Stay with an alumnus in Atlanta!

3 close-to-everything locations...

75 SOUTHW at Cleveland Ave. exit
4 minutes to Sports Stadium; 5 minutes to Airport (free transportation); 6 minutes to Downtown; 20 minutes to International Raceway.

20 EAST at Moreland Ave. exit
2 minutes to Sports Stadium and Downtown; 10 minutes to Airport; near Decatur, Emory University and Stone Mountain.

75 NORTHWEST at Howell Mill Road exit
5 minutes to Georgia Tech and Downtown; 10 minutes to Sports Stadium; 20 minutes to Airport; near Marietta.

- Room Phones
- TV
- Swim Pools
- Central Air
- Restaurants

Call 767-2694 for reservations!
The November 19 announcement that the Tech Athletic Board had let the contract for the 7,339-seat Alumni Field should have been a time for rejoicing for all Tech alumni with an interest in football. And it should come as an even greater cause for rejoicing that the Board does not intend to use any kind of an option plan to help finance the double-decking project despite the fact that the Athletic Association is not able to support the entire project with its current funds.

This decision to go ahead in the final step to the addition was not reached without a great deal of soul-searching on the part of the members of the Athletic Board. But in the final analysis it was done because they felt that the younger alumni deserved some decent seats for Tech’s home games.

The 7,339 seats in the new section will be assigned to alumni under the priority system established by the Athletic Association in 1953. Under this system all active alumni (contributors to the current Annual Roll Call of the Alumni Association) are assigned before any inactive alumni. The priority number is established by subtracting the number of consecutive years contributing to the Roll Call and the number of consecutive years purchasing season tickets from the class year. Additional information on the purchase of tickets in the new stands (or the improvement in the present West Stands) will be forwarded to all Tech alumni in the spring when the ticket order blanks go out.

According to the contract, work began on the new addition on Monday, November 28, with the demolition of the old press area. A new press section will be erected between the present lower West Stands and the new double-deck alumni section. Work is scheduled for completion in time for Tech’s opening home game of the 1967 season when the Jackets play Texas Christian University on September 30.

The new alumni double-deck will be paid for by Athletic Association funds. There will be a total cost of $600,000. This project, paid for by the Athletic Association on a self-liquidating basis, brought the capacity up to 40,000. In 1958, Athletic Association funds were again used to erect the present North Stands and make the capacity 44,000. And in 1962, the East Stands were double-decked through private subscriptions and Athletic Association funds. This project brought Grant Field to its present capacity of 52,300, which will go to 59,639 when the current project is completed.

In making the announcement, President Harrison said, “We have debated this project in the Athletic Board for a long period of time. We have known that the additional seats are needed due to the rapid growth of our alumni, student, and faculty bodies and the intense interest in Tech football shown in the Atlanta area. Our athletic program is an important part of the humanities in graduate school, he turned to Tech alumni. We would especially like to call your attention to the far-out fiction article written by former Tech news bureau chief, Marian Van Lordingham. Her approach to a Tech registration is a novel one to say the least. Another member of the news bureau staff, De Gilmore, is also featured in this issue along with her husband. The article is called “What Makes Johnny Run?” and anybody who has worked around De Gilmore for any length of time has little doubt about what the answer is to that question.

This issue on Engineering Education also features an article by the man selected by his fellow faculty members as the winner of the first “Teacher of the Year” award last spring. Dr. James Young, professor of English, is an exceptional man in an exceptional world. A biochemistry graduate of Cal Tech who turned to the humanities in graduate school, he is truly both a man for all seasons and a man with a point of view.

Rambling on every front, it takes almost a little optimistic when he made this statement. It will not endanger the athletic program providing Tech alumni purchase those season tickets they have been screaming for now for several years. But any drop in season-ticket buying would place the Athletic Association in danger. With costs rising on every front, it takes almost a record season in sales just to keep a modern athletic program out of the red. For years now, Tech has had the model athletic program with the Athletic Association paying the freight on a number of items such as maintenance of the grounds and capital improvements which few if any other Athletic Associations are expected to support.

The Georgia Tech Athletic Association has even gone so far as to make a gift of $250,000 to the new Student Center, which will soon be under construction. Shrewd fiscal judgment and a winning program (despite handicaps facing no other college in big-time sports) have made all of these things possible. It is now up to you, the alumni, to back the Athletic Association in what can best be described as the gamble of its life.

Actually, Coach Dodd was being a little optimistic when he made this statement. It will not endanger our athletic program in any way.”
Tech Alumni Orient Tour

The date set for an exciting trip to the ORIENT for thirty Georgia Tech Alumni members and their families is February 28, 1967!! HONOLULU, HONG KONG, TAIPEI, JAPAN

First stop—Hawaii—plans are now set for the lucky group of thirty to depart Atlanta and fly directly to Honolulu for a brief visit of this Island of Paradise.

Next stop—Hong Kong—one of the most interesting cities in the world and renowned for its unexcelled shopping. Four full days will be spent visiting Hong Kong Island, Victoria Peak, Aberdeen, Kowloon, the New Territories and other points interesting to western visitors.

Taipei, Formosa—the capital of Free China—is next on the itinerary. Located about 100 miles off the southeast coast of China, this lovely island will charm you with its genuine Chinese culture and atmosphere—where the best of the old country has been incorporated into the new.

The group will travel on to Japan, where ten full days will be spent in this incredibly lovely, picturesque country. The tour will spend three nights in the teeming metropolis of Tokyo, largest city in the world! Here you will find an exciting blend of East and West and you will enjoy an enormous variety of food and entertainment. Our trip will also make visits to Nara, Kyoto, Osaka, the beautiful Inland Sea and many other scenic areas, including the beautiful Mount Fujiama.

The tour will last three weeks, returning to Atlanta on March 20th . . . will stay in fine hotels throughout, will include most meals, all transportation, sightseeing, transfer services, tips and will be personally hosted by Mr. and Mrs. Roane Beard of the Georgia Tech Alumni Association. Your tour conductor will be Philip Osborne, of Osborne Travel Service in Atlanta, Georgia.

