SSOM/ SVM classifier on
a large number Of PELS.......cooo oo 119

6.6 Discussion on the Performance of the Hybrid SSOM/SVM identifier.....120



6.7 Chapter SUMIMALY ... ..ueeeeiiiiiiiieiee ettt e e rmmme e e e e e e e 120

Chapter 7 Identification of Plugged-In Electric Loads by Long-Term

WAVETOIMS. ...ttt 122

4% R 100 1V o] 1 ] o PP P P PP TP PP 122
7.2 Representing Londerm Waveform by FinitsState Machine..................... 123
7.2.1 Finite-state MaChINES.........cooiiiiiiiiie e 123
7.2.2 Representation of loRgrm currentvaveforms.........ccccceeeeeeiiiiiiee 125
7.2.3 Definition Of StAteS.......ccoei it 126
7.3 Reduction of States and Definition of Elemental States and Events.....129
7.4 Classification and Identification of Repeating Actions and Mades......... 134
7.4.1 Repeating patterns in FSM representations..............ccueveeeeennnns 135
7.4.2 Almostidentical repeating patterns...........ccccvveeieeiiieeeeeceiiiiee e, 137
7.4.3 Step up/down repeating patterns...........ccccoevvivivieeee e 138
7.4.4 Spke-lead repeating patterns..........cccvvvvieeeeiieeeiiiiiiiieeeeeeeeeeeees 140
7.4.5 Summary of repeating PatternnS............ceeieiiiee i cceeiiiie e 142

7.5 Features Extracted from the FSM Representatian.............cccccecvicmevnnnnns 143
7.6 Chapter SUMMALY.......cceeeeeeeeeeeeeeeteeee e rr e e e e e e e e e e 145
Chapter8 Conclusions and Contributions..............ccociiiiiiiieeen e 147
8.1 INTOTUCTON ... e 147
8.2 Conclusions of This DISSEMatioN..........cccoiiiiiiiiiieenieee e 147
8.3 Contribution of This DiSSertation...........ccccuuvuuiiiriireeriiiiiiii e 149
8.4 Outcomes of This DiSSertation............oovviiiiiiiiemee e eeee 150
8.4.1 U.S. PAleNlS......uuiiiiiiiiiiiiiiiiiieeee e 150



8.4.3 COoNferenCe Papel.......cccovvuiuiiiiiiieieeeeei e enme e 152

8.4.4 Contribution of ChapterS.......ccoeviiiiiiiiiieiiieeee e 153

8.4.5 Other CONtriDULION.......coiieiiie e 153

8.5 FULUIE WOTK ....eeii st e et e e e e e asamnaes 154
8.5.1 Implementation and field teStS...........ccovvvvriiiiiiieee e, 154

8.5.2 PEL diSaggregation..........ccuuuuuuuurieriireeiiiiiiinieeeeeeeeeeeeeseeesrseseeeeees 154
Appendix A Data Acquisition System and Lab Environment..............cccccvveeeineen. 160
A.1 PCB Sensors MoOAULE..........cccooiiiiiiiiiiiieeei et 161

A.2 BNC Connector and Calle............cooeiiiiiiieiieceiciiieee e eeeeeeeeeeeeeee e 164

A.3 NI DAQ DEVICE......cciiiieciiiiitttte e e es st e e e e eeeesssssenseaeaeeeeaaaaaaeeen 165

A4 LabVIEW Program.... ... et erees e e e e et eeeenaes 167

A.S CalibratioN.......cooiiieeeiei e errr e —————— 168

A.6 Harmonics in the Supply VOlAge.........uuueeiiiiiiiei e 168
Appendix B Mapping of Representative VI Trajectorie s to Binary Cell Grids.....171
Appendix C SOM ToolboX fOr MATLAB ......oiiiieiiiiei ettt e e 180
Appendix D SVM Toolbox for MATLAB .....cooi it 184
BIBLIOGRAPHY ...ttt eeeee e e e e e e e eeeessa s e e e e eaeaaaaaeaeeennnseneeees 186
VT A ettt e e e e e e a————— e e e e e e e e e e e e e e e e ———— e e e e e e e aa s 198

Xii



LIST OF FIGURES

Page

Figure 1.1 U.S.electricity retail sales by sectors from 1949 to 2009.[1]................ 1
Figure 1.2 Classification of electric loads in buildings.............ccccooviiiiieeciiiiiceeeenn. 2
Figure 1.3 Deploying smart outlets and smart power strips in buildings [39]........ 9
Figure 1.4 Commercially available smart outlets and smart power strips............. 9
Figure 1.5 General framework of nemtrusive PELs identification...................... 12
Figure 1.6 Current waveforms to illustrate the diversity in types and similarity

between types OF PELS.........uuiiiiiii e 14
Figure 1.7 lllustration of theNavetaS" energy management system................... 15
Figure 1.8 TheenPowerMéM load monitoring SYStem...........cccovvveeveevveeeeseeeeennn. 15
Figure 1.9 Longterm and shosterm current waveforms of an LCD TV and a

laPIOP COMPULET....cceiieiieeee e 16
Figure 1.10 Hierarchical PEL identification framework.............cccccoeeiiiiieeen v, 19
Figure 2.1 General framework for electric load identification systems442.......... 23
Figure 2.2 Transient features in active power of (a) a lamp ban& (b) an

INAUCLION MOOT [B5]-..cuvieiieiiiiiiie e e e 30
Figure 2.3 V-I trajectories of (a) desktop computeand (b) a refrigeratda4]. ........ 32
Figure 2.4 lllustration of /| trajectory segments and measurem@ag.................. 33
Figure 2.5 Using graphical features for load disaggregation [69]............cccccccc..... 34
Figure 2.6 Relative positions ofa group of appliances in the compi€x Hane

[A9]. ..ottt ettt ettt ran e en e 36
Figure 2.7 Current waveforms of office appliances in different operating mades40

Xiii



Figure 3.1

Typical normalized M trajectories of the seven load categories.........47

Figure 3.2 Normalized VI trajectories of four pluggeéh electric loads to
illustrate the limitation in performance of existing graphical load
SIONALUIES. ...ttt e e e e e e ee s 50
Figure 3.3 Mapping Al trajectory to a binary cell grid.............coovvviiiiiiieeen e, 51
Figure 3.4 Eightneighbors ofa cell inthe grid..............cooooiiiiieee e, 54
Figure 3.5 lllustration of mapping a M trajectory to a binary cell grid................... 55
Figure 3.6 Two key cells (C1 and C2) and three key lines-(13) in a cell grid........ 57
Figure 3.7 Example of a continuum of occupied cells in the grid......................... 59
Figure 3.8 lllustration of graphical features for PELs from Category PAC........... 60
Figure 3.9 Determining the number of sedfossing intersections.......................... 61
Figure 3.10 Checking adjacent unoccupied cells in one direction......................... 64
Figure 4.1 The U matrix visualizes distances between neighboring neurons, and
helps to show the CluSTBIrUCTUre.............uuiiiiiiiiiiii e 72
Figure 4.2 Labeled neuron grid of the SOM representing ten PELs.................... 14
Figure 4.3 The crossvalidation framework of the SS@ identifier........................ 16
Figure 4.4 The comparison oMSE_ _ofa DVD player and a STB...................... 80
Figure 5.1 Current waveforms OBBt PELS............oooiiiiiiiiiieee e 97
Figure 6.1 Current waveform of a copier in operation for 60 secands............... 105
Figure 6.2 The SVM framework utilizing kernel fumions..............ccccceeeeeiiiieccennns 108
Figure 6.3 The hybrid SSOM/SVM identifier framework................ccccvvvvieennnnnns 111
Figure 6.4 Current and voltage profiles of three PELs with quitéfedent

characteristics: Fan (top left), TV (top right), and DVD (bottom)......113

Xiv



Figure 6.5

Figure 7.1

Figure 7.2

Figure 7.3

Figure7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 8.1

Figure A.1

Figure A.2

Figure A.3

Current and voltage profiles of LCD TV (top left), LED TV (top
right), and plasma TV (bOttOm)............ovvvieiiiiiiieeeee e 117
An example of a FSM illustrating its elements.............ccccceevvveeeeeenn. 124
Actual and quantized operating current waveforms of a plasma TV
fOr BOSECONAS. ... .o i 128
Extracted states with associated current and time values from the
operating waveform in Figure 7.2.............ueeeeiiiiiiieeeiiiiiieieeeeeeee e 129
Peakto-peak operating current waveform of a plasma TV for 60
{100 00 K< PP PPPPPP 131
Corresponding states with associated values extracted from Figure
2 P 132
Corresponding spikes, sesteady states, steady states, and
oscillation states extracted from Figure Z.4.............cccoovvvvvieeeeeeneeee, 132
Corresponding spike events, sestdady states, steady states, and
oscillation states extracted from Figure Z.6..............ccevvvviieeeeeenneeeee. 133

Current waveforms of four office appliances in different operating

Four PELs in active mode as examples of-e&istence of repeating

T2 LE =T 1O 143
Measured aggregated current wavefarm.............cccccvvvieeeee e, 157
Two views of the portable PCB sensors module..............ccoovevvveeen. 161
PCB Circuit SChematiC............oooeiiiieeee e 162
PCB design SChematiC.............uuuuiiiiiiiceeecce et eeeee e 163

XV



Figure A.4
Figure A.5
Figure A.6
Figure A.7
Figure A.8

Figure A.9

BNC connectors and cables.............oooooeee e 165
NI SCXI-1000 DAQ SYSIEIM.....ceviiiiiieeeeiiiieeeeee e e e eeee e e e eeee s 165
NI USB-6008 DAQ SYSIEIML....ccvviiiiiiiiiiiiee e eeeeree e e eeeee e 166
Block diagram of the LabView data acquisitiongram....................... 167
Utility voltage waveform inthe Lab............ccccoooiii e, 168
Total harmonic distortion in voltage.............cooovvvviivirieeeeen, 169

Figure A.10 Harmonic spectrum of the distorted ac utd#ypplied voltage

Y2z V(=) (018 1 | FUTT TR 170

Figure C.1 Table format data for MATLAB SOM toolboX............cccoovvvviiivieeeen.. 180

XVi



Table 1.1

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 5.1

Table 5.2

Table 5.3

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 7.1

LIST OF TABLES

Page
List of PELs considered in this dissertation........c...oeeeveeeeiieceeeeeieeieeennnn, 4

Comparison of the nuber of real multiplications and real additions

needed by different algorithms............ccccoeeeeiiiiicccciiiiii e 63
Expected signatures of all 7 PELS categories........uuciiiieeeeeeececinn 65
Test Success Rates of the SSOM Identifier..........cccevvveiiiiceniiiiinneen. 81
Tests on the performance of the proposed graphical features........... 82

Comparison of proposed graphical features and conventional

EALUMES. e 84
Number of PELS from each group..........ooevvviviiiiiimmreeeeee e a5
Test results for 8 PELS 3 SCENATIOS.........uuvuriiiiiiiiiiiiiieeeiiiiieeeieeeaeeeens 98
How probabilities are estimated by the hybrid identifiet................... 101

Comparisonof testing success rate of different feature sets using
multi-class oneagainstall SVMS.............vvviiiiiiiii e, 114
Testing success rate of the muaiss oneagainstall SVM and
SSOM identifiers with diffegnt amount of data............cccccoeeeeiiiieeeen. 115
Testing success rate of the hybrid SSOM/SVM identifier and the
SSOM identifier for incategory PELS.........cccccuvviiiiiiiiiieeeiiiiiiieeee 118
Testing success rate of typical PELs using the roldS8s one
againstall SVM identifier...........ccoooiiiiiiiiiiieeee e 119

Associated |, and T, values ofstates in the FSM of operating

waveform in Figure 7.8(@).......ccveeerurrrrmmiiiieeriiieae e e e e eneee s 136



Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table B.1

Associated |, and T, values of states in the FSM of operating
waveform iN Figire 7.8(d)........ooveveriiiieiiis s aeeen e 138
Associated |, and T, values of states in the FSM of operating
waveform in Figure 7.8(10).......ccooorriiiiiii e 139
Associated |, and T, values of states in the FSM of operating

waveform in Figure 7.8(C).....cuvvveeeeiiiiiiiiis it e e eneee s 141

Summay of Features of a selected set of important office electric

o =T USSP 144
Summary of testing results in this dissertation.............ccccoeeevieeeennnnns 149
Contribution of each chapter of this dissertation..................ccvveeee. 153

Timed sequence of sefsieady and steady states represent Figure

B L e ——————————————— 158
Harmonics in utility single phase voltage in the.lab.......................... 170
42 representative Vtrajectories mapped to binary celldgi................ 171

Xviii



LIST OF ABBREVIATIONS

ANN Artificial neural network

BMS Building management system

BMU Best matching units

BNC Bayonet Neill Concelman

CF Crest factor

CFL Compact fluorescent light

CVvD Continuously variableelice

DAQ Data acquisition

DFT Discrete Fourier transformation

DIF (Percycle) difference

DOE Department of Energy

EMI Electromagnetic interference

FFT Fast Fourier transformation

GMM Gaussian mixture model

HVAC Heating, ventilation, and air conahihing
IEC International Electrotechnical Commission
KNN K-nearest neighbor

LCD Liquid-crystal display

LED Light emitting diode

MAP Maximuma priori probability

XiX



MEL
MFD
MLE
MLP
MRI
MSE
NI
NILM
PAC
PCA
PCB
PEL
PF
PFisp
PFuist
PFC
P-Q plane
RBF
RMS
SMPS
SOM
SSOM

STB

Miscellaneous electric load
Multi-function device
Maximum likelihood estiration
Multi-layer perceptron
Magnetic resonence imaging
Mean square error

National Instrument Inc.
Norrintrusive load monitoring
Phase angle controller
Principle component analysis
Printed circuit board
Plugged-in electric load
Power factor

Displacement power factor
Distortion power factor

Power factor correction

Active power (P) versus reactive power (Q) plane

Radiatbasis function

Root mean square

Switching mode power supply
Selforganizing map
Supervised selbrganizing map

Settop box

XX



SVM Support vector machine

THD Total harmonic distortion
U-matrix Unified distance matrix
V-l trajectory Voltage versus current trajectory

XXi



SUMMARY

The total electricity consumption of plggdin electric loads (PELS) currently
accounts for more usage than any other single used service in residential and
commercial buildings. Compared with other categories of electric loads, PELs possess
significant potential to be efficiently controlled and managed in buildings. Theze
accurate and reliable PEHentification methods that are used to collect identity and
performance information are desired for many purposes. However, few existing electric
load icentification methods are designed for PELs to handle unique challenges such as
the dwersity within each type of PERNnd similarity between different types of PELs
equipped by similar fronend power supply units.

The objective of this dissertation is develop nofintrusive, accuate, robust, and
applicable PELidentification algorithms utilizing voltage and current measurements.
Based on the literature review of almost all existing features that describe electric loads
and five types of existing methodsr electric load identification, a twevel framework
for PELs classification and identification is proposed.

First, the supervised sedfrganizing nap (SSOM) is adopted to classify a large
numberof PELs of different models and brands into severaluggoby their inherent
similarities Therefore, PELs with similar fromnd power supply units or characteristics
fall into the same group. The partitioned groups are verified by their power supply unit
topology. That is, different groups should have défdrtopologies.This dissertation
proposes a novedlombination of the SSOM framework and the Bayesian framework
Such a hybrid identifier can provide the probability of an unknown PEL belonging to a
specific type of load.

XXii



Within each classified group by &hSSOM, botlrstatic and dynamic methods are
proposed to distinguish PELs with similar characteristics. Static methods extract steady
state features from the voltage and current waveforms to train different computational
intelligence algorithms such as t8&OM itself and the support vector machine (SVM).
An unknown PEL is then presented to the trained algorithm for identificdticoontrast
to static methodsdynamic methods take into consideration the dynamics oftienmg
(minutes instead of millisecosyl waveforms of PELs and extract elements such as

spikes, oscillations, steadyate operations, as well as similarly repeated patterns.
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CHAPTER 1 INTRODUCTION AND O BJECTIVES

1.1 ELECTRICITY CONSUMPTION OF PLUGGED-IN ELECTRIC LOADS

In the United Statelectric loaddn residential and commercial buildings accounted
for around 75% of the total electricity consumption in 2Q1R Moreover, the total
consumption byesidential and commercial buildingasbeenincreasing for the past six
decades[1], as shown in the following figureThe economic, operational, and
environmental impacts of increasing electric power consumption have drawnwideld
attention to the need for better energy consumption management and direct cbnt
electric loads in not only residential houses but more importantly also commercial

buildings such as hospitals, schools, and data centers.
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Figure 1.1 U.S. electrictty retail sales by sectors from 1949 to a9



Electric loads in residential and commercial buildings are commonly divided into
groups such as space conditioning, water heating, ventilation, lighting, major appliances,

and misellaneoug?2]. Miscellaneous electrical loads (MELS) are the diverse collection

of electricityconsuming devices including portable loadsich are electronic appliaas

plugged into socketsalong with all harewired loads that do not fit into other major end

use categorief3]. The suggested partition of all electric loads[By as well as some

examples, is shown in the following figure.

Electric loads in residential and commercial buildings

\ 4

A 4 A 4 A 4 A 4

\ 4

Space o s Major Water
Conditioning Lighting Ventilation Appliances Heating MELs
Incandescent Refregirator C;r\r;p;tfr
Examples: F g‘srfszzlt Washer DVD player
Fluorezcent e SRE-Tp Lox
Stove Portable fan

Figure 1.2 Classification of electric loads in buildings

It is reported that MELs currently consume more electricity than any other single end

use service in residential and commercial buildif8jsFurthemore,a recent report from

the United States Department of Energy (DQ#)i nd i c a tmiseellanebua tses i

domi nat e

electricity consumption of TV sets and -$e@p boxes surpassed that of refrigerators in

gr owt h i n electricity

demand?o

2010. Itis also predicted [d]t hat MELsO®6 consumpti on

(e.

g.



devices) will increase by an average of 2.3 percent per year and, in 2035, will account for
about 40 percent otbtal electricity consumption in the commercial sector. The rapid
growth in both residential and commercial builditgsommonly considered to be driven

by consumer electronics. It is predicted that the growth will continue and even accelerate
due to netvork connections of MELSs ithe future[5].

Portable MELs, which account for the majority off MELs, are of special interest in

this dissertation fothe following several reasons.

(1) Nonportable MELs, such as distribution transformers, -read electric
vechiles including electric trams, eteic locomotives, and wheeled vehicles
that are not intended for use on public roads (such as airport ground support
equipment), magnetic resonence imaging (MRI), and elev§irare less
frequently installed, not as easily accessible and controllable compared with
portable MELs. Note thaher e ficont r ol -tineebdlreetdoadme a n s
control accordingly to different needs and scenarios.

(2) A large number of electric loads in other categories are also portable, such as
refrigerators, washers and driers, air conditioners, and lighting ape$ia
These portable loads can be controlled in the same manner as portable MELSs.

(3) A large number of portable electric loads ammpireloads[6, 7]. In other
words, they are defined by DOE as fel
electricity while in standby mode or being switched dd. Such vampire
energy should be efficiently managed to reduce the amount of wasted energy.

This dissertatn focuses on portable MELs and other portable major appliances,

which will be referred to apluggedin electric loads(PELSs) within this dissertation.



Specifically, the PELs considered in this dissertation includeakeutot limited to, the

appliancedisted in Table 1.1.

Table 1.1 List of PELs considered in this dissertation

Residential Commercial

Home
entertainmen

TV:LED, LCD, plasmg and CRT

TV accessories: s¢bp box (STB), DVD player, vide
cassette recorder (VCR), and audio devices

Video game onsoles: PlayStation, Xbox, Wii, etc.

Home
appliances Washer and dryer, Portable Spa
Lighting: dimmer, incandescent, fluorescent, and compact fluorescent I
Public Space conditioning: portable fan, space heater, humidifier, dehumi
appliances and portable air conditioner
Vending machine, Water dispenser
Network Modem, Router Server
Cooker,
Stove
Dish washer
Kitchen Microwave oven
appliances | Coffee brewer
Portable refrigerator
Toaster
Hot water kettles
Computer | Desktop, laptopand (external) monitor
Projector
Fax machine
Office Copy machine
appliances | Multi-function device (MFD)
Shredder
Cordless phone and answering machine
Charger: any with battery
External hard drive
Other Home security system

Clock radio/small stereo
Portable electric space decoration device




1.2 NEEDS AND OPPORTUNITIES FOR PLUGGED-IN LOAD M ANAGEMENT

The large portion of the total electricity consumption by PELs offers opportunities to
managePELs usageand consumptignreduceenergy wasted by vampire loadsrd
regulatePELs operatiorfor a sustainable future. Compared with othexjor high power
electric load such as water heating and space conditiomipgliances PELs possess
great and unique potentials to be efficiently managed in buildiegbey can bdirectly
controlled (e.g., turned ON/OFF) by the switches in power strips, main sockets, and
power outletsin which PELs are plugged intéurthermorethe controllability of PELs
results in a large number of ongoing wddk many purposes including energgving,

building management, and demand response.

1.2.1 Energy saving byegulations anddirect PEL control

Energy Starindicates that in United States on average it costs each household $100
per year for PELs while they are off or in standby mode. On a wwdtimasis, standby
PELs consumes more than 100 billion kilowatt hours annually and contributes to more
than $10 billion in annual energy costs. Proper PELs consumption management can result
in as much as 75% standby power savif@jsand 40 million tons of carbon emission
reduction expected per year in United St§8}s

Current work on reducing the amount of energy consumed by vampire loads can be
summarized as follows:

(1) Introduction of regulations to reduce the energy consumptioPBls in

standby or OFF modd-=or exampleEnergy Starstandard 5.1 requires that

gualified TV sets must consume no more than one watt while in sleep mode



[10], which has been introduced as a regulation byQGhdifornia Energy
Commissiorin 2011[11]].

(2) Direct control (e.g., turned ON/OFF) of PElghen they are in standby or
OFF mode.For example, aecenteffort by DOE, Building America has
started to identyf and reduce PELs consumptifii?] and aims at 50% energy

savings in new homes by 2015.

1.2.2 Management of PELs in smart buildings

For tre purpose of a sustainable futuROE has announced its goal of achieving
market ready netero energy residential and commercial buildings by 2020 and 2025
[13]. This requires a centralized management of electric loads, renewable energy sources,
and possibly energy storageRhe zero net energy consumption of these buildings are
achieved by &rvestingenergy fronrenewable energy sourceach as solar panels and
wind generatorsutilizing high-efficiency electric loads,and reducingthe amount of
wastedenergythrough proper load and building management

Recentl vy, a new building management sche
been prposed in[14], which aims at scheduling thermostatically controlled household
electric loads based on price and consumption forecasts to meéiedpeptimization
objectives such as maximum users' comfort level. Similar electric load management
schemes are investigated[ib] via binary oroff policies of the smart flexible devices
with user 6s c¢comf or twitkctle expanding depldymentotipluggede r mo r
in medical equipment and electric vehidlds16], certain types of PELs are expected to

be managed with specific requirements.



Besides energy saving to achieve net zero energy consumption, PEL management can
also enhance the capability of building management sys{@iS), introduce more
intelligence into PEL operations, and improve building occupant experigfoe
instance, the protection device on an uninterruptible power supply (UPS) or a power strip
cuts df all connection when oveturrent happens but such an unexpected power cutoff
will cause a pluggedh desktop computeptloss all its current work. In this case of aver
currentevent proper load managemesikould disconnect/turn off noncritical loadsda
keep the desktop computer omhis example can be extended to a more general
application to keep a selected set of critical loads (such as network servers and
computers) on under all circumstasc&éhese two examples illustrate that incorporation
of more intelligence into load management can help to improve building occupant

experience and enhance BMS capabilities.

1.2.3 PEL management for demand response

For the purpose of demand response, many efforts have been devoted by others to the
demandside managemen{DSM) of electric loads in residential and commercial
buildings[17-25]. DSM of electric loads typically aims at improving system reliability,
dynamic pricing[26], reducing energy consumpti¢f7, 28], and introducing advanced
reattime control[29-31], and load balancin§32, 33]. With the fast deployment of
pluggedin electric vehicles (PEVs), new demand response sch¢Bdéswith large
numbers of PEVs at homes as shiftable electric loads as well as etweges 35| are
still under investigation.

Typical demand response in buildings to reduce energy consunghiiamg peak

energyconsumptiorhours is achieved by a dealized building automation system with
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time schedulingA number of such building automation systems have been desagwed

are available, such &emengiDemand Response Solutions for Commercial Buildings

[36], Lawrence Berkeley National Laboratorg a ut o mat ed dend@8hd resp

Pacific Northwest National Laboratadys faci |l ity ener gfB88.deci sior
A major problem within these automated building demand response system is that

theyhighly rely on time signal from utilities to start and end demand responses. In other

words, these systems do not perform load management and energy saving during normal

hours. Therefore, besides centralized buildlexg! building management system for

demand respuse during certain peak hours, distributed oudeel load management

systems are also desired for building occ

individual needs.

1.2.4 Needs for smart power outlets

To summarize previous discussionsdue to their special characteristics in
universality, flexibility, and controllability, PELs possess unique potentials not only in
energy saving but also in many other purposes such as intelligent building energy
management, granular consumption information collection building efficiency
certification,anddemand response for reliable and economical operdtiathermore, a
centralized building management system cannot meet the needs of PEL control and
management in many caséddiierefore, smart power outlets (anart power strips) are
desired by many applications to collect usage information and perform control actions on
individual PEL. The general framework of deploying smart outlets and smart power

strips in a distributed manner is shown in the following figure



Building-Level- e Local-Level-
Management & Management

Figure 1.3 Deploying smarbutlets and smapower stripsn buildings[39]

Figure 1.3 shows that smart outlets and smart power strip can collect information of
PELs plugged into them, communicate with either Ideakél or buildinglevel
management system, amrform control actionsSeveral examples of commercially

available smart outlets and smart power strips are shown in the following figure.

Figure 1.4 Commercially available smart outlets and smart postieps
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To summarize, most smart strips typically have controlable sockets and
uncontrollablesocketsUsers can plug the loads that they would like to manually control
into controllable sockets and turn ON/OFF PELs through wireless communication
between the remote and the power strip. Moreover, Ipadgedinto the uncontrollable
sockets stay connected to thidity networkall the timeas there are no switches in these
sockets to control PELs

More intelligenceis desired to be incorporated into current smart power outlets and
smart power stripsdrauseall control actions need to be performed manually by users.
Instead of manually control PELs every day, users may tockave programmable smart
outlets such that they are define certain rules for the smart outlet to carry out in an
automatic mannmeln order to achieve automatic PEL management through smart power
strips, it is necessary for the smart power strips to have the capability of knowing what is
the identity (model, type, and operating status) ofghmggedin load follow the pre
defined management rulesand perform necessaryactions tocorresponding PELs. In
other words, without knowing the PEL identity without ambiguity, smart power strips

may perform undesired actions to PELSs.

1.3 NON-INTRUSIVE PELSIDENTIFICATION

As discussed aboven iorder to achieve the various PELsS management prospects
discussed above, the information of PELs identitynsumption, and performande
required. Specifically, PELs identity information (i.e., the type or model of each PEL) is
the most important part bause the consumption and performance information should be

credited to specific PELs and the building management system should know without

10



ambiguity which PELs are under control. Therefore, reliable and accurate PELsS
identification methods are the foun@an of all PELs management prospects.

However, the majority of electric loads in residential and commercial buildings still
remain unidentified due to the lack of embedded identity labels inside electric loads as
well as communication between electricdeaand a building management system. This is
particularly true for PELs due to their low costs, gigantic totahber, and dynamic
portability. The relatively low costs of PELs make it not economic to embed internal
identity signal generator with communiizen capability.

There are two kinds of load identification approaches, intrusive andntasgive. A
physically intrusive approach is proposed[4#0] where sensors are installed on every
electric load to monitor status of tleads, and signals are sent to data processor through
a power line. However, the intrusive approach needs the cooperation of manufacturers
and users. Furthermore, the communication of signals and information is also demanding.

As a result, it is more reatic to design a PELs identification algorithm in a ion
intrusive manner. In other wordgjstallation of extra, interior, or intrusive wiring or
sensors into any ELs or existing pluggeth sockets in buildings is not required.

The only available inforation for norintrusive PELs identification includes voltage
and current waveforms collected from sockets or outlets. PELs often present unique
characteristics in these electric signals, which are discussed in more details in later
chapters. Such load chateristics provide a viable means to identify the type of a PEL
(e.g., computer, TV, or lamp, etc.) and even possibly its operation status (e.g., startup,

normal, standby, etc.) by analyzing these electric signals.
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The general framework of the namtrusive PELs identification problem is illustrated

in the following figure.

Power Outlet PELS

T\ P PELSType;
oy SEGES. 2 PEL s Identification [==={0c ating status

v(t)

12 7T Veltage (V)
// \\

-1 p—

s<lElElE

Figure 1.5 General framework of nemtrusive PELs identification

Note that the PELs identification problem is nmtrusive because the voltage and
current wavefoms are measures externally withantrusive wiring or sensors into the
PEL. Also, the only source of information for the nmtrusive PELs identification

problem is contained in theltage and current waveforms.

1.4 CHALLENGES OF PLUGGED-IN ELECTRIC LOAD IDENTIFICATION

Starting with the original idea of neintrusive load monitoring (NILM) by Hart in
the late 1980$41], many methods have been proposed to monitor and identify electric
loads over the past twenty years. A comprehengiview of existing work is provided in
Chapter Twoof this dissertation. However, few methods are designed specifically for

PELs and have addressed the following challenges.
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1.4.1 Diversity within each PELs type and similarity between different PELs types

The fast development of froreénd power supply units and wide deployment of
personal electronic devices such as tablet computers and smart phones bring challenges to
PELs identification. Some of the most challenging problems are listed as follows.

(1) Different types of PEL are equipped with similar freehd power supply units
and thus have similar characteristics;

(2) Each type of PEL could be equipped with different frentl power supply
units as more efforts have been devote to regulate PEL power consumption.
Therebre, PELs of the same type may have quite different characteristics;

(3) A PEL may show quite different characteristics in different operating modes.
For example, current waveforms of a PEL with a power factor correct (PFC)
unit are quite different when the EFRunit is turned on or off;

(4) Intelligent PEL identification methods should have the capability of receiving
inputs or feedback from users or building managers to improve their
robustness. No identification method can guarantee 100% success rate or no
error under all scenarios. However, inputs or feedback can help when
identification algorithms cannot tell apart certain PELs without ambiguity.

(5) Several PELs are typicallgonnected into one power odutlet. In this case
single current waveform would consistrmixed signals of multiple PELs.

Several plots of reakorld current waveforms are shown in the following figure to

illustrate the above challenges. Three cases are considered including

(1) Characteristics of a PEL can be different: an LED TV in active modan@

in energy saving mode (b);
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(2) Characteristics within a type of PELs can be different: LED TVs of two
different manufactures: (a, b) and (c);
(3) Characteristics of different types of PELs can be similar:an LED TV (c) and a

settop box (d).
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Figure 1.6 Current waveforms to illustrate the diversity in types and similarity between

types of PELs

The above example shows that the diversity witbach type of PELs and the
similarity betweendifferent types of PELs significantly complicate the identification.
Few existing methods have addressed these challenges. As a result, ac@itabé&rcial
load identification and monitoring products have limited capabilities to consider only

several PELs with quite different power ratings.
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For example, the home energy management system developedviegaS™ only
considers coffeemakers, TVs, mgérators, lamps, and vacuum sweepers, as shown in the

following figure [42].

Y& 90 m @S Lpuwr

Top 5 usage sat 21st Nov 15:42pm

Figure 1.7 lllustration oftheNavetas™ energy management system

M

Also, the home energy management system developeénBpverMe™ cannot

identify low-power (less than 100 W) loads, as illustrated in the following figure.

OVERALL POWER WATER HEATER DISHWASHER ELECTRIC OVEN
CONSUMPTION

Figure 1.8 TheenPowerMéM load monitoring system
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1.4.2 Utilizing long-term waveformsfor PEL identification

As reviewed and summarized in Chapter Two, most existing Idadtification
methods in literature utilize only shadrm voltage and current waveforms (for instance,
typically several electrical cycles), which is not so reliable in some cases when applied to
PEL identification. For example, the following figures shahe shorterm (several

electrical cycles) and lontgrm current waveforms (several seconds) of an LCD TV and

a laptop computer.
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(a) Long-term curent waveform of aLCD TV (b) Long-term current waveform of a laptop
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(c) Shortterm arrent waveform of an LCD Td) Shortterm current waveform of a laptop

Figure 1.9 Longterm and shofterm current waveforms ofan LCD TV and a laptop

computer

The shortterm current waveforms of the LCD TV and laptop computer are quite

similar, which makes it dficult to tell them apart. However, the lostgrm operating
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current waveforms of these two PELs are quite different and should be used to get more
accurate PEL identification.

Thus, a reliable method is needed to model or represent the shapes -tdriong
voltage and current waveforms with the capability to extract information about the
operating status of PELs for the purpose of PELs identification. Some recent work has
started to identify operating modes from letegm (hours or days) waveforms utilizing
the active power with a low resolution (e.g., one data point every hour) and it focuses on
the total energy consumed over a given time period. However, the following issues still
remain unsolved:

(1) Identify load operating modes in retithe from high resoltibn data (e.g., 70

10° data points per second) for reahe direct load control and energy
management;

(2) Identify the stead\ptate operation as well as the transient operating modes

during startup in reatime;

(3) Report not only the total amount of powemsaimed at each operating mode

but also the total amount of time that the PEL is operating at this mode over a
certain time period,;

(4) Detect certain operating modes in réale from longterm voltage and

current waveforms for the purpose of intelligent eledoad identification.

1.5 PROBLEM STATEMENT

This dissertation aims at developing accurate, reliable, efficient, and robust PELs

identification using load features extracted from electric signals such as voltage and
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current measurements. The proposed rebkefarcuses on the following four aspects to
provide solutions for advanced PEL identification.

(1) Robustnessachieve meaningful classification and identification of PELs
listed in Table 1.1 based on freamhd power supply unit circuit topology and
electricaloperation principles to handle the diversity within each type of PELs
and the similarity between different types of PELs;

(2)  Accuracy achieve certain identification success rates under all scenarios and
provide solutions when the identification cannot be enadhout ambiguity;

(3) Adaptivenesslearn from user inputs or feedback, update classification and
identification rules if necessary, and inclueriori information and required
identification granularity;

(4) Intelligence extract signatures/patterns when i PELs are connected
into a single outlet or power strip such as startup transients and -Stesely
features,investigate the applicability of the extracted signatures/patterns for
effective PELsactivity recognition and identify the unknown PELs i@

certain level of granularity.

1.6 HIERARCHICAL |DENTIFICATION FRAMEWORK

Considering the diverse nature of PEL, the enormous number of PELs, and the
challenging aspects of advanced PEL identification, this dissertation follows existing
work [2, 43-45 which have developed meaningful taxonomy of typical PELs in
commercial buildings, uses the suggested taxononi3n and proposes a hierarchical

PEL identification framework as shown in the following figure.

18



Divide PELs into several categories based on power supply design, and
firstly identify which category a PEL falls into

- Expecting 100% accuracy

- diversity within each type and similarity between ditferent types

v AN

Within each categories, identify Within each categories, identify
PELs with similar power supply PELSs with similar power supply
Expecting 95% accuracy Expecting 95% accuracy

[ Interaction with users and on-line update ]

Figure 1.1Hierarchical PEL identification framework

As shown in Figure 1.8, the proposherarchical(multi-level) PEL identification

framework consists of three steps:

(1) (Top level)Classification of PELs into a number cdtegoriedased on their
front-end power supply units topology. In this step, an unknown PEL is first
spedfied into ore of the PEL categories

(2) (Middle level) Within the specified PEL category classified stgp (1),the

next step is to indicatihe actual identity (and operating status if possible) of

the unknown PEL.
(3) (Bottom level)lf necessary, the proposed PEL idenation framework could

interact with users and receive inputs to update its identification rules.
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1.7 DISSERTATION OUTLINE

A comprehensive literature review of the existing methods and techniques pertinent
to this dissertation is summarized in Chapter T@hbeters Three to Seven constitute the

main body of this dissertation, which can be divided into three parts:

1.7.1 Feature extraction for PELs

Chapter Three proposes a low computatiauest but yetefficient method to extract
load signatures for PELslassificaton and identification. Instead ofcarrying out
frequency domain analyssich as DFT and FEThapter Thre@roposes to extract the
similarity of voltagecurrent (\/1) trajectories between loadsy maging V-1 trajectories
to a grid of cells with binary dlevalues. A novel set of gaphical signaturesxtracted
from the grid cells with M trajectories mapped on is presented, which can be utilared

many applications.

1.7.2 Classification of PELs into categories

Chapter Four introduces the fundamental fram&wof the selorganizing map
(SOM) and the extension of SOM to a supervised manner for classificatidn
identification of PELs. The supervised SOM (SSOM) can classify a large amount of
PELs into several groupBifferent sets of PEL features, includingth time domain and
frequencydomain feature, are considered to be used in SSOdpter Five presents a
novel combination of the SSONMameworkand the Bayesiamentifier framework to
function as a hybrid identifier and provide the probability of an amkmPEL belonging

to a known category
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1.7.3 Identification of PELs in each category

Chaptes Six and Sevendiscussin-category identification of PELs, i.e., identifying
similar PELs witln each PEL category.

For static methodC hapter Six presents a novel hghSSOM/SVM identifier for the
multi-class incategory PEL identification problem. The proposed hybrid identifier
utilizes the power of previously supervised Setiganizing Map (SSOM) classifier for
PELs proposed in Chaptere it and Five to first clagg an unknown PEL into one of
the seven PEL categories discussed in Chapter Three. Within each cluster, a more
accurate identification decision is made by the well establish-wialis oneagainstall
SVM classifier. The results are satisfactory for tdgting purpose.

For dynamic method<C hapter Seven proposasnovel finitestate machine (FSM)
representation of lonterm operating waveforms for the purpose of indicating load
identity and operating modes. The operating current or voltage waveformvereed
into a quantized sequence of states. A set of elemental states and events are defined to
reduce the number of states and extract numerical features to represent and identify PELs
under different operating modes. Three major categories of repep#tigrns in
waveforms that correspond to repeating operating actions are summarized, and
identification methods are proposed for each such category.

Finally, Chapter Eight summarizes the main contributism$ lists outcomesf this

dissertation.
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CHAPTER 2 LITERA TURE REVIEW

2.1 INTRODUCTION

Started with its first introduction by Haf41] in the late 19®&, the nosintrusive
load monitoring (NILM) problem has attracted wide range of attentions and interests
globally. A large amount of work habeen reported on electric load identification by
worldwide researchers. Most existing work in the literature follows a common process
which is summarized as a general ramework and presented in section 2.2.

This general framework for electric load idem#tion containsthree main
modules/stepsevent detectionfeature extractiorand load identification using extracted
featuresThe load identification process starts if a turn ON/OFF event is detétigdto
detect ON/OFF events is reviewed in sectidh 2

A set of features of an electric load is defined as its unique signature which can
represent its characteristics. With an electric load with unknown identity represented by a
pre-defined set of features, the identificatidacision is thermade by comaring the
features with a reference databamed finding out a known load with most similar
features Major existing electric load features afeature comparison methods the
literature are reviewed in sect®24 and2.5, respectively.

Some recent ark aims at determining not only the identity of electric loads but also
the operating status of electric loads, which is not a part of the original NILM problem.
Related work in the literature is discussed in section 2.6.

Finally, section 2.7 summarizésis chapter.
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2.2 GENERAL FRAMEWORK FOR ELECTRIC LOAD | DENTIFICATION SYSTEMS

Starting with the original idea of neintrusive load monitang (NILM) by Hart in
the 1990Gs [41], many methods have been proposed to monitor and ideredirielloads
over the past 20 years. Many electric load identification systems have been proposed,
built, and tested based on these methods. Most existing electric load identification

systems follow the general framework shown in the following figd6e48§].

Electric System ‘

el ) Data Acquisition

<L

| Data Preprocessing |

<~

| Event Detection |

<~

Feature Extraction

<>

Load Identification

~~

| Load Management

Load
Feature
Database

Figure 2.1 General framework for electric load identificatisystems [4244].

In Figure 2.1, the data acquisttion (DAQ) module captures sistadg raw data as
well as transient signals if necessary, and then the data preprocessing module carries out
predefined data conditioning and processing actions such as filtering, normalization, and

frequery spectrum calculation by thasdrete Fourier &amsformation (BT) or the fast
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Fourier transformation (FFT). Some load identification methods depend on the event
detection module to detect whether there is an actual electric load being switched on/off.
The event detection module can be implementediggdring simple thresholds such as
instantaneous active power or sophisticated thresisaidh as roetmeansquare (RMS)
values, harmonics, and/or transient values.

The feature extraction module is the key part, which varies notably in different
systems & it determines the accuracy and performance of the overall load identification
system. Features can be either tidmmain (from voltage and current waveforms) or
frequencydomain (from harmonic spectrum of steastgite signals). The extracted
features repesent the characteristics of electric loads. The load identification module
utilizes the extracted features, compares them with a database of features of known
electric loads, and identifies the unknown load based ordefieed rules such as
maximum simiarity.

The load management module, usually decoupled froro#e identification section
composed of the previous five modules, utilizes the information generated from the load
identification module and provides granular load energy consumption andrpanice
details to drive various building energy management tasks such as energy intensity
reduction, demand reduction, peak shaving, energy optimization, and proactive
equipment maintenance.

The major differences between the various load identificatiote sysmainly fall into
the secalled adoptedeaturesandfeature comparisomethod reviewed in the rest of this

chapter.
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2.3 REVIEW OF EVENT DETECTION M ETHODS

Event detectionbased methods have typically been adopted in the earlier load
identification systemsand have later been replaced by other more advanced load

identification methods.

2.3.1 Event detection using steaehtate alues

Early work [49-51] proposes to continuousiyonitor the operation of electric loads
and search for changes in steatyte active and reactive power. A significant change of
exceeding a predefined threshold of adopted features is considered as an indication of an
electric load being switched on/adihd the differences in steadtate active and reactive
power values are considered to be the distinguishing characteristics of that load.
Subsequent identification is then made by comparing the distinguishing characteristics of
that load with a library tknown characteristics of typical loads.

However, this method works only for a limited number of scenarios with only a few
quite different electric loads. It is shown JA9] that this method can identify the
switching of a refrigerator, an oven element, and a stove burner. Furthermore, the steady
state real andeactive power are even less informative in commercial buildings where
substantial efforts, such as power factor correction and load balancing, are made to

homogenize the steadyate behavior of different loads.

2.3.2 Event cetection using transient baracterisics
In order to overcome the limitations of steagtgte values, some later work suggest
considering transient characteristics. [B52], a multiscde transient event detection

algorithm is introduced to identify individual loads in buildings by examining measured
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transient profiles observed in the aggregated current waveforms évedlathe service
entry. This algorithm can be used to identify oled transient waveforms even when
multiple transients overlap. 1fb3], a transient event detection method using voltage
distortion is proposed. The implementation of transient event detector using a
multiprocessor is explained ifb4]. However, these methods are deed for major
appliances with distinguishing characteristics but cannot be directly applied to PELs with
similar characteristics.

The event detection module is typically not included in later load identification
systems, the majority of which directly eatt timedomain or frequencgomain electric
features as the characteristics of electric loads. Compared with events, the electric
features of electric loads are of higher dimension and thus possess a better descriptive

capability.

2.4 REVIEW OF FEATURES FOR ELECTRIC LOADS

The performance of almost all existing load identification methodde literature
highly depends on the electrical features (also called signatures in some context) of the
|l oads, which are defined t caddeece drappliacd ect r i
di stinctl[44.possesseso

Assume that the voltage and cutreraveforms can be representedtbg following

equations:
V() =&V, sin(lugt +4), @
It =& 1, sinkug +q), @
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where vy, is the fundamental frequency, and g, denote the magnitude and phase
angle d the k-th harmonic in voltage, anti and g, denote the magnitude and phase

angle of thek-th harmonic in current, respectively.
The following steadistate featurefor electric load$48-51, 55] can be deduced from
the voltage and current waveforms and are widely used in various electric load

identification systems.

2.4.1 Active and reactive pwer

The amount ofctive power an electric load consumes in-t@ak or the average
amount of active power it consumeser a certain period of time is probably the most
straightforward and intuitive feature of this lodéurthermore the amount of reactive

power can roughly indicate whether this load is resistive, inductive, or capacitive.

2.4.2 Peak, average, and RMSucrent values

Peak current and average current are proposed for load identificatig®o]in
Furthernore, the root mean square (RMS) valyg,s of the current measurement is also
considered57, 58]. However, | ,,,s gives equivalent information on the active power but

needs no additional multiplication (with voltage).

2.4.3 Instantaneous alues

Instantaneous values such as instantaneous active powgs9], curreni, , and
admittancey,,, can serve as features. Some electronic converter connected loads may

have huge spikes of instantaneous admittance, which separate them frolocather
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The main disadvantage of instantaneous values is that a proper time scale should be
defined because there cannot be either too many or too few number of instantaneous

features.

2.4.4 Harmonics spectrum of thewarent waveform

The tarmonicspectrum of th current is proposed to identify loadg41, 48, 50, 60|
as the current waveform in the time domain provides one of the most complete sets of
information to describe the behavior of electric loads. The main advantage of using
current harmonics lies in the high regt@n of the signal which can reflect detailed
characteristics of the appliance.

More specifically, the '8 and 3" harmonics are more informative than others. Any
single phase device (such as desktop, laptop, TV, and LCD monitor) which contains a
switching mode power supply (SMPS) contains high percentages of'theng 5"
harmonics in the current waveform. Therefore, the magnitude and phase Gfahd 3"

harmonics in the current waveform can also be considered as features.

2.4.5 Total harmonic dstortion (THD)

The total harmonic distortion of the current waveform is widéB; 61, 62] adopted
to describe the linearity of an electric load as well as power quality. Linear loads draw
current that is sinusoidal while nonlinear loads draw a current that is not perfectly
sinusoidal, i.e., distorted. With the harmonicrgmnentsl, k =1,..., g,0f the current
waveform calculated by the Fourier transformation, the THD in the cuwaméform

shown by equation (23 defined as
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aly
THDI:—i%——IDU% (3)

1

2.4.6 Power factor

There are several different power factor definitions available such as displacement

power factorPFgsp, distortion power factoPFgs;, and power factoPF [63, 64]. They

provide equivalent information and are defined as follows.

I:)Fdisp = COS@. - m (4)

1

= —— (5)
J1+THD,
_cos@ - g

4ﬁ+THDf (6)

= PF,PF,

disp dist

PF,

PF

whereth andd; are the fundamental voltage and current angles, respectively.

Typically, only one or two of the above three definitions are used in one system to

avoid redundancy. In this dissertatitwo differentdefinitions ofthe power factor by4)

and(5) are adopted.

2.4.7 Crest factor or peako-average atio

The cest factor CF), also called peako-average ratio, is defined to be the ratio of

peak value to the RMS value of a certain waveform. For example, the crest factor for

currentCF, is defined as
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I
cF, = o ™

2.4.8 Transient features
The transient power is also used as a feature for variable electric[Ghd5-67).

The following figure is taken frorf65] as an example.
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Figure 2.2 Transient features in active power of (a) a lamp bank and (b) an induction
motor [65].

The trangnt power is suggestad [53, 65 to be calculated for every hadlectric
cycle (each electric cycle is 1/60 sedmnin U.S.)and the resulting switching transient
waveforms are shown in Figure 2.2. It is straightforward to observe that the active power
transient of the lamp bank has a sharp rise to its peak value and then drops to is steady
state value in less thahl second. However, the active power transient of the induction

motor drops much more slowly (in around one second).

30



Other work by Leeland his tean52-54, 65] proposes to use shapes of tt@nsient
waveforns to distinguish different loads. This approach can identify simultaneously
switched loads when the transients do not overlap. However, when the loads aredswitch
on too frequently so that their transients overlap significantly, the loads may not be
identified.

The major problem of using transient featuneseatworld applicationds that they
may not be able to be observed or detected repetitively for differeaels or brands of a
certain electric loadbecause a type of electric loadsy have similar not identical
transient profiles. In odr words, the transient featunéeach loads typically concluded
within a certain rangénstead of a certain valudhus, the identificationecisionwould
be inaccurate if different electric loads have overlapping ranges of transient features. This
issue has not beewell addressed in the literature for the purposeetfttric load

identification.

2.4.9 Graphical features

Instead of using numerical values as features for electric loagsprioposed ij44]
to use graphical signatures in the tdionensional voltageurrent (M) trajectoryas
electric load features\ V-I trajectory is plotted in a twaimensional figure with voltage
values on the horizontal axis and current values on the vertical axis.

It is claimedin [44, 68] that V-I trajectories of different types of electric loads have
distinct graphicalshapes, which are related to the operating characteristics of the loads.
Two examples of VI trajectories of differentlectric loads are showim the following

figure.
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Figure 2.3 V-l trajectories of (a) desktop computeand (b) a refrigeratqe4].

It is summarizedn [68] thatthere are eight shape features that can describ€-the

trajectory: asymmetry, looping direction, area, curvature of the mean line, self

intersection, slope of middle segment, area of left and right segments, and peak of middle

segment. For instance, the asymmetry property and the looping direction dasebesd

in Figure 2.3. Moreover, the following figure is taken frq68] to illustrate how to

divide the /I trajectories into several segments (left, middle, and right) and extract

graphical features from each segment.
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Furthermore, all loads are classified according to the shape features, and the
taxoromy of all loads is constructed and then compared to the taxonomies based on
traditional features such discussed above.

Notethat these graphical features proposed@g} areextended andisedin [69] to
study the load disaggregation problem as shown in the following figline. load
disaggregation problemims at identifying muiple electric loads (which are connected
to the same power supply source and thus) from mixed voltage/current waveforms The
load disaggregation problem does not fall into the scope of this dissertation and thus is
not discussed in detailSome recent suey papers[70, 71] can be referred to as

summaries ofoad disaggregation methods.
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Like other features, different loads with similar fraamd power supply units would

possess similar Y trajectories, especially after normalization on the voltage and current

data.
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2.4.10 Summary of éatures

To summarize, many tirrdomain, fequencydomain, and graphicddased features
have been proposed in the literature to characterize electric loads. The major source of
information is the measured voltage and current waveforms forintassive load
identification. Therefore, some featur@®vide similar information and characteristics as
others and thus it is redundant to use all available existing features.

Furthermore, the major criteria to evaluate different features include the complexity
of computing features, the similarity betweteatures of loads of the same type, and the
diversity between features of loads of different types. Unfortunately, there is no existing
set of features that can distinguish all electric loads without ambiguity. A comparison of

existing features can be fodim [12, 24, 26, 31, 42].

2.5 REVIEW OF | DENTIFICATION M ETHODS

The load identification module takes extracted features as its inputs and compares the
features of an unknown load to a database containing features of known loads. The
general principle for ideffication is that the unknown load is identified as the one of the
known loads when the unknown load has features that are most similar to those of one of
the known library loads. Many methods have been proposed in the literature to describe
how to measurehe similarity between two sets of features, which are summarized as

follows.

2.5.1 P-Q pane
Hart [49] proposes to use a twdimensional complex power plane-@ plane) to
locate relative positions of different appliances, as shown in the follow figure. The real

and imaginary axes in the complex@plane denote the val@f active and reactive
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power values, respectively. Loads that lie far away from each other in the plot can be

identified using only real and reactive power, as shown in the following fig@te
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Figure 2.6 Relative positions of a group of appliances in the compi€xplane[49].

This method has certain drawbacks indicated i{60]. For example, this method
only works forelectric loadsthat arelocated far away from each other in & plane,
which may not be true of adllectric loads especially in commercial buildings. Also, the
P-Q plane becomes crowded with indigjuishable loads as the number of loads

increass.

2.5.2 Decision tee
Assume that a set of features has been chosen to set up a database of known loads,
and that the value range of each feature of each load can be concluded from the database

[43, 72]. When the features of an unknown load come in, an identification decision can
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be done by comparing the incoming features withudlele ranges of database features

step by step, with one feature at each step.

2.5.3 Optimization nethods

The similarity problem between unknown and known featurassasformulatedo be
solved as an optimization problem [47]. The objective function is defined as the
minimum difference while comparing an electric load with unknown identity with a set

of loads with known identityrom adatabase, i.e.,

N ~
argmin & w, Gz - % f )
k=1

I

where ¥, , is thek-th feature of the feature vectpin the known database of loadsg,

is thek-th feature extracted from measurement of the unknown l@ad@ the weight of
feature k, N is the total number of featurdhe weightwy can help to adjust the

significanceof each feature

2.5.4 Expert g/stem

It is proposed in50] to utilize the expert system to identifjifferent household
appliances. The features adopted include current values, voltage values, active power,
duration and shape of the current transient, l@anthonics in theurrentwaveform The
household appliances useat Experiment are divided into categories such as resistive,
pump-operated, motedriven, electronicalkfed, and fluorescent lighting.est results for

selected cases are acceptable.
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The disadvantage of using thepert systenior load identification isthat the expert
systerdepends on the engineerbés domain knowle

the electric loads being considered.

2.5.5 Artificial Neural Networks (ANNS)

Artificial neural networks (ANNs) can be used to identify electric loads by training
ANNs to learn features of known electric loads. Through the training process, the
structure and parameters of ANNSs are built to capture different featuicesisf56, 73].

Different types of ANNs, such as multiyerperceptron (MLP)radiatbasisfunction
(RBF), and support vector machines (SVM) agplied in[74, 75]. The ANN is first
trained by a database of features of known loads. Once trained, the ANpPerdarm
identification tasks when it is presented with the same set of features of the unknown load.
A comparison of performance shows that MLP and SYilted models are both able to
determine the presence of particular devices based on their harmonic sigijures

To summarize, the major advantage of ANNSs lies in their capability to evolve and
learn without extra knowledge. The training process of ANNs is statistical in nature.
Therefore, the ANNsre able to extract the statistical information of features from the

database and utilize this information to do identification.

2.5.6 Summary of identification rethods

Existing methods can be divided into two major categories: methods comparing
similarities betveen extracted steadyate or transient features and their variations with a
predefined database as wellcasnputationaintelligence algorithms.

Methods in the former category cannot distinguish between different electric loads

without ambiguity when sracted features of the unknown load are very similar to
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several known loads in the database. On the other hand, ANNs are powerful tools but
they also suffer from problems including lack of knowledge during the training,
computational cost, convergencetenia, and initial parameter selection.

To summarize, most existing methods cannot efficiently handle the diversity within
each type of loads and similarity between similar types of loads and thus cannot be

directly applied to the identification of PELs

2.6 REVIEW OF OPERATING M ODE IDENTIFICATION M ETHODS

Instead of identifying electric loads based on features extracted dtwmrtterm
waveforms, recent efforts have started to identify operating modes frortelomg hours
or days) waveforms. A recent repdry the German Federal Ministfy6] analyzed 4
operating modes of communication devices: normal, standbynade, and off.

In the U.S., a study by the Lawrence Berkeley National Labord#fyemploys a
nonintrusive inventorybased method to study the power stabdsoffice appliances
during nighttime. It only considers snapshots at single points in time and thusndbes
provide the time spent in each power status. The National Renewable Energy Laboratory
presented a histogram heuristic clustering techniquevideda data set of electric loads
operation for several days into clusters based on similarity criteria and extracted
operating modefrg].

To summarize, these efforts mainly utilize the active power with a low resolution
(e.g., one data point every hour) and focus on the total energy consumed in a given time
period. However, some technical problemt sgtmain unsolved, such as identifying real
time operating modes using high resolution data and reporting the total amount of time

operating at a certain mode.
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The following figure shows the current waveform (of 60 seconds) of two electric
loads in offies. Figure 2.6(a) shows the transition from standby mode to faxing (active)

mode of a fax machine, and Figure 2.6(b) represents a fundiiional device (MFD) in

double sided photocopying mode.
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Figure 2.7 Current waveforms of office appliances in different operating modes
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The detection of the transition from a standby to an active mode in Figure 2.6(a) is a
crucial stp for energy management, which should not only rely on detecting the change
in power. Also, in Figure 2.6(b) the instantaneous peak current isvanyng and
typical identifying features in the literature vary from cycle to cycle. Thus, existing
methodsmay fail to correctly identify this mu#tiunctional device (MFD). Therefore, a

method is needed which can extract features fromterrg and timevarying operations.

2.7 SUMMARY OF CHAPTER

This chapter first presents a general framework for the electrit identification
problem, which has been widely used by most existing work in the literature.
Furthermore, mjor existing methods for different modules in this framework, such as
feature extraction, event detecticamd load identification are reviewed acdmpared.
Advantages and disadvantages of most reviewed methods in this chapter have been

presented.
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CHAPTER 3 PLUGGED-IN ELECTRIC LOADS
CLASSIFICATION BY FE ATURES FROM V-l TRAJECTORIES

3.1 INTRODUCTION

As discussed in Chapters One and Two, a primary factor thatndeésr the
performance of any electric load identification system is the set of features selected to
represent electric loads. Therefore, a large number of work on different electric load
features in the literature has been reported by researchers asrkinesection 2.4.

This chapter proposes a set of computationally efficient but yet accurate features to
represent PELs for the purpose of PEL classification. Section 3.2 presents a classification
of PELs into seven categories by their fr@ntd power sugy circuit topology.Based on
the power supply circuit topology,-Vtrajectories of PELs within the same category are
very similar in shapeTypical V-1 trajectories of each PEL category are shown in section
3.3.

Based on the analysis in section 3.3gtof graphical features are then proposed
section 3.4y first mapping a M trajectory onto a grid of cells with binary values and
then extract certain graphical features from the mapped cell grid.

The computational cost of the proposed features adyaed in section 3.5 which
shows thatthey require less computational resources than features in the literature.
Expected values of the proposed features for each PEL category are sumnrarized
section 3.6 for the purpose of PEL classification

Finally, section 3.7 summarizes this chapter.
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3.2 CLASSIFICATION OF PLUGGED-IN ELECTRIC LOADS BY FRONT-END POWER

SUPPLY CIRCUIT TOPOLOGY

The number of types and models of commercially available PELs currently used in
residential and commercial buildings is enormdustthermore, considering the fact that
voltage and current waveforms are the only source of information available for PELs
feature extraction and identification, fremhd power supply units of PELs play a key role
as they directly determine the characiees of the current waveform. For instance, as
discussed in section 1.4.1, PELs within the same type (i.e-pdial TVs) could be
equipped with different power supply units and thus present quite different current
waveforms. On the other hand, diffetdagpes of PELs may be equipped with similar
power supply units.

Therefore, it is neither feasible nor necessary to characterize and identify each PEL
individually in many applications. Instead, it is sometimes more practical and robust to
first classifyall PELs into several categories by their fremd power supply topology
and then extract common signatures for PELs in each category as shown in the
hierarchical identification framework shown in Figure 1.8.

Based on a study on over 95% of all commédiciavailable frontend power supply
topologies, it is proposed [A#3] to divide PELs into the following seven categories based

on their frontend power supply circuibpology:

(1) Resistive loadqCategory R): a typical PEL in this category contains a
resistance directly connected to the frent terminal and thus there is no

phase angle difference between its current and voltage waveforms;
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)

©)

(4)

()

(6)

Reactive loadgCategory X):a typical PEL in this category contains an
inductance directly connected to the fr@nid terminal through a rectifier and
thus there is a large phase angle difference between its current and voltage
waveforms;

Electronic loads without power factor conton (Category NP): a typical

PEL in this category consists of a freamd electromagnetic interference
(EMI) filter, a rectifier, a voltage or current filter, and a T converter.
There is typically a very small phase angle difference (close to zetegén

its current and voltage waveforms but the current waveform contains a notable
amount of harmonics;

Electronic loads with power factor correctiq@ategory P): a typical PEL in

this category consists of a freahd EMI filter, a rectifier, a voltagegulator,

a power factor correction (PFC) module, and aDC converter. Its current
waveform is similar to resistive loads, but notable current discontinuity and
switching noise can be observed;

Complex structure load€ategory M) typical PEL in thicategory consists

of multiple circuits supplied by independent freamid power supply units and
thus its overall current waveform is composed of current waveforms from one
or more of the above four categories;

Linear loads (Category T): a typical PEL inhts category consists of a
transformer, a rectifier, and electronic components. Its current waveform is
highly distorted due to transformer saturation. Notable phase angle difference

can also be observed;
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(7) Phase angle controllable load@Category PAC): a pjical PEL in this
category continuously adjusts its current waveform by controlling the firing

angle of a thyristor.

Furthermore, category Nbadsalso include PELs that operate at several different
power levels and switch between these power levels exigaturing usage. These PELs
are programmedn a predefined manneto operate in this repeated switchingde
manner because their functional performance may require repeated processes in a certain
sequence.

For example, most high volume printers hawe {or more)printing enginegmotors
in a single device and are able to print both sides of the paper in a single.g@ass
doublesided printing A doublesided printing job is a repeated process of feeding a sheet
of paper, printing and rolling the papforward, holding the paper for the ink to dry,
reversing the paper to print on the other side, and then feeding the next sheet of paper.
The two engines are programmed to operate in different combinations with different
power consumption levels duringi$ repeated process, and these combinations could fall
into one or several other categories.

Note that the fronend power supplgircuit topology of categories T and PAC are no
longer adopted in modern power supply industry, but these two categoeiestilar

included in this dissertation for completeness.

3.3 TYPICAL V-l TRAJECTORIES OF EACH PEL CATEGORY

In the literature, a large number of existing works on the characterization and
identification of PELs use features extracted from the harmonic spectfuouari@nt

waveforms derived by discrete Fourier transformation (DFT) or fast Fourier
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transformation (FFT). However, for the purpose of practical applicatmitis only
limited computational capability or hardware capabiliijge computational cost of DFT
or FFT is probably too high in some cadesr example, if a PEL identifier is desired ina
power strip or a power outlet, these applications may only hawecreprocessor with
very limited amount of memory. Fourier transforms may not be desired in these
applications.

It is observed that the normalizedI\frajectories oPELs within each category share
very similar shapes, which can be used to describe and represent PELs within each
category. Furthermore, PELs of different categories possess quite wtiffer@pes of
normalized VI trajectories. In other words, normalized|\frajectories described in a
properly defined metric space can be used as features to distinguish different categories
as they are close withitategory but quite far away betweeategories in the manner of
distances.

Typical normalized M trajectories of the seven load categories discussed above are

shown in the followindigure.
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(3) Cakegory NP (4) Category P

(5) Category M (6) Category T

(7) Category PAC

Figure 3.1 Typical normalized M trajectories of the seven load categories
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