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SUMMARY  

The total electricity consumption of plugged- in electric loads (PELs) currently 

accounts for more usage than any other single end-use service in residential and 

commercial buildings. Compared with other categories of electric loads, PELs possess 

significant potential to be efficiently controlled and managed in buildings. Therefore, 

accurate and reliable PEL identification methods that are used to collect identity and 

performance information are desired for many purposes. However, few existing electric 

load identification methods are designed for PELs to handle unique challenges such as 

the diversity within each type of PEL and similarity between different types of PELs 

equipped by similar front-end power supply units.  

The objective of this dissertation is to develop non- intrusive, accurate, robust, and 

applicable PEL identification algorithms utilizing voltage and current measurements. 

Based on the literature review of almost all existing features that describe electric loads 

and five types of existing methods for electric load identification, a two- level framework 

for PELs classification and identification is proposed.  

First, the supervised self-organizing map (SSOM) is adopted to classify a large 

number of PELs of different models and brands into several groups by their inherent 

similarities. Therefore, PELs with similar front-end power supply units or characteristics 

fall into the same group. The partitioned groups are verified by their power supply unit 

topology. That is, different groups should have different topologies. This dissertation 

proposes a novel combination of the SSOM framework and the Bayesian framework. 

Such a hybrid identifier can provide the probability of an unknown PEL belonging to a 

specific type of load. 
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Within each classified group by the SSOM, both static and dynamic methods are 

proposed to distinguish PELs with similar characteristics. Static methods extract steady-

state features from the voltage and current waveforms to train different computational 

intelligence algorithms such as the SSOM itself and the support vector machine (SVM). 

An unknown PEL is then presented to the trained algorithm for identification. In contrast 

to static methods, dynamic methods take into consideration the dynamics of long-term 

(minutes instead of milliseconds) waveforms of PELs and extract elements such as 

spikes, oscillations, steady-state operations, as well as similarly repeated patterns.  
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CHAPTER 1  INTRODUCTION AND O BJECTIVES 

1.1 ELECTRICITY CONSUMPTION OF PLUGGED-IN ELECTRIC LOADS 

In the United States, electric loads in residential and commercial buildings accounted 

for around 75% of the total electricity consumption in 2012 [1]. Moreover, the total 

consumption by residential and commercial buildings has been increasing for the past six 

decades [1], as shown in the following figure. The economic, operational, and 

environmental impacts of increasing electric power consumption have drawn world-wide 

attention to the need for better energy consumption management and direct control of 

electric loads in not only residential houses but more importantly also commercial 

buildings such as hospitals, schools, and data centers. 

 

 

 

Figure 1.1 U.S. electricity retail sales by sectors from 1949 to 2009 [1]. 
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Electric loads in residential and commercial buildings are commonly divided into 

groups such as space conditioning, water heating, ventilation, lighting, major appliances, 

and miscellaneous [2]. Miscellaneous electrical loads (MELs) are the diverse collection 

of electricity-consuming devices including portable loads which are electronic appliances 

plugged into sockets, along with all hard-wired loads that do not fit into other major end-

use categories [3]. The suggested partition of all electric loads by [2], as well as some 

examples, is shown in the following figure. 

 

 

Figure 1.2 Classification of electric loads in buildings 

 

It is reported that MELs currently consume more electricity than any other single end-

use service in residential and commercial buildings [3]. Furthermore, a recent report from 

the United States Department of Energy (DOE) [4]  indicates that ñmiscellaneous uses 

dominate growth in electricity demandò in residential buildings. For example, the 

electricity consumption of TV sets and set-top boxes surpassed that of refrigerators in 

2010. It is also predicted in [4] that MELsô consumption (e.g., video displays and medical 
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devices) will increase by an average of 2.3 percent per year and, in 2035, will account for 

about 40 percent of total electricity consumption in the commercial sector. The rapid 

growth in both residential and commercial buildings is commonly considered to be driven 

by consumer electronics. It is predicted that the growth will continue and even accelerate 

due to network connections of MELs in the future [5].  

Portable MELs, which account for the majority of all MELs, are of special interest in 

this dissertation for the following several reasons. 

(1) Non-portable MELs, such as distribution transformers, non-road electric 

vechiles including electric trams, electric locomotives, and wheeled vehicles 

that are not intended for use on public roads (such as airport ground support 

equipment), magnetic resonence imaging (MRI), and elevators [5]  are less 

frequently installed, not as easily accessible and controllable compared with 

portable MELs. Note that here ñcontrollableò means real-time direct load 

control accordingly to different needs and scenarios.   

(2) A large number of electric loads in other categories are also portable, such as 

refrigerators, washers and driers, air conditioners, and lighting appliances. 

These portable loads can be controlled in the same manner as portable MELs. 

(3) A large number of portable electric loads are vampire loads [6, 7]. In other 

words, they are defined by DOE as ñelectronic devices which still consume 

electricity while in standby mode or being switched offò [7]. Such vampire 

energy should be efficiently managed to reduce the amount of wasted energy. 

This dissertation focuses on portable MELs and other portable major appliances, 

which will be referred to as plugged-in electric loads (PELs) within this dissertation. 
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Specifically, the PELs considered in this dissertation include, but are not limited to, the 

appliances listed in Table 1.1. 

Table 1.1 List of PELs considered in this dissertation 

 Residential Commercial 

Home 

entertainment 

TV: LED, LCD, plasma, and CRT 

   TV accessories: set-top box (STB), DVD player, video 

cassette recorder (VCR), and audio devices 

 

Video game consoles: P layStation,  Xbox, Wii, etc. 
 

Home 
appliances 

Washer and dryer, Portable Spa 
 

Public 

appliances 

Lighting: dimmer, incandescent, fluorescent, and compact fluorescent lamps 

 
Space conditioning: portable fan, space heater,  humidifier, dehumidifier, 

and portable air conditioner 

 Vending machine, Water  dispenser 

Network Modem, Router Server 

Kitchen 
appliances 

Cooker,  

Stove 
Dish washer 

 

Microwave oven 

Coffee brewer  

Portable refrigerator  
Toaster  

Hot water kettles 

Computer Desktop, laptop, and (external) monitor  

Office 
appliances 

Projector 

Fax machine 

Copy machine 
Multi-function device (MFD) 

Shredder 
Cordless phone and answering machine 

Other 

Charger: any with battery 
External hard drive 

Home security system 

Clock radio/small stereo 
Portable electric space decoration device 



5 

 

1.2 NEEDS AND OPPORTUNITIES FOR PLUGGED-IN LOAD M ANAGEMENT  

The large portion of the total electricity consumption by PELs offers opportunities to 

manage PELs usage and consumption, reduce energy wasted by vampire loads, and 

regulate PELs operation for a sustainable future. Compared with other major high power 

electric loads such as water heating and space conditioning appliances, PELs possess 

great and unique potentials to be efficiently managed in buildings as they can be directly 

controlled (e.g., turned ON/OFF) by the switches in power strips, main sockets, and 

power outlets in which PELs are plugged into. Furthermore, the controllability of PELs 

results in a large number of ongoing work for many purposes including energy saving, 

building management, and demand response.  

1.2.1 Energy saving by regulations and direct PEL control 

Energy Star indicates that in United States on average it costs each household $100 

per year for PELs while they are off or in standby mode. On a national basis, standby 

PELs consumes more than 100 billion kilowatt hours annually and contributes to more 

than $10 billion in annual energy costs. Proper PELs consumption management can result 

in as much as 75% standby power savings [8] and 40 million tons of carbon emission 

reduction expected per year in United States [9].  

Current work on reducing the amount of energy consumed by vampire loads can be 

summarized as follows:  

(1) Introduction of regulations to reduce the energy consumption by PELs in 

standby or OFF mode. For example, Energy Star standard 5.1 requires that 

qualified TV sets must consume no more than one watt while in sleep mode 
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[10], which has been introduced as a regulation by the California Energy 

Commission in 2011 [11] . 

(2) Direct control (e.g., turned ON/OFF) of PELs when they are in standby or 

OFF mode. For example, a recent effort by DOE, Building America, has 

started to identify and reduce PELs consumption [12] and aims at 50% energy 

savings in new homes by 2015.  

1.2.2 Management of PELs in smart buildings 

For the purpose of a sustainable future, DOE has announced its goal of achieving 

market ready net-zero energy residential and commercial buildings by 2020 and 2025 

[13]. This requires a centralized management of electric loads, renewable energy sources, 

and possibly energy storages. The zero net energy consumption of these buildings are 

achieved by harvesting energy from renewable energy sources such as solar panels and 

wind generators, utilizing high-efficiency electric loads, and reducing the amount of 

wasted energy through proper load and building management.  

Recently, a new building management scheme called ñappliance commitmentò has 

been proposed in [14], which aims at scheduling thermostatically controlled household 

electric loads based on price and consumption forecasts to meet specified optimization 

objectives such as maximum users' comfort level. Similar electric load management 

schemes are investigated in [15] via binary on-off policies of the smart flexible devices 

with userôs comfort considered. Furthermore, with the expanding deployment of plugged-

in medical equipment  and electric vehicles [3, 16], certain types of PELs are expected to 

be managed with specific requirements.  
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Besides energy saving to achieve net zero energy consumption, PEL management can 

also enhance the capability of building management systems (BMS), introduce more 

intelligence into PEL operations, and improve building occupant experience. For 

instance, the protection device on an uninterruptible power supply (UPS) or a power strip 

cuts off all connection when over-current happens but such an unexpected power cutoff 

will cause a plugged- in desktop computer to loss all its current work. In this case of over-

current event, proper load management should disconnect/turn off noncritical loads and 

keep the desktop computer on. This example can be extended to a more general 

application to keep a selected set of critical loads (such as network servers and 

computers) on under all circumstances. These two examples illustrate that incorporation 

of more intelligence into load management can help to improve building occupant 

experience and enhance BMS capabilities. 

1.2.3 PEL management for demand response 

For the purpose of demand response, many efforts have been devoted by others to the 

demand-side management (DSM) of electric loads in residential and commercial 

buildings [17-25]. DSM of electric loads typically aims at improving system reliability, 

dynamic pricing [26], reducing energy consumption [27, 28], and introducing advanced 

real-time control [29-31], and load balancing [32, 33]. With the fast deployment of 

plugged-in electric vehicles (PEVs), new demand response schemes [34] with large 

numbers of PEVs at homes as shiftable electric loads as well as energy storages [35] are 

still under investigation.  

Typical demand response in buildings to reduce energy consumption during peak 

energy-consumption hours is achieved by a centralized building automation system with 
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time scheduling. A number of such building automation systems have been designed and 

are available, such as Siemens ñDemand Response Solutions for Commercial Buildingsò 

[36], Lawrence Berkeley National Laboratoryôs automated demand response system [37],  

Pacific Northwest National Laboratoryôs facility energy decision system (FEDS) [38]. 

A major problem within these automated building demand response system is that 

they highly rely on time signal from utilities to start and end demand responses. In other 

words, these systems do not perform load management and energy saving during normal 

hours. Therefore, besides centralized building- level building management system for 

demand response during certain peak hours, distributed outlet- level load management 

systems are also desired for building occupants to meet different occupantsô different 

individual needs. 

1.2.4   Needs for smart power outlets 

To summarize previous discussions, due to their special characteristics in 

universality, flexibility, and controllability, PELs possess unique potentials not only in 

energy saving but also in many other purposes such as intelligent building energy 

management, granular consumption information collection for building efficiency 

certification, and demand response for reliable and economical operation. Furthermore, a 

centralized building management system cannot meet the needs of PEL control and 

management in many cases. Therefore, smart power outlets (or smart power strips) are 

desired by many applications to collect usage information and perform control actions on 

individual PEL. The general framework of deploying smart outlets and smart power 

strips in a distributed manner is shown in the following figure. 
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Figure 1.3 Deploying smart outlets and smart power strips in buildings [39] 

Figure 1.3 shows that smart outlets and smart power strip can collect information of 

PELs plugged into them, communicate with either local- level or building- level 

management system, and perform control actions. Several examples of commercially 

available smart outlets and smart power strips are shown in the following figure. 

 

 
 

  

Figure 1.4  Commercially available smart outlets and smart power strips    
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 To summarize, most smart strips typically have controllable sockets and 

uncontrollable sockets. Users can plug the loads that they would like to manually control 

into controllable sockets and turn ON/OFF PELs through wireless communication 

between the remote and the power strip. Moreover, loads plugged- into the uncontrollable 

sockets stay connected to the utility network all the time as there are no switches in these 

sockets to control PELs.  

More intelligence is desired to be incorporated into current smart power outlets and 

smart power strips because all control actions need to be performed manually by users. 

Instead of manually control PELs every day, users may need to have programmable smart 

outlets such that they are define certain rules for the smart outlet to carry out in an 

automatic manner. In order to achieve automatic PEL management through smart power 

strips, it is necessary for the smart power strips to have the capability of knowing what is 

the identity (model, type, and operating status) of the plugged- in load, follow the pre-

defined management rules, and perform necessary actions to corresponding PELs. In 

other words, without knowing the PEL identity without ambiguity, smart power strips 

may perform undesired actions to PELs.   

1.3 NON-INTRUSIVE PELS IDENTIFICATION  

As discussed above, in order to achieve the various PELs management prospects 

discussed above, the information of PELs identity, consumption, and performance is 

required. Specifically, PELs identity information (i.e., the type or model of each PEL) is 

the most important part because the consumption and performance information should be 

credited to specific PELs and the building management system should know without 
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ambiguity which PELs are under control. Therefore, reliable and accurate PELs 

identification methods are the foundation of all PELs management prospects. 

However, the majority of electric loads in residential and commercial buildings still 

remain unidentified due to the lack of embedded identity labels inside electric loads as 

well as communication between electric loads and a building management system. This is 

particularly true for PELs due to their low costs, gigantic total-number, and dynamic 

portability. The relatively low costs of PELs make it not economic to embed internal 

identity signal generator with communication capability.  

There are two kinds of load identification approaches, intrusive and non- intrusive. A 

physically intrusive approach is proposed in [40] where sensors are installed on every 

electric load to monitor status of the loads, and signals are sent to data processor through 

a power line. However, the intrusive approach needs the cooperation of manufacturers 

and users. Furthermore, the communication of signals and information is also demanding. 

 As a result, it is more realistic to design a PELs identification algorithm in a non-

intrusive manner. In other words, installation of extra, interior, or intrusive wiring or 

sensors into any PELs or existing plugged- in sockets in buildings is not required.  

The only available information for non- intrusive PELs identification includes voltage 

and current waveforms collected from sockets or outlets. PELs often present unique 

characteristics in these electric signals, which are discussed in more details in later 

chapters. Such load characteristics provide a viable means to identify the type of a PEL 

(e.g., computer, TV, or lamp, etc.) and even possibly its operation status (e.g., startup, 

normal, standby, etc.) by analyzing these electric signals.  
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The general framework of the non- intrusive PELs identification problem is illustrated 

in the following figure. 

 

i(t)

v(t)

Power Outlet

..
.

PELs Type;

Operating status

PELs

PELs Identification

 

Figure 1.5 General framework of non- intrusive PELs identification 

 

Note that the PELs identification problem is non- intrusive because the voltage and 

current waveforms are measures externally without intrusive wiring or sensors into the 

PEL. Also, the only source of information for the non- intrusive PELs identification 

problem is contained in the voltage and current waveforms. 

1.4 CHALLENGES OF PLUGGED-IN ELECTRIC LOAD IDENTIFICATION  

Starting with the original idea of non- intrusive load monitoring (NILM) by Hart in 

the late 1980s [41], many methods have been proposed to monitor and identify electric 

loads over the past twenty years. A comprehensive review of existing work is provided in 

Chapter Two of this dissertation. However, few methods are designed specifically for 

PELs and have addressed the following challenges.  
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1.4.1 Diversity within each PELs type and similarity between different PELs types 

The fast development of front-end power supply units and wide deployment of 

personal electronic devices such as tablet computers and smart phones bring challenges to 

PELs identification. Some of the most challenging problems are listed as follows. 

(1) Different types of PEL are equipped with similar front-end power supply units 

and thus have similar characteristics; 

(2) Each type of PEL could be equipped with different front-end power supply 

units as more efforts have been devote to regulate PEL power consumption. 

Therefore, PELs of the same type may have quite different characteristics; 

(3) A PEL may show quite different characteristics in different operating modes. 

For example, current waveforms of a PEL with a power factor correct (PFC) 

unit are quite different when the PFC unit is turned on or off; 

(4) Intelligent PEL identification methods should have the capability of receiving 

inputs or feedback from users or building managers to improve their 

robustness. No identification method can guarantee 100% success rate or no 

error under all scenarios. However, inputs or feedback can help when 

identification algorithms cannot tell apart certain PELs without ambiguity.  

(5) Several PELs are typically connected into one power outlet. In this case a 

single current waveform would consist of mixed signals of multiple PELs.  

Several plots of real-world current waveforms are shown in the following figure to 

illustrate the above challenges. Three cases are considered including 

(1) Characteristics of a PEL can be different: an LED TV in active mode (a) and 

in energy saving mode (b); 
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(2) Characteristics within a type of PELs can be different: LED TVs of two 

different manufactures: (a, b) and (c);  

(3) Characteristics of different types of PELs can be similar: an LED TV (c) and a 

set-top box (d). 

 

 

                       (a)                                                         (b) 

 

                                 (c)                                                            (d) 

Figure 1.6 Current waveforms to illustrate the diversity in types and similarity between 

types of PELs 

 

The above example shows that the diversity within each type of PELs and the 

similarity between different types of PELs significantly complicate the identification. 

Few existing methods have addressed these challenges. As a result, available commercial 

load identification and monitoring products have limited capabilities to consider only 

several PELs with quite different power ratings.  
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For example, the home energy management system developed by NavetasTM only 

considers coffeemakers, TVs, refrigerators, lamps, and vacuum sweepers, as shown in the 

following figure [42]. 

 

Figure 1.7 Illustration of the NavetasTM  energy management system 

Also, the home energy management system developed by enPowerMeTM cannot 

identify low-power (less than 100 W) loads, as illustrated in the following figure. 

 

 

Figure 1.8 The enPowerMeTM load monitoring system 
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1.4.2 Utilizing long-term waveforms for PEL identification 

As reviewed and summarized in Chapter Two, most existing load identification 

methods in literature utilize only short-term voltage and current waveforms (for instance, 

typically several electrical cycles), which is not so reliable in some cases when applied to 

PEL identification. For example, the following figures show the short-term (several 

electrical cycles) and long-term current waveforms (several seconds) of an LCD TV and 

a laptop computer. 

 

    

(a) Long-term current waveform of an LCD TV   (b) Long-term current waveform of a laptop  

         

(c)  Short-term current waveform of an LCD TV  (d) Short-term current waveform of a laptop 

Figure 1.9 Long-term and short-term current waveforms of an LCD TV and a laptop 

computer 

 

The short-term current waveforms of the LCD TV and laptop computer are quite 

similar, which makes it difficult to tell them apart. However, the long-term operating 
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current waveforms of these two PELs are quite different and should be used to get more 

accurate PEL identification. 

Thus, a reliable method is needed to model or represent the shapes of long-term 

voltage and current waveforms with the capability to extract information about the 

operating status of PELs for the purpose of PELs identification. Some recent work has 

started to identify operating modes from long-term (hours or days) waveforms utilizing 

the active power with a low resolution (e.g., one data point every hour) and it focuses on 

the total energy consumed over a given time period. However, the following issues still 

remain unsolved: 

(1) Identify load operating modes in real-time from high resolution data (e.g., 102-

103 data points per second) for real-time direct load control and energy 

management; 

(2) Identify the steady-state operation as well as the transient operating modes 

during startup in real- time; 

(3) Report not only the total amount of power consumed at each operating mode 

but also the total amount of time that the PEL is operating at this mode over a 

certain time period; 

(4) Detect certain operating modes in real-time from long-term voltage and 

current waveforms for the purpose of intelligent electric load identification. 

1.5 PROBLEM STATEMENT  

This dissertation aims at developing accurate, reliable, efficient, and robust PELs 

identification using load features extracted from electric signals such as voltage and 
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current measurements. The proposed research focuses on the following four aspects to 

provide solutions for advanced PEL identification. 

(1) Robustness: achieve meaningful classification and identification of PELs 

listed in Table 1.1 based on front-end power supply unit circuit topology and 

electrical operation principles to handle the diversity within each type of PELs 

and the similarity between different types of PELs; 

(2) Accuracy: achieve certain identification success rates under all scenarios and 

provide solutions when the identification cannot be made without ambiguity; 

(3) Adaptiveness: learn from user inputs or feedback, update classification and 

identification rules if necessary, and include a priori information and required 

identification granularity; 

(4) Intelligence: extract signatures/patterns when multiple PELs are connected 

into a single outlet or power strip such as startup transients and steady-state 

features, investigate the applicability of the extracted signatures/patterns for 

effective PELs activity recognition, and identify the unknown PELs to a 

certain level of granularity. 

1.6 HIERARCHICAL I DENTIFICATION FRAMEWORK  

Considering the diverse nature of PEL, the enormous number of PELs, and the 

challenging aspects of advanced PEL identification, this dissertation follows existing 

work [2, 43-45] which have developed meaningful taxonomy of typical PELs in 

commercial buildings, uses the suggested taxonomy in [43], and proposes a hierarchical 

PEL identification framework as shown in the following figure.  
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Figure 1.10 Hierarchical PEL identification framework 

 

As shown in Figure 1.8, the proposed hierarchical (multi- level) PEL identification 

framework consists of three steps: 

(1) (Top level) Classification of PELs into a number of categories based on their 

front-end power supply units topology. In this step, an unknown PEL is first 

specified into one of the PEL categories. 

(2) (Middle level) Within the specified PEL category classified by step (1), the 

next step is to indicate the actual identity (and operating status if possible) of 

the unknown PEL. 

(3) (Bottom level) If necessary, the proposed PEL identification framework could 

interact with users and receive inputs to update its identification rules. 
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1.7 DISSERTATION OUTLINE  

A comprehensive literature review of the existing methods and techniques pertinent 

to this dissertation is summarized in Chapter Two. Chapters Three to Seven constitute the 

main body of this dissertation, which can be divided into three parts: 

1.7.1 Feature extraction for PELs 

Chapter Three proposes a low computational-cost but yet efficient method to extract 

load signatures for PELs classification and identification. Instead of carrying out 

frequency domain analysis such as DFT and FFT, Chapter Three proposes to extract the 

similarity of voltage-current (V-I) trajectories between loads by mapping V-I trajectories 

to a grid of cells with binary cell values. A novel set of graphical signatures extracted 

from the grid cells with V-I trajectories mapped on is presented, which can be utilized for 

many applications.  

1.7.2 Classification of PELs into categories 

Chapter Four introduces the fundamental framework of the self-organizing map 

(SOM) and the extension of SOM to a supervised manner for classification and 

identification of PELs. The supervised SOM (SSOM) can classify a large amount of 

PELs into several groups. Different sets of PEL features, including both time-domain and 

frequency-domain feature, are considered to be used in SSOM. Chapter Five presents a 

novel combination of the SSOM framework and the Bayesian identifier framework to 

function as a hybrid identifier and provide the probability of an unknown PEL belonging 

to a known category.  
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1.7.3 Identification of PELs in each category 

Chapters Six and Seven discuss in-category identification of PELs, i.e., identifying 

similar PELs within each PEL category.  

For static method, Chapter Six presents a novel hybrid SSOM/SVM identifier for the 

multi-class in-category PEL identification problem. The proposed hybrid identifier 

utilizes the power of previously supervised Self-Organizing Map (SSOM) classifier for 

PELs proposed in Chapters Four and Five to first classifie an unknown PEL into one of 

the seven PEL categories discussed in Chapter Three. Within each cluster, a more 

accurate identification decision is made by the well establish multi-class one-against-all 

SVM classifier. The results are satisfactory for the testing purpose. 

For dynamic methods, Chapter Seven proposes a novel finite-state-machine (FSM) 

representation of long-term operating waveforms for the purpose of indicating load 

identity and operating modes. The operating current or voltage waveform is converted 

into a quantized sequence of states. A set of elemental states and events are defined to 

reduce the number of states and extract numerical features to represent and identify PELs 

under different operating modes. Three major categories of repeating patterns in 

waveforms that correspond to repeating operating actions are summarized, and 

identification methods are proposed for each such category.  

Finally, Chapter Eight summarizes the main contributions and lists outcomes of this 

dissertation. 
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CHAPTER 2  LITERA TURE REVIEW  

2.1 INTRODUCTION  

Started with its first introduction by Hart [41] in the late 1980ôs, the non- intrusive 

load monitoring (NILM) problem has attracted wide range of attentions and interests 

globally. A large amount of work has been reported on electric load identification by 

worldwide researchers. Most existing work in the literature follows a common process 

which is summarized as a general framework and presented in section 2.2. 

This general framework for electric load identification contains three main 

modules/steps: event detection, feature extraction, and load identification using extracted 

features. The load identification process starts if a turn ON/OFF event is detected. How to 

detect ON/OFF events is reviewed in section 2.3.  

A set of features of an electric load is defined as its unique signature which can 

represent its characteristics. With an electric load with unknown identity represented by a 

pre-defined set of features, the identification decision is then made by comparing the 

features with a reference database and finding out a known load with most similar 

features. Major existing electric load features and feature comparison methods in the 

literature are reviewed in sections 2.4 and 2.5, respectively.  

Some recent work aims at determining not only the identity of electric loads but also 

the operating status of electric loads, which is not a part of the original NILM problem. 

Related work in the literature is discussed in section 2.6.   

Finally, section 2.7 summarizes this chapter.  
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2.2 GENERAL FRAMEWORK FOR ELECTRIC LOAD I DENTIFICATION SYSTEMS 

Starting with the original idea of non- intrusive load monitoring (NILM) by Hart in 

the 1990ôs [41], many methods have been proposed to monitor and identify electric loads 

over the past 20 years. Many electric load identification systems have been proposed, 

built, and tested based on these methods. Most existing electric load identification 

systems follow the general framework shown in the following figure [46-48].  

Data Acquisition

Data Preprocessing

Event Detection

Feature Extraction

Load 

Feature

Database

Load Management

Electric System

(Home / Office)

Load Identification

 

Figure 2.1 General framework for electric load identification systems [42-44]. 

 

In Figure 2.1, the data acquisition (DAQ) module captures steady-state raw data as 

well as transient signals if necessary, and then the data preprocessing module carries out 

predefined data conditioning and processing actions such as filtering, normalization, and 

frequency spectrum calculation by the discrete Fourier transformation (DFT) or the fast 
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Fourier transformation (FFT). Some load identification methods depend on the event 

detection module to detect whether there is an actual electric load being switched on/off. 

The event detection module can be implemented by triggering simple thresholds such as 

instantaneous active power or sophisticated thresholds such as root-mean-square (RMS) 

values, harmonics, and/or transient values.  

The feature extraction module is the key part, which varies notably in different 

systems as it determines the accuracy and performance of the overall load identification 

system. Features can be either time-domain (from voltage and current waveforms) or 

frequency-domain (from harmonic spectrum of steady-state signals). The extracted 

features represent the characteristics of electric loads. The load identification module 

utilizes the extracted features, compares them with a database of features of known 

electric loads, and identifies the unknown load based on pre-defined rules such as 

maximum similarity. 

The load management module, usually decoupled from the load identification section 

composed of the previous five modules, utilizes the information generated from the load 

identification module and provides granular load energy consumption and performance 

details to drive various building energy management tasks such as energy intensity 

reduction, demand reduction, peak shaving, energy optimization, and proactive 

equipment maintenance. 

The major differences between the various load identification systems mainly fall into 

the so-called adopted features and feature comparison method reviewed in the rest of this 

chapter. 
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2.3 REVIEW OF EVENT DETECTION M ETHODS 

Event detection based methods have typically been adopted in the earlier load 

identification systems and have later been replaced by other more advanced load 

identification methods. 

2.3.1 Event detection using steady-state values 

Early work [49-51] proposes to continuously monitor the operation of electric loads 

and search for changes in steady-state active and reactive power. A significant change of 

exceeding a predefined threshold of adopted features is considered as an indication of an 

electric load being switched on/off and the differences in steady-state active and reactive 

power values are considered to be the distinguishing characteristics of that load. 

Subsequent identification is then made by comparing the distinguishing characteristics of 

that load with a library of known characteristics of typical loads.  

However, this method works only for a limited number of scenarios with only a few 

quite different electric loads. It is shown in [49] that this method can identify the 

switching of a refrigerator, an oven element, and a stove burner.  Furthermore, the steady- 

state real and reactive power are even less informative in commercial buildings where 

substantial efforts, such as power factor correction and load balancing, are made to 

homogenize the steady-state behavior of different loads. 

2.3.2 Event detection using transient characteristics 

In order to overcome the limitations of steady-state values, some later work suggest 

considering transient characteristics. In [52], a multi-scale transient event detection 

algorithm is introduced to identify individual loads in buildings by examining measured 
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transient profiles observed in the aggregated current waveforms available at the service 

entry. This algorithm can be used to identify observed transient waveforms even when 

multiple transients overlap. In [53], a transient event detection method using voltage 

distortion is proposed. The implementation of transient event detector using a 

multiprocessor is explained in [54]. However, these methods are designed for major 

appliances with distinguishing characteristics but cannot be directly applied to PELs with 

similar characteristics. 

The event detection module is typically not included in later load identification 

systems, the majority of which directly extract time-domain or frequency-domain electric 

features as the characteristics of electric loads. Compared with events, the electric 

features of electric loads are of higher dimension and thus possess a better descriptive 

capability. 

2.4 REVIEW OF FEATURES FOR ELECTRIC LOADS 

The performance of almost all existing load identification methods in the literature 

highly depends on the electrical features (also called signatures in some context) of the 

loads, which are defined to be ñan electrical expression that a load device or appliance 

distinctly possessesò [44].  

Assume that the voltage and current waveforms can be represented by the following 

equations: 
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where 
0w  is the fundamental frequency, 

kV  and 
kd  denote the magnitude and phase 

angle of the k-th harmonic in voltage, and 
kI  and 

kqdenote the magnitude and phase 

angle of the k-th harmonic in current, respectively. 

The following steady-state features for electric loads [48-51, 55] can be deduced from 

the voltage and current waveforms and are widely used in various electric load 

identification systems. 

2.4.1 Active and reactive power 

The amount of active power an electric load consumes in real- time or the average 

amount of active power it consumes over a certain period of time is probably the most 

straightforward and intuitive feature of this load. Furthermore, the amount of reactive 

power can roughly indicate whether this load is resistive, inductive, or capacitive. 

2.4.2 Peak, average, and RMS current values 

Peak current and average current are proposed for load identification in [56]. 

Furthermore, the root mean square (RMS) value RMSI  of the current measurement is also 

considered [57, 58]. However, RMSI  gives equivalent information on the active power but 

needs no additional multiplication (with voltage).  

2.4.3 Instantaneous values 

Instantaneous values such as instantaneous active powerinstp  [59], current insti , and 

admittance insty   can serve as features. Some electronic converter connected loads may 

have huge spikes of instantaneous admittance, which separate them from other loads.  
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The main disadvantage of instantaneous values is that a proper time scale should be 

defined because there cannot be either too many or too few number of instantaneous 

features. 

2.4.4 Harmonics spectrum of the current waveform 

The harmonic spectrum of the current is proposed to identify loads in [47, 48, 50, 60] 

as the current waveform in the time domain provides one of the most complete sets of 

information to describe the behavior of electric loads. The main advantage of using 

current harmonics lies in the high resolution of the signal which can reflect detailed 

characteristics of the appliance. 

More specifically, the 3rd and 5th harmonics are more informative than others. Any 

single phase device (such as desktop, laptop, TV, and LCD monitor) which contains a 

switching mode power supply (SMPS) contains high percentages of the 3rd and 5th 

harmonics in the current waveform. Therefore, the magnitude and phase of the 3rd and 5th 

harmonics in the current waveform can also be considered as features. 

2.4.5 Total harmonic distortion (THD) 

The total harmonic distortion of the current waveform is widely [59, 61, 62] adopted 

to describe the linearity of an electric load as well as power quality. Linear loads draw 

current that is sinusoidal while nonlinear loads draw a current that is not perfectly 

sinusoidal, i.e., distorted. With the harmonic components , 1,..., ,kI k= ¤of the current 

waveform calculated by the Fourier transformation, the THD in the current waveform 

shown by equation (2) is defined as        



29 

 

 
 

2

2

1

100%
k

k

I

I

THD
I

¤

== Ö

ä
  (3) 

 

2.4.6 Power factor 

There are several different power factor definitions available such as displacement 

power factor PFdisp, distortion power factor PFdist, and power factor PF [63, 64]. They 

provide equivalent information and are defined as follows.  

 1 1cos( )dispPF d q= -  (4) 
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where ŭ1 and ɗ1 are the fundamental voltage and current angles, respectively.  

Typically, only one or two of the above three definitions are used in one system to 

avoid redundancy. In this dissertation, two different definitions of the power factor by (4) 

and (5) are adopted.  

2.4.7 Crest factor or peak-to-average ratio 

The crest factor (CF), also called peak-to-average ratio, is defined to be the ratio of 

peak value to the RMS value of a certain waveform. For example, the crest factor for 

current CFI is defined as    
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2.4.8 Transient features 

The transient power is also used as a feature for variable electric loads [60, 65-67]. 

The following figure is taken from [65] as an example.   

 

(a)                                                         (b) 
 

Figure 2.2 Transient features in active power of (a) a lamp bank and (b) an induction 

motor [65]. 

 

The transient power is suggested in [53, 65] to be calculated for every half electric 

cycle (each electric cycle is 1/60 seconds in U.S.) and the resulting switching transient 

waveforms are shown in Figure 2.2. It is straightforward to observe that the active power 

transient of the lamp bank has a sharp rise to its peak value and then drops to its steady-

state value in less than 0.1 second. However, the active power transient of the induction 

motor drops much more slowly (in around one second). 
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Other work by Leeb and his team [52-54, 65] proposes to use shapes of the transient 

waveforms to distinguish different loads. This approach can identify simultaneously 

switched loads when the transients do not overlap. However, when the loads are switched 

on too frequently so that their transients overlap significantly, the loads may not be 

identified. 

The major problem of using transient features in real-world applications is that they 

may not be able to be observed or detected repetitively for different models or brands of a 

certain electric load because a type of electric loads may have similar not identical 

transient profiles. In other words, the transient feature of each load is typically concluded 

within a certain range instead of a certain value. Thus, the identification decision would 

be inaccurate if different electric loads have overlapping ranges of transient features. This 

issue has not been well addressed in the literature for the purpose of electric load 

identification. 

2.4.9 Graphical features 

Instead of using numerical values as features for electric loads, it is proposed in [44] 

to use graphical signatures in the two-dimensional voltage-current (V-I) trajectory as 

electric load features. A V-I trajectory is plotted in a two-dimensional figure with voltage 

values on the horizontal axis and current values on the vertical axis. 

It is claimed in [44, 68] that V-I trajectories of different types of electric loads have 

distinct graphical shapes, which are related to the operating characteristics of the loads. 

Two examples of V-I trajectories of different electric loads are shown in the following 

figure. 
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Figure 2.3 V-I trajectories of (a) a desktop computer and (b) a refrigerator [44]. 

 

It is summarized in [68] that there are eight shape features that can describe the V-I 

trajectory: asymmetry, looping direction, area, curvature of the mean line, self-

intersection, slope of middle segment, area of left and right segments, and peak of middle 

segment. For instance, the asymmetry property and the looping direction can be observed 

in Figure 2.3. Moreover, the following figure is taken from [68] to illustrate how to 

divide the V-I trajectories into several segments (left, middle, and right) and extract 

graphical features from each segment. 
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Figure 2.4 Illustration of V-I trajectory segments and measurements [68]. 

 

Furthermore, all loads are classified according to the shape features, and the 

taxonomy of all loads is constructed and then compared to the taxonomies based on 

traditional features such discussed above.  

Note that these graphical features proposed by [68] are extended and used in [69] to 

study the load disaggregation problem as shown in the following figure. The load 

disaggregation problem aims at identifying multiple electric loads (which are connected 

to the same power supply source and thus) from mixed voltage/current waveforms The 

load disaggregation problem does not fall into the scope of this dissertation and thus is 

not discussed in details. Some recent survey papers [70, 71] can be referred to as 

summaries of load disaggregation methods. 
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Figure 2.5 Using graphical features for load disaggregation [69] 

 

Like other features, different loads with similar front-end power supply units would 

possess similar V-I trajectories, especially after normalization on the voltage and current 

data. 
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2.4.10 Summary of features 

To summarize, many time-domain, frequency-domain, and graphical-based features 

have been proposed in the literature to characterize electric loads. The major source of 

information is the measured voltage and current waveforms for non- intrusive load 

identification. Therefore, some features provide similar information and characteristics as 

others and thus it is redundant to use all available existing features.  

Furthermore, the major criteria to evaluate different features include the complexity 

of computing features, the similarity between features of loads of the same type, and the 

diversity between features of loads of different types. Unfortunately, there is no existing 

set of features that can distinguish all electric loads without ambiguity. A comparison of 

existing features can be found in [12, 24, 26, 31, 42]. 

2.5 REVIEW OF I DENTIFICATION M ETHODS 

The load identification module takes extracted features as its inputs and compares the 

features of an unknown load to a database containing features of known loads. The 

general principle for identification is that the unknown load is identified as the one of the 

known loads when the unknown load has features that are most similar to those of one of 

the known library loads. Many methods have been proposed in the literature to describe 

how to measure the similarity between two sets of features, which are summarized as 

follows. 

2.5.1 P-Q plane 

Hart [49] proposes to use a two-dimensional complex power plane (P-Q plane) to 

locate relative positions of different appliances, as shown in the follow figure. The real 

and imaginary axes in the complex P-Q plane denote the value of active and reactive 
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power values, respectively. Loads that lie far away from each other in the plot can be 

identified using only real and reactive power, as shown in the following figure [49].   

 

Figure 2.6 Relative positions of a group of appliances in the complex P-Q plane [49]. 

 

This method has certain drawbacks as indicated in [60]. For example, this method 

only works for electric loads that are located far away from each other in the P-Q plane, 

which may not be true of all electric loads especially in commercial buildings. Also, the 

P-Q plane becomes crowded with indistinguishable loads as the number of loads 

increases. 

2.5.2 Decision tree 

Assume that a set of features has been chosen to set up a database of known loads, 

and that the value range of each feature of each load can be concluded from the database 

[43, 72]. When the features of an unknown load come in, an identification decision can 
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be done by comparing the incoming features with the value ranges of database features 

step by step, with one feature at each step.  

2.5.3 Optimization methods 

The similarity problem between unknown and known features is also formulated to be 

solved as an optimization problem in [47]. The objective function is defined as the 

minimum difference while comparing an electric load with unknown identity with a set 

of loads with known identity from a database, i.e., 

 2

( , )

1

Ĕargmin  ( )
N

k k j k
j k

w y y
=

-ä  (8)             

where ( , )
Ĕ

k jy  is the k-th feature of the feature vector j  in the known database of loads, ky  

is the k-th feature extracted from measurement of the unknown load, wk is the weight of 

feature k, N is the total number of feature. The weight wk can help to adjust the 

significance of each feature. 

2.5.4 Expert system 

It is proposed in [50] to utilize the expert system to identify different household 

appliances. The features adopted include current values, voltage values, active power, 

duration and shape of the current transient, and harmonics in the current waveform. The 

household appliances used for experiment are divided into categories such as resistive, 

pump-operated, motor-driven, electronically- fed, and fluorescent lighting. Test results for 

selected cases are acceptable.  
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The disadvantage of using the expert system for load identification is that the expert 

system depends on the engineerôs domain knowledge and requires accurate knowledge of 

the electric loads being considered. 

2.5.5 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) can be used to identify electric loads by training 

ANNs to learn features of known electric loads. Through the training process, the 

structure and parameters of ANNs are built to capture different features of loads [56, 73]. 

Different types of ANNs, such as multi- layer-perceptron (MLP), radial-basis-function 

(RBF), and support vector machines (SVM) are applied in [74, 75]. The ANN is first 

trained by a database of features of known loads. Once trained, the ANN can perform 

identification tasks when it is presented with the same set of features of the unknown load. 

A comparison of performance shows that MLP and SVM-based models are both able to 

determine the presence of particular devices based on their harmonic signatures [74].  

To summarize, the major advantage of ANNs lies in their capability to evolve and 

learn without extra knowledge. The training process of ANNs is statistical in nature. 

Therefore, the ANNs are able to extract the statistical information of features from the 

database and utilize this information to do identification. 

2.5.6 Summary of identification methods 

Existing methods can be divided into two major categories: methods comparing 

similarities between extracted steady-state or transient features and their variations with a 

predefined database as well as computational intelligence algorithms.  

Methods in the former category cannot distinguish between different electric loads 

without ambiguity when extracted features of the unknown load are very similar to 



39 

 

several known loads in the database. On the other hand, ANNs are powerful tools but 

they also suffer from problems including lack of knowledge during the training, 

computational cost, convergence criteria, and initial parameter selection.   

To summarize, most existing methods cannot efficiently handle the diversity within 

each type of loads and similarity between similar types of loads and thus cannot be 

directly applied to the identification of PELs. 

2.6 REVIEW OF OPERATING M ODE IDENTIFICATION M ETHODS 

Instead of identifying electric loads based on features extracted from short-term 

waveforms, recent efforts have started to identify operating modes from long-term (hours 

or days) waveforms. A recent report by the German Federal Ministry [76] analyzed 4 

operating modes of communication devices: normal, standby, off-mode, and off.  

In the U.S., a study by the Lawrence Berkeley National Laboratory [77] employs a 

non- intrusive inventory-based method to study the power status of office appliances 

during night-time. It only considers snapshots at single points in time and thus does not 

provide the time spent in each power status. The National Renewable Energy Laboratory 

presented a histogram heuristic clustering technique to divide a data set of electric loads 

operation for several days into clusters based on similarity criteria and extracted 

operating modes [78]. 

To summarize, these efforts mainly utilize the active power with a low resolution 

(e.g., one data point every hour) and focus on the total energy consumed in a given time 

period. However, some technical problems still remain unsolved, such as identifying real-

time operating modes using high resolution data and reporting the total amount of time 

operating at a certain mode. 
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The following figure shows the current waveform (of 60 seconds) of two electric 

loads in offices. Figure 2.6(a) shows the transition from standby mode to faxing (active) 

mode of a fax machine, and Figure 2.6(b) represents a multi- functional device (MFD) in 

double sided photocopying mode.  

 

(a) Transition between operating modes of a fax machine 

 

(b) A multi- function-device in recurrent operating mode 

Figure 2.7 Current waveforms of office appliances in different operating modes 
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The detection of the transition from a standby to an active mode in Figure 2.6(a) is a 

crucial step for energy management, which should not only rely on detecting the change 

in power. Also, in Figure 2.6(b) the instantaneous peak current is time-varying and 

typical identifying features in the literature vary from cycle to cycle. Thus, existing 

methods may fail to correctly identify this multi- functional device (MFD). Therefore, a 

method is needed which can extract features from long-term and time-varying operations.  

2.7 SUMMARY OF CHAPTER  

This chapter first presents a general framework for the electric load identification 

problem, which has been widely used by most existing work in the literature. 

Furthermore, major existing methods for different modules in this framework, such as 

feature extraction, event detection, and load identification are reviewed and compared. 

Advantages and disadvantages of most reviewed methods in this chapter have been 

presented. 
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CHAPTER 3  PLUGGED-IN ELECTRIC LOADS 

CLASSIFICATION BY FE ATURES FROM V-I TRAJECTORIES  

3.1 INTRODUCTION  

As discussed in Chapters One and Two, a primary factor that determines the 

performance of any electric load identification system is the set of features selected to 

represent electric loads. Therefore, a large number of work on different electric load 

features in the literature has been reported by researchers as reviewed in section 2.4. 

This chapter proposes a set of computationally efficient but yet accurate features to 

represent PELs for the purpose of PEL classification. Section 3.2 presents a classification 

of PELs into seven categories by their front-end power supply circuit topology. Based on 

the power supply circuit topology, V-I trajectories of PELs within the same category are 

very similar in shape. Typical V-I trajectories of each PEL category are shown in section 

3.3.  

Based on the analysis in section 3.3, a set of graphical features are then proposed in 

section 3.4 by first mapping a V-I trajectory onto a grid of cells with binary values and 

then extract certain graphical features from the mapped cell grid. 

The computational cost of the proposed features is analyzed in section 3.5, which 

shows that they require less computational resources than features in the literature. 

Expected values of the proposed features for each PEL category are summarized in 

section 3.6 for the purpose of PEL classification.  

Finally, section 3.7 summarizes this chapter. 
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3.2 CLASSIFICATION OF PLUGGED -IN ELECTRIC LOADS BY FRONT-END POWER 

SUPPLY CIRCUIT TOPOLOGY  

The number of types and models of commercially available PELs currently used in 

residential and commercial buildings is enormous. Furthermore, considering the fact that 

voltage and current waveforms are the only source of information available for PELs 

feature extraction and identification, front-end power supply units of PELs play a key role 

as they directly determine the characteristics of the current waveform. For instance, as 

discussed in section 1.4.1, PELs within the same type (i.e., flat-panel TVs) could be 

equipped with different power supply units and thus present quite different current 

waveforms. On the other hand, different types of PELs may be equipped with similar 

power supply units.  

Therefore, it is neither feasible nor necessary to characterize and identify each PEL 

individually in many applications. Instead, it is sometimes more practical and robust to 

first classify all PELs into several categories by their front-end power supply topology 

and then extract common signatures for PELs in each category as shown in the 

hierarchical identification framework shown in Figure 1.8.  

Based on a study on over 95% of all commercially available front-end power supply 

topologies, it is proposed in [43] to divide PELs into the following seven categories based 

on their front-end power supply circuit topology:  

(1) Resistive loads (Category R): a typical PEL in this category contains a 

resistance directly connected to the front-end terminal and thus there is no 

phase angle difference between its current and voltage waveforms;  
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(2) Reactive loads (Category X): a typical PEL in this category contains an 

inductance directly connected to the front-end terminal through a rectifier and 

thus there is a large phase angle difference between its current and voltage 

waveforms;  

(3) Electronic loads without power factor correction (Category NP): a typical 

PEL in this category consists of a front-end electromagnetic interference 

(EMI) filter, a rectifier, a voltage or current filter, and a DC-DC converter. 

There is typically a very small phase angle difference (close to zero) between 

its current and voltage waveforms but the current waveform contains a notable 

amount of harmonics; 

(4) Electronic loads with power factor correction (Category P): a typical PEL in 

this category consists of a front-end EMI filter, a rectifier, a voltage regulator, 

a power factor correction (PFC) module, and a DC-DC converter. Its current 

waveform is similar to resistive loads, but notable current discontinuity and 

switching noise can be observed; 

(5) Complex structure loads (Category M): a typical PEL in this category consists 

of multiple circuits supplied by independent front-end power supply units and 

thus its overall current waveform is composed of current waveforms from one 

or more of the above four categories; 

(6) Linear loads (Category T): a typical PEL in this category consists of a 

transformer, a rectifier, and electronic components. Its current waveform is 

highly distorted due to transformer saturation. Notable phase angle difference 

can also be observed; 
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(7) Phase angle controllable loads (Category PAC): a typical PEL in this 

category continuously adjusts its current waveform by controlling the firing 

angle of a thyristor. 

Furthermore, category M loads also include PELs that operate at several different 

power levels and switch between these power levels repeatedly during usage. These PELs 

are programmed in a pre-defined manner to operate in this repeated switching-mode 

manner because their functional performance may require repeated processes in a certain 

sequence.  

For example, most high volume printers have two (or more) printing engines/motors 

in a single device and are able to print both sides of the paper in a single pass, i.e., 

double-sided printing. A double-sided printing job is a repeated process of feeding a sheet 

of paper, printing and rolling the paper forward, holding the paper for the ink to dry, 

reversing the paper to print on the other side, and then feeding the next sheet of paper. 

The two engines are programmed to operate in different combinations with different 

power consumption levels during this repeated process, and these combinations could fall 

into one or several other categories.   

Note that the front-end power supply circuit topology of categories T and PAC are no 

longer adopted in modern power supply industry, but these two categories are still 

included in this dissertation for completeness. 

3.3 TYPICAL V-I  TRAJECTORIES OF EACH PEL CATEGOR Y 

In the literature, a large number of existing works on the characterization and 

identification of PELs use features extracted from the harmonic spectrum of current 

waveforms derived by discrete Fourier transformation (DFT) or fast Fourier 
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transformation (FFT). However, for the purpose of practical applications with only 

limited computational capability or hardware capability, the computational cost of DFT 

or FFT is probably too high in some cases. For example, if a PEL identifier is desired in a 

power strip or a power outlet, these applications may only have a micro-processor with 

very limited amount of memory. Fourier transforms may not be desired in these 

applications. 

It is observed that the normalized V-I trajectories of PELs within each category share 

very similar shapes, which can be used to describe and represent PELs within each 

category. Furthermore, PELs of different categories possess quite different shapes of 

normalized V-I trajectories. In other words, normalized V-I trajectories described in a 

properly defined metric space can be used as features to distinguish different categories 

as they are close within-category but quite far away between-categories in the manner of 

distances. 

Typical normalized V-I trajectories of the seven load categories discussed above are 

shown in the following figure. 

 

 

     (1) Category R                                  (2) Category X 

 



47 

 

 

  (3) Category NP                                  (4) Category P 

  

  (5) Category M                         (6) Category T 

 

       (7) Category PAC 

Figure 3.1  Typical normalized V-I trajectories of the seven load categories 
















































































































































































































































































