The group will definitely be limited to only thirty members, so if you are interested in joining, please return the coupon immediately.

The price for this exciting adventure?? From Atlanta to Atlanta—only $1596.00 per person.

T0: Osborne Travel Service, Inc.
3379 Peachtree Road, N.E.
Atlanta, Georgia 30326

☐ Yes, I am going! Enclosed is my check in the amount of $200.00 to serve as deposit. (Name)_________________________

(Address)_________________________

☐ Yes, I am interested! Please send further details. (Name)_________________________

(Address)_________________________
Tech Alumni Orient Tour

This date set for an exciting trip to the ORIENT for thirty Georgia Tech Alumni members and their families is February 28, 1967!! HONOLULU, HONG KONG, TAIPEI, JAPAN.

First stop—Hawaii—plans are now set for the lucky group of thirty to depart Atlanta and fly directly to Honolulu for a brief visit of this Island of Paradise.

Next stop—Hong Kong—one of the most interesting cities in the world and renowned for its unexcelled shopping. Four full days will be spent visiting Hong Kong Island, Victoria Peak, Aberdeen, Kowloon, the New Territories and other points interesting to western visitors.

Taipei, Formosa—the capital of Free China—is next on the itinerary. Located about 100 miles off the southeast coast of China, this lovely island will charm you with its genuine Chinese culture and atmosphere—where the best of the old country has been incorporated into the new.

The group will travel on to Japan, where ten full days will be spent in this incredibly lovely, picturesque country. The tour will spend three nights in the teeming metropolis of Tokyo, largest city in the world! Here you will find an exciting blend of East and West and you will enjoy an enormous variety of food and entertainment. Our trip will also make visits to Nara, Kyoto, Osaka, the beautiful Inland Sea and many other scenic areas, including the beautiful Mount Fujiama.

The tour will last three weeks, returning to Atlanta on March 20th ... will stay in fine hotels throughout, will include most meals, all transportation, sightseeing, transfer services, tips and will be personally hosted by Mr. and Mrs. Roane Beard of the Georgia Tech Alumni Association. Your tour conductor will be Philip Osborne, of Osborne Travel Service in Atlanta, Georgia.

The group will definitely be limited to only thirty members, so if you are interested in joining, please return the coupon immediately.

The price for this exciting adventure?? From Atlanta to Atlanta—only $1596.00 per person.
T \text{hings have changed considerably around Georgia Tech and in engineering education, generally, since John Franklin Gilmore first came to the campus in the summer of 1959 as a cooperative student. But Johnny Gilmore has undergone an even more startling metamorphosis in those seven-plus years since he began his pursuit of an electrical engineering degree fresh from Hawkinsville, (Georgia) High School where he was an honor graduate and a student leader.}

The slight, quiet, black-haired son of a Methodist minister is still chasing after that same degree and with time running out (ten years is the maximum time for acquiring a bachelor's degree at Tech) he remains a good 40 credit hours back of his elusive goal. Of course, there

\textbf{WHAT MAKES JOHNNY RUN?}
considerably around Georgia Tech and, in
university generally, since John Franklin Gilmore
enrolled in the summer of 1959 as a cooperative
co-op student. Since he began his pursuit of
degree fresh from Hawkinsville (Georgia)
an honor graduate and a student leader.
bell-haired son of a Methodist minister is still
degree and with time running out (ten years
acquiring a bachelor's degree at Tech) he
years back of his elusive goal. Of course, there
are, as there always seem to be, extenuating circumstances for John­
y's seemingly perpetual student classification. Since he arrived at
Tech, he has married, sired a pair of sons, and maintained an average
work week of 35 hours as an engineering aide with an Atlanta firm.

But what makes Johnny Gilmore the typification of the one of
every five Tech students who take more than four or five years to get
that degree can be found in his own words: "I must have that degree.
I have no intention of transferring somewhere else to get one. Anything
less than a Tech degree would be defeat to me. I know that my 1.8
overall is going to take some pulling to get it to that 2.0 graduation
requirement. But not long ago it was 1.5. I don't intend to quit now."

by Robert B. Wallace, Jr.

Of five entering Tech freshmen, two will get a degree in four
or five years, two will never get a degree here, and one will
eventually graduate . . . this is a story of one of the latter
How many Johnny Gilmores are there left in this age which seems to instill a lemming instinct in its young when it comes to education and facing life?

Two years before Johnny Gilmore began his chase for a degree, the biggest change in the history of Tech's Electrical Engineering program took place. The old option system was abandoned and a new, more flexible program was installed that to this day remains, as far as course titles and hourly requirements go, very much as it was when it first appeared in the 1957-58 catalogue.

Dr. Benjamin J. Dasher, director of the School of Electrical Engineering and the man most responsible for the development and adoption of the new (and at that time, controversial) curriculum, explained the changes and the reasons for them in this manner:

"The most important single problem that engineering education has had to deal with since World War II is that of weaving into the basic engineering curricula the tremendous amount of new knowledge that came to light immediately after 1945 and in the following years. The enormous expansion of electronics technology and the rapid development of automatic control systems forced attention away from traditional subjects in almost every engineering field. Subsequently, the impact of the electronic computer, solid state devices, and the space program, among other things, have sustained the pressure. The demands of these new areas could not be handled by the old option-plan curriculum. A reorganization of subject matter was absolutely essential. If the subject matter included in today's four-year curriculum were treated in the same way and with the same attention to current practice and detail as was the case thirty years ago, we would be hard-pressed to squeeze it into eight years. The pace of the learning effort had to be geared to the rate of expanding technology. Thus, the attempts to generalize the discussion of methods other than electromechanical. Strong emphasis is given to systems as opposed to components, and to feedback control theory. Computers, both analog and digital, are being used more and more in all subjects.

"Those students who expect to engage actively in engineering design and development now find it necessary to attend graduate school at least for one year (that is, to obtain a Master's degree). Master's degree programs are not yet stereotyped, and I, for one, hope they never will be. A Master's student can select a program that will take him more deeply into theory, or he may select courses that are closer to engineering practice. At the present time, about one-third of the B.S. graduates continue for their M.S. This program was installed that to this day remains, as far as course titles and hourly requirements go, very much as it was when it first appeared in the 1957-58 catalogue. A reorganization of subject matter was absolutely essential. If the subject matter included in today's four-year curriculum were treated in the same way and with the same attention to current practice and detail as was the case thirty years ago, we would be hard-pressed to squeeze it into eight years. The pace of the learning effort had to be geared to the rate of expanding technology. Thus, the attempts to generalize the discussion of methods other than electromechanical. Strong emphasis is given to systems as opposed to components, and to feedback control theory. Computers, both analog and digital, are being used more and more in all subjects.

"I started on this job seven years ago as a co-op student and I stay on it because the company allows me time off to go to Tech. It's engineering work and the experience will help me when I graduate."

"I believe the curriculum pattern, with subject matter highly organized and with a generous leaning towards the mathematical side of engineering. In this respect it stresses principles more than practice and it cuts across the old subject boundaries. The second feature is the replacement of the aforementioned option scheme by a system of electives, allowing the student more freedom to satisfy individual interests. And, finally, the four-year curriculum has been designed to prepare students for graduate school as well as for engineering practice.

According to Dasher, "In this new program, the basic subjects, which are often referred to as the core curriculum, stress four areas: circuits and devices, electronics and communication theory, fields, and energy conversion. These subjects are grouped in a wide variety of ways by different schools, but over-all the contents are very similar. The treatment of energy conversion usually includes some discussion of methods other than electromechanical. Strong emphasis is given to systems as opposed to components, and to feedback control theory. Computers, both analog and digital, are being used more and more in all subjects.

"The most important single problem that engineering education has had to deal with since World War II is that of weaving into the basic engineering curricula the tremendous amount of new knowledge that came to light immediately after 1945 and in the following years. The enormous expansion of electronics technology and the rapid development of automatic control systems forced attention away from traditional subjects in almost every engineering field. Subsequently, the impact of the electronic computer, solid state devices, and the space program, among other things, have sustained the pressure. The demands of these new areas could not be handled by the old option-plan curriculum. A reorganization of subject matter was absolutely essential. If the subject matter included in today's four-year curriculum were treated in the same way and with the same attention to current practice and detail as was the case thirty years ago, we would be hard-pressed to squeeze it into eight years. The pace of the learning effort had to be geared to the rate of expanding technology. Thus, the attempts to generalize the discussion of methods other than electromechanical. Strong emphasis is given to systems as opposed to components, and to feedback control theory. Computers, both analog and digital, are being used more and more in all subjects.

"Those students who expect to engage actively in engineering design and development now find it necessary to attend graduate school at least for one year (that is, to obtain a Master's degree). Master's degree programs are not yet stereotyped, and I, for one, hope they never will be. A Master's student can select a program that will take him more deeply into theory, or he may select courses that are closer to engineering practice. At the present time, about one-third of the B.S. graduates continue for their M.S. This pro-
Which seems to instill and facing life?

"I started on this job seven years ago as a co-op student, and I have been at Tech for five years now. The people here seem to be very active in engineering work and the experience will help me when I graduate."

According to Dasher, "In this new program, the basic subjects, which are often referred to as the core curricula, stress four areas: circuits and systems, electronics and communication theory, fields, and energy conversion. These subjects are grouped in a wide variety of ways by different schools, but over-all the curricula are very similar. The treatment of energy conversion usually includes some discussion of methods other than thermodynamics. Strong emphasis is given to systems as opposed to components, and to feedback control theory. Computers, both analog and digital, are being used more and more in all subject areas.

"Those students who expect to engage actively in engineering design and development now find it necessary to attend graduate school at least for one year (that is, to obtain a Master's degree). Master's degree programs are not yet stereotyped, and I, for one, do not know exactly what they involve will be. A Master's student can select a program that will take him more deeply into theory, or he may select courses that are closer to engineering practice. At the present time, about one-third of the B.S. graduates continue for their M.S. This propor-portion compares with one-fifth in 1955 and one-tenth in 1949."

"Most graduate schools require an applicant to have finished in the top one-third of his undergraduate class, although a few schools do not have this rule. The Master's program is about saturated un-less we relax entrance requirements. Enrollments in engineering have been relatively constant since about 1960, although a small decline was reported during the 1950's. Enrollments at the doctorate level have also increased very rapidly over the last ten years, but only about six per cent of the B.S. graduates continue through the doctorate."

A quick look reflects that today's outstanding young engineering gradu-ate has received four years of sci-ence-oriented undergraduate study and a year of graduate study. But what about the graduate of the future? Dasher believes that recent events, whose impact on the future are not yet fully known, will have a great bearing on the engineering education of the seventies. The battle cry of the ad-vanced thinkers in the fifties was "down with machinery, up with en-ergy conversion." And this one start-ed a controversy that is still raging within a period of five to seven years."

"There are signs that the report will probably be a change in these policies which will give greater recognition to the fact that each university must have a program that is consistent with its faculty, its campus environment, its geographical location, and other fac-tors. A more liberal approach to ac-creditation should be possible without sacrificing any of the really important measures of quality."

Meanwhile, there have been, and will continue to be, experiments with five-year curricular and restricted depart-mental lines, in which some of the old disciplines of engineering are replaced by some others, such as sys-tems sciences, fields and fluids, and the like.

Another question that seems to be continually a part of engineering edu-cation is the teaching of engineering design to undergraduates. Despite a host of experiments and a great deal of effort, little progress has been made in this area. Here is where the stu-dents, who, like Johnny Gilmore, are being exposed to the design concepts in actual practice by working while attend-ing college, have the edge. But how many Johnny Gilmores are there left in this age of ours which seems to instill in most members of its genera-tion a lemming instinct to cram all of their education into as short a time as possible and then march into the sea of a career, often unprepared for the shock that awaits them.

TECH ALUMNUS

NOVEMBER-DECEMBER 1966
A determined wife and the beginnings of a family are two of the reasons why Johnny is still at Tech

The major motivating factor in Johnny Gilmore's relentless chase for a degree is his blond wife of four years, De. "If I hadn’t married De when I did, I wouldn’t still be around Tech," Johnny freely admits. "Her obsession for the graduation, as she calls it, makes my own ambitions seem small at times."

De Gilmore has reasons to be overly ambitious for her husband and family. She was one of eight children in a family that would be marked immediately for the poverty program in today’s Great Society, although she would be the last to admit it. By the time she had reached the age of 13 she had been working for four years at a series of diverse jobs ranging from running a paper route to caring for lawns of her neighbors in the West End section of Atlanta. From that age until she finished high school, she worked steadily as a checker at a local grocery store after school and on Saturdays. A good student, she finished high school at the age of 17 (it is characteristic of her that she missed her own commencement because she was working) and immediately began working her way through a business school by bookkeeping, modeling, and caring for the children of another family.

She took her first job on the Tech campus as a member of a technical report typing pool soon after her 18th birthday and her first meeting with Johnny Gilmore. Since their marriage she has worked at an amazing variety of jobs ranging from waiting on tables in a restaurant to editorial work—anything to help keep her husband from dropping out of school to take a higher-paying job to fully support her and their two sons, Lin (3) and Greg (1).

Eight months after the birth of her second son, De Gilmore returned to the Tech campus as an editorial assistant. With this salary and money earned from extra weekend editing and thesis typing at home added to what Johnny brings home from his almost-full-time engineering job, the Gilmores now can afford to feed and clothe the family, pay Johnny’s school expenses, and have enough left over for a few frills (to De Gilmore a Sunday outing at the Grant Park Zoo with her family and a second-hand bedroom suite for her boys are frills). But when the graduation comes in a couple of years (Johnny can only carry seven to 10 hours a quarter), De Gilmore is positive that life will change, although she is far from unhappy with her lot now. The only question then will be whether she can change enough to adjust to it after so many years of working toward that big goal.
The days of De Gilmore, filled with working and waiting, are just preludes to the evenings when she can have a free hour or two with her family.

"In some ways I am selfish about my work. I don't do it entirely for the money. This type of work means a lot more to my own development than any other job I have had."
"I think I am a good mother. The only thing that bothers me about working is being away from the children. When I do get the chance to be with them, I try to make up for all the hours they have without us."

"Lin is now at the age that he is easy to entertain. He likes to rough-house, he's all boy that way. But he also likes books and I read to him every chance I get."

"It seems as if we spend half of our life waiting for each other. Either I am going by to pick Johnny up or he is waiting in the car for me to finish at the office."

"We are not the budget-minded type although we have to watch our money. Our philosophy seems to be to pay the bills and then try and live on the rest until the next week or the next month."
The biggest problem of all seems to be to get everything done in the short time the young couple has together and then talk about the day.

"Johnny is good about some things such as taking care of the children while I fix dinner. That's a lot to ask since I like to cook and that takes a lot of time."

"He is a good father about other things, too. He likes the rough-housing as much as the boys and he doesn't object too strenuously when I ask him to help Lin with his clothes."
"Taking care of the baby is one of my favorite jobs around the house—that and fixing the washing machine, which is by our figures the first automatic built."

"He likes the rough-housing as much as I do and he doesn't object seriously when I ask him to help with his clothes."

"We have too little time like this, just the two of us. With work and the children and Johnny's studying, it's a rare evening when we have this moment to just talk."

"We have too little time like this, just the two of us. With work and the children and Johnny's studying, it's a rare evening when we have this moment to just talk."
I have been encouraged to make mistakes very real. Furthermore, that we now seem being asked to do it in English courses—if the education of an engineer concerns the disciplining of the intellect. Perhaps the proposition is clearer in this form: English courses can provide a training in the disciplining of the mind which is unique and essential to anyone’s education.

I know as well as anyone that English courses frequently do not do what they should. I do not wish to discuss the failure of English teachers, including myself; I would prefer to talk about what can be done—what should be done in English courses. The training of the mind which is the goal of the study of literature is not the only essential and unique discipline. I do not think, to modify the medieval view, that all other knowledge is the “handmaiden of English”—and, to be specifically clear about it, I do not think that English is the handmaiden of engineering. We have several unique and therefore essential, intellectual disciplines; and educated persons know them all. I am not presenting a justification for teaching English, but, hopefully, a description of what it can accomplish. In my experience, not exclusively with engineering students, that accomplishment has been very great and very real.

What troubles me is that we in Engineering seem now being asked to do something we should not do, that we have been encouraged to make mistakes in the past for similar reasons, and that we are not being allowed to concentrate on the very things we have reason to believe we can do. Whenever I hear someone speaking for the “humanities,” I begin to have increasing doubts as to whether or not I know what the humanities are. When a person speaks in favor of the humanities, I begin to discover that I am against them. This bothers me because on other occasions I think of myself as a teacher of literature. Although at first I recognize the term and I think I know what it means, very soon the discussion of the humanities tends to contradict what I know about my corner of them, to contradict it so fully that I can conclude either that the person speaking does not know what he is talking about or that I do not know what I am doing.

I would prefer to speak of the arts, both the fine arts and the practical arts, and bring together literature and engineering in a way that is perhaps not obvious when one talks of the humanities. The right thing for the wrong reason.

What other reasons are given? “To integrate the total educational experience” . . . so that the student’s “strong technological education will be supported by a broad general educational background.” Can one expect profitable integration before the student has some knowledge to integrate? I think not. At an undergraduate level, students may be introduced to rigorous training in particular disciplines—and we may hope that later some integration will take place. I do not understand how a course can be taught as background to anything. When I look at the UCLA introductory course in humanities for engineering students,
ACHING ENGLISH TO ENGINEERS IS ENOUGH

D. Young, winner of the First Union Camp Award for Teaching Excellence, with those who think the English teacher should teach everything but English

It is easy to argue that English is a subject of great importance to those in the field of engineering. If this is true, no one can argue that the field of English is not essential to the education of any student. However, the issue of what should be taught in the English curriculum is one that is often debated.

When I hear someone speaking for the "humanities," I begin to have increasing doubts as to whether or not I know what the humanities are. When a person speaks in favor of the humanities, I begin to discover that I am against them. This bothers me because on other occasions I think of myself as a teacher of literature. Although at first I recognize the term and I think I know what it means, very soon the discussion of the humanities tends to contradict what I know about my corner of them, to contradict it so fully that I can conclude either that the person speaking does not know what he is talking about or that I do not know what I am doing.

I would prefer to speak of the arts, both the fine arts and the practical arts, and bring together literature and engineering in a way that is perhaps not obvious when one talks of the humanities. Useful distinctions can be made between the various intellectual disciplines: the physical sciences, the social sciences, the arts, and the three synoptic disciplines of history, philosophy, and religion. What is usually meant in speaking of the humanities is the fine arts and the synoptic studies, and if we are to allow that hyphenated monster "humanistic-social," we end up in speaking of everything except the physical sciences and the practical arts. Now, I think that is so large an area of meaning for one term that one might make better sense if we focused narrowly and spoke of individual disciplines or studies within that vastness of human knowledge.

What implications does the American Society for Engineering Education Preliminary Goals have for teaching English? Briefly, two: good intentions and bad effects. I agree that the "liberal education" of all students in any discipline needs to be "strengthened and improved," if for no other reason than that the forces which lead to narrowness and specialization—illiteracy—are very great indeed. But the reason given in the Goals Report for strengthening liberal education seems completely irrelevant to the study of literature: "to enable the students fully to appreciate and discharge their responsibilities to society." The right thing for the wrong reason.

What other reasons are given? "To integrate the total educational experience"... so that the student's "strong technological education will be supported by a broad general educational background." Can one expect profitable integration before the student has some knowledge to integrate? I think not. At an undergraduate level, students may be introduced to rigorous training in particular disciplines—and we may hope that later some integration will take place. I do not understand how a course can be taught as background to anything. When I look at the UCLA introductory course in humanities for engineering students,
I can see clearly that a course made by a committee has no business to be a means of imposing even in its own teachers.

Considering the specific goals of the ENGLISH teach program in Engineering, I find that most of them do not apply to the study of literature. The only one that does apply I disagree with almost completely. The fourth goal, urging a knowledge of some of the great masterpieces of literature and an understanding of their setting and influence on civiliza-

"I do not want "an acquaintance with" but a "knowledge of" the works of literature and the development of the ability to come to an understanding of such works. An acquaintance may be used understand the setting and the influence of the work, or be used to dis-

charge one's responsibilities in the world, or be used to provide a broad general background. But the study of literature cannot be justified by its use.

Perhaps these have represent real needs in the education of an engineer, but one does not need to study litera-

ture to accomplish them. We have made two mistakes in the past in teaching English. We have taken on concerns which are not ours to assume and others which are not expressed in the English language. Our English teachers have always seemed, perhaps I am biased, to be pleasant people, easy to get along with, suicidally eager to do whatever anyone asked them to do. One might see this as a virtue, but I think it a fault. We have taken on tasks merely because we have been asked—someone has to do it, why not the English teachers? We have become generalists and integrationists long be-

fore we had those words. If something referred to teaching, well, the English teachers could teach it. The main reason that English teachers have done so many things that they have had no business in doing is that they are good natural and easily imposed on. An-

other reason is perhaps they have had an uneasy feeling that they did not really know what teaching English was all about anyway, so that to do what-

ever they have been asked to do is a way of justifying an existence on the campus. More people have taught En-

ghish than any other subject without any special training for the job, and tragically some have never learned that English is a proper subject and that a discipline must be learned in order to make that subject comprehensible.

The English teacher has frequently been taken on three responsibilities which are not his and he should unburden himself of them this very minute.

He should not teach philosophy. A student comes to me the other day and asked why no one in our department taught Ayn Rand. "Why should we?" I asked. "Well, it would be great in helping us find our philosophy of life." In reading Cannot The Plague, for in-

stance, one may need to understand something of existentialism, but the reason for reading the novel is not to learn the intricacies of existentialism. Helping our students formulate their philosophies of life may be an unavoidable by-product of the study of literature, but it is not our special responsibility and not our proper concern.

The English teacher should not teach morality. The confusion about the stu-

dent's behavior seems frequently apor-

algic because the didactic purpose of literature is so easily assumed by people who are more interested in moral instruction than in literature. I think Professor Fred Stocking of Williams recently imagined a kind of ideal letter of recommendation for a student being considered for an English Achiev-

ement Award: "During his high school years Mike has been suspected three times and has been on almost perpetual prob-

tion for such crimes as petty

thievery, smoking in the lavatory, and

smoking out of the lavatory, and the use of obscene and blan-

dishing language on school property. Neverth-

less, he is widely read, and his under-

standing of literary works is unusually

thorough and sensitive; further, he

boldly communicates his understand-

ing of literature in essays and speeches

which are carefully organized, in lan-

guage that is vivid and precise, and in

sentences that are beautifully con-

structed. I therefore recommend him

without qualification, for an achieve-

ment award in English." Teaching

morality is not the English teacher's special responsibility and not his proper concern.

The English teacher should not try to develop "research scholars" and pre-

tend that the English class is the place to

make reports—technical reports—in

all other subjects. We have no business trying to train students to do actual
TEACHING ENGLISH—cont.

I can see clearly that a course made by a committee because it produces meaningful integration even in its own teachers.

Considering the specific goals of the 1956 report of the Commission on Engineering, I find that most of them do not apply to the study of literature. The only one that I can agree with almost completely. The fourth goal urges: "an acquaintance exclusively ours. We have already had the influence of the language in which we are specially trained and in particular relevant to linguistic and literary evidence? What kinds of gener­ alizations are possible from such evi­ dence? What kinds of ideas can one be appropriately trained to support with the results of such analysis? Although I would not urge the total irrelevance of certain kinds of conclusions mentioned before, the psychologist, the biographer, the scholar, and the scientist can handle evidence relative to psychological, biographical, philosophical, or representational conclusions much more expertly than can the student of literature. Conversely, the study of literature, as teachers do, can never be as broad as the one upon which the life and the condition of the world, or be used to avoid the teaching of the student, the student more subtle, more human, and increases his awareness and understanding.

The second goal is our major job, our principal concern. It is a job that we do not share with our colleagues. It is a job that was not mentioned to anyone else. It is a job that, if it could be separated from some of the other concerns at least as successful in doing what it is supposed to do better than we do now. That job is the study of literature as literature, and the development of the student more subtle, more human, and increases his awareness and understanding.
A look by Margaret Goad at Richard Wiegand's recent survey of Tech alumni

Continuing Education and the Engineer

A survey is a survey is a survey, until you become part of the numbers and then the viewpoint changes. And the viewpoint of many Tech graduates may be subject to considerable change after absorbing the findings of Richard Wiegand, who earned his doctor of Philosophy degree at Florida State University partially through his study of the continuing education attitudes of Tech graduates between 1948 and 1963.

Wiegand is now the Director of Continuing Education at Tech and is vitally interested in all phases of his field, particularly in what courses and why.

After the harrowing experience of receiving a degree from Tech, it may well be pondered why a person would expose himself to further excruciating mental exercise when practice of the art should be a sufficient means of keeping up to date.

But herein lies the fallacy—practice will not keep an engineer up to date and his situation has turned frighteningly similar to Alice's when she found she had to run as fast as she could just to stay in the same place.

One researcher has estimated that currently there is a 10 per cent per year rate of change in education accompanied by a 10 per cent decay of knowledge through lack of use. In order just to keep on level footing, an engineer is then faced with the task of growing in new knowledge at the rate of nearly 20 per cent a year if he expects to be of consistent value to both an employer and to society.

Adding more fuel to this disheartening fire which has been lighted beneath the engineer, Earl J. McGrath, a well-known leader in industry, states that any graduate who has obtained a degree and then has discontinued his education would in ten years be useful only in the lower echelons of the firm and probably not very useful there.

Even if an engineer has resorted to education up to the Ph.D. plateau he is not safe. Dr. Arnold Ducoffe, director of Tech's School of Aerospace Engineering, said, "In the world of aerospace engineering, a Ph.D. has a half-life of only ten years." He went on to explain that half of what the man with the doctorate knows when he graduates will be obsolete in ten years, and half of what he needs to know for the next decade is completely unknown today.

It is fairly well known that today's graduate of a two-year technical institute is probably receiving essentially the same education that the graduate of a fully accredited four-year engineering school received in 1940, and that the technological curriculum over the last 20 years has changed from "how-to-do-it" courses to theoretical work.

The picture may not be quite so black, but the fact does remain that the engineering graduates are receiving a significantly different and more thorough kind of education, and that the older engineers may be trying to operate in a new world of work without education comparable to that of the younger graduates.

Taking all these rather deflating ideas in hand, Wiegand conducted a study to determine what engineers did about continuing their education. With the help of the Georgia Tech National Alumni Association, a 10-page questionnaire was sent to 831 randomly selected engineering graduates and of that number, 435 met all the definitions required for a complete study.

And what has the survey revealed? It showed that there are several ways that a working engineer broadens his knowledge in the field. He may participate in formal credit work, non-credit work, professional activities, and reading and self-directed learning, and that only a certain type of graduate engages in all of these.

In the first instance, the participant in formal credit work tended to be a person with a high grade-point average during his undergraduate years and a graduate of one of the more scientific engineering curricula. He was also one of the younger men, married, and with a high level of encouragement from his wife.

Such a "typical participant" in this sort of educational endeavor in most instances lived in one of the larger towns in which he had such credit readily available to him, and he would have a relatively high view of the importance of continuing education for job requirements as opposed to personal satisfaction.

Professional activities emerged as another way to enlarge the engineer's scope and the man who participated in this type of continuing education was a different case again. This engineer was usually in one of the older classes, made more money, but was not necessarily in the upper part of his class in college. Formal classroom training tended to be substituted by membership in professional societies, a higher reading and professional activities.

Overall, of relation to an important factor: the significant change after absorbing the contents of the survey is a survey is a survey, unimportant in certain materials.

Over his information course the company school as professional is like. It was amount of came from majority, but r seemed to company studying a far various activities.

But, the"part" in the "learning" of those who point average tended to work, rose around the cent did industry is not more, those older age being personal's profession.

Some of apparently strictly or whether on the proof of self-directed completely out of room work cent) state interests activities recreation (study of "often cor"

The prowess to the concerned most particular in a number cases turns to the older...

TECH ALUMNUS
The engineer a rate of 1 per cent decay of use, or by making post-graduate formal college work a requisite for promotion or salary increase. As might be expected, those who were in the lower grade-point average groups tended to take more correspondence work, reading was mainly centered around the kind of work the respondent engaged in. The results were not surprising. Of the 339 persons who lived within easy driving distance, 45.7 per cent had participated in formal courses in the preceding three years. At the age of 30 years old, 56.3 per cent had taken formal credit work and of those who were in the 30 to 34 age bracket, 45.8 per cent had continued their education activities. There was a steadily decreasing rate of participation in the 35-and-up age group, though. As to the age of the participant, the younger men appeared to take more credit and non-credit college work while the older men appeared to be more interested in professional activities and reading. Of those men under 30 years old, 56.3 per cent had taken formal credit work and of those who were in the 30 to 34 age bracket, 45.8 per cent had continued their education activities.

The professional activities pursued. Since the technological curriculum over the last 25 years has changed from "how-to-do-it" courses to theoretical "how-to-do-it" courses to theoretical work. The picture may not be quite so bright, but it is the same as that for the engineering graduates are receiving a significantly different and more thorough kind of education, and that the older engineers may be trying to operate in a new world, which makes some of their courses over educational advantages to that of the younger graduates.

Taking all these rather deflating ideas in hand, Wiegand conducted a study to determine what engineers did about completing their education. With the help of the Georgia Tech National Alumni Association, a 10-page questionnaire was sent to 831 randomly selected engineering graduates and of that number, 435 met all the definitions required for a complete study. What and has the survey revealed? It showed that there were several ways that a working engineer broadens his knowledge in the field. He may participate in formal credit work, non-credit work, professional activities, and reading and self-directed learning, and that only one type of graduate was interested in all of these.

In the first instance, the participant in formal credit work tended to be a person with a high grade-point average during his undergraduate years and a graduate of one of the more scientific engineering curricula. He was also one of the younger men, married, and with a high level of encouragement from his wife. Such a "typical participant" in this sort of educational endeavor in most instances lived in one of the larger towns in which he had no standard source readily available to him, and he would have a relatively high view of the importance of continuing education for job requirements as opposed to personal interest.
SLOWLY up, up—the toddler pulled a box labeled Tomato Paste until he had it on top of a slightly larger box marked Green Beans. But the flaps on the smaller carton kept it from nesting and so the little fellow pushed and tugged with all his 30 inches to make it fit down inside, and finally, with a soft shush, it did.

The boy plopped back on the floor with a great tired smile. Five seconds passed by silently. Then:

“Daddy, Daddy?”

“Huh,” from a card table covered with books, papers—spotlighted by a lamp with shade askew.

“Daddy. I wanna nudder box. A littler one.”

“Another box? You have two boxes already, Tommy.”

BOXED-IN EDUCATION

Marian Van Landingham is back with her fictional bag of tricks to boggle the minds of the empire builders with a new threat.
"Do you have any idea what would happen if just one curriculum were to be offered?"

"But, I wanna mudder one to put inside dese, den a nudder inside..."

"Well, I don't see why you want any more, but if it's necessary, that's fine. There are one or two over here," I thought.

Bob Tatnall reached into a basket packed with his belongings. Lined paper covered with mathematical scribblings, pencil and pens, a toothpaste carton, and an eyepod box and tossed these to his son. Then—his concentration interrupted—Tatnall pushed back his chair, got up, stretched, and walked into the kitchen where his wife, Dorothy, was packing pots, pans, and mixing bowls into another box.

"You're going to need help if we're ever going to get moved," Bob began. "Better let me give you a hand."

"No—the best thing you can do is go to the supermarket and get some more boxes—the larger the better. I'm tired of these little ones—I can't get anything in them. And I keep thinking I ought to put like items together—it's impossible."

Dorothy stood up, straightening her back painfully.

"All right, I'll go to the store. See you later. But I must say you and your son have different tastes." A lacrime smile played in the corners of Bob's mouth. "You want to dump everything in big boxes to simplify decision making and he wants smaller and smaller boxes—probably so he can hide precious little gems in them."

With a wave he opened the back door and was down the stairs two at a time, while Dorothy stood with her head cocked slightly, ar for a moment, while Dorothy stood with her head cocked slightly, ar for a moment, and then was surprised to see that his son's face. "Of course, I'll be glad to help, Bob. This is one of the reasons I am here. What is bothering you? Anything in particular?"

"It's not the particulars that are bothering me, Fred," Tatnall began, "but the whole system—the whole box in system."

"The whole system, well..."

"Yeah, I mean it. Look. I'm supposed to be a junior this quarter. The administration says I've got to make up my mind and decide now what kind of engineer I want to be. But, what if I don't want to make this decision now? What if I want to just be a plain engineer? There will be plenty of time to specialize in graduate school or—if I don't go to graduate school—in business. Why, I bet there are hundreds of specialties for engineers today for which there is no direct training here, anyway."

"You probably have a point there. But, I don't see why some specialization on an undergraduate level may not be good."

"Because it will keep me from getting too broad a view of engineering as I believe I need—first, Dr. Jasper, have you got any chalk?"

TATNALL reached for the chalk Jasper held out and as the professor smiled and cupped his hands over his pipe to relight, Bob erased a morass of equations from the board and then drew a large box, almost the size of the board itself. Within this box he drew a half dozen smaller ones, and then little boxes inside of these.

"We've been moving and so I have boxes on my brain," Tatnall began apologetically. "But, I think I can illustrate what I mean with them. Now."

The largest box. Let's say it represents the whole body of engineering knowledge. Will the administration divide this box into smaller boxes that are relatively self-contained. And each of these boxes has been subdivided into tiny cells to contain precious gems of ultra-specialization, ad infinitum.

"Yes," interrupted Jasper, "but you have forgotten, haven't you, the multi-disciplinary, cooperative efforts in which we are trying together some of those little boxes, as you call them, in order to focus specialized skills on particular fields of inquiry?"

"No, I haven't overlooked this. But, I think I can illustrate what I mean with them. Now."

"It figures—want me to help you take next quarter?" the professor asked between draws.

"No, not exactly. That's why I came over..." began Tatnall.

"It figures—want me to help you make up your mind," growled Jasper in a laconic, foot-note level voice, and then was surprised to see that his amiably negative remark had brought an irritated expression across the student's face. "Of course, I'll be glad to help, Bob. This is one of the reasons I am here. What is bothering you? Anything in particular?"

"It's not the particulars that are bothering me, Fred," Tatnall began, "but the whole system—the whole box in system."

"The whole system, well..."

"Yeah, I mean it. Look. I'm supposed to be a junior this quarter. The administration says I've got to make up my mind and decide now what kind of engineer I want to be. But, what if I don't want to make this decision now? What if I want to just be a plain engineer? There will be plenty of time to specialize in graduate school or—if I don't go to graduate school—in business. Why, I bet there are hundreds of specialties for engineers today for which there is no direct training here, anyway."

"You probably have a point there. But, I don't see why some specialization on an undergraduate level may not be good."

"Because it will keep me from getting too broad a view of engineering as I believe I need—first, Dr. Jasper, have you got any chalk?"

TATNALL reached for the chalk Jasper held out and as the professor smiled and cupped his hands over his pipe to relight, Bob erased a morass of equations from the board and then drew a large box, almost the size of the board itself. Within this box he drew a half dozen smaller ones, and then little boxes inside of these.

"We've been moving and so I have boxes on my brain," Tatnall began apologetically. "But, I think I can illustrate what I mean with them. Now."

The largest box. Let's say it represents the whole body of engineering knowledge. Will the administration divide this box into smaller boxes that are relatively self-contained. And each of these boxes has been subdivided into tiny cells to contain precious gems of ultra-specialization, ad infinitum.

"Yes," interrupted Jasper, "but you have forgotten, haven't you, the multi-disciplinary, cooperative efforts in which we are trying together some of those little boxes, as you call them, in order to focus specialized skills on particular fields of inquiry?"

"No, I haven't overlooked this. But, I think I can illustrate what I mean with them. Now."

"It figures—want me to help you take next quarter?" the professor asked between draws.

"No, not exactly. That's why I came over..." began Tatnall.

"It figures—want me to help you make up your mind," growled Jasper in a laconic, foot-note level voice, and then was surprised to see that his amiably negative remark had brought an irritated expression across the student's face. "Of course, I'll be glad to help, Bob. This is one of the reasons I am here. What is bothering you? Anything in particular?"

"I believe I need—first, Dr. Jasper, have you got any chalk?"

"Yes," Professor Jasper began musically. "You see, Bob, I'm afraid you accept the fact that further years than you will be academy, the individual as will exist. I say this schools are practically jealous guard their te boxes are not just line blackboard but admini taries etched into the so will exist. Will the adminis schools their own schools support their schools? What do you have random offices, laboratories, to tie together some according to new, inform "Still another proble tioned earlier, there is a considerable duplication of ideas disguised by superficial approaches to subject t have any idea what a creased if only one, co were offered, and all sin inted? Why just think placed professors? "Problems, problems, now and decide what Professor Jasper hands logic."

When Bob Tatnall the CE Building he was depressed. When he cli
would be possible, and even if a solid, basic, undergraduate curriculum were required, there would probably still be time for students to take a wide variety of courses from various fields. Of course, there may not be as many permutations as we think. A student enrolled now can currently quite a number of duplications or near-duplications of courses among the various schools.

He puffed on his pipe for a few seconds, then continued: "But, there is something to say for putting certain variables in their proper place in engineering. As very often in today's world, a specialist cannot solve a problem with ideas just within his specialty. An idea transplanted from another field may provide the key. For this reason the well-rounded engineer may be more creative—certainly more flexible, a quality demanded by our fast-changing technological world.

"But, even if I halfway agree with you, Bob, I'm afraid we will have to accept the fact that many years you will be at this university, the individual school structure will exist. I say this because the schools are practically sovereign and jealously guard their territories. These boxes are not just lines drawn on a blackboard but administrative realities etched into the soul of the university. Will the administrators of the schools support their own elimination? What do we do about the physical approaches to subject matter. Do you have random spotting of offices and laboratories, or do you try to tie together some related areas according to new, informal categories?

"Still another problem: as I mentioned before, you have worked with a great many students. You take down or concrete over the names, but how do you reshuffle the contents? What do we do about the physical seem to tie together some related areas according to new, informal categories?

"Still another problem: as I mentioned before, you have worked with a great many students. You take down or concrete over the names, but how do you reshuffle the contents? What do we do about the physical
EDUCATION—continued

"No, sir. I think I'm an ME. Where are the ME's?"

"How can I say, I don't even know where the other EK's are."

"Where the hell is Aerospace?"

"Way out there, I think."

"Say, does it really matter if you register me? Nobody seems to know where the schools are anyway"

"I'm beginning to think I might as well. Let's get it over with. Whatta you want to take?"

"CE 558. My gosh. I don't see it.

None of the course numbers. What the heck?"

"You're—you're right," the profes­ sor murmured incredulously. "I hadn't even looked at the board—everything was such a mess here on the floor. This IS awful."

"No—no—wait just a minute now. There it is. Remember the course de­ scription from the catalogue—but you know what? There's another that looks like the same stuff. Over there it is."

"You're right. Don't think they were intended to be sections of the same course either. They must have been pretty much the same thing—just in different school labels . . . Fascinating."

"It's great. Great! There was just one course—one section—offered in ME. And it was taught by . . . Well, anyway. But now if you'll just sign me up I'll have a right fair chance of getting somebody else.

"Hey, Jack! Come over here. Got something to show you."

I t was eleven o'clock when the di­ rector of one of the schools—now fac­ ultyless and studentless—leaped from his chair, threw his papers into a mob of tramping students, and stormed out of the gym on a collision course with the administration building. There, on the third floor, he strode briskly into the Dean's office, brushing past the secretary who got out, "Good morning, Dr. Rankin, would you like to see . . . "

"Yes, I would like to see the Dean. In fact, I will see him. And without breaking his stride he strode into the carpeted inner office:

"Dr. Wilson, I demand to know why you requested that course num­ bers and school listings be eliminated from the registration board, and why school signs were taken off the tables. You cannot imagine the confusion. You, sir, have wrecked our system."

Rankin flashed and sparked for at least ten minutes while the Dean lis­ tened quietly with an inscrutable smile—never trying to break into the tirade.

But finally in exhaustion Director Rankin coughed twice, and while he tried to clear his throat, Dean Wilson said very softly:

"Diabolical. Really diabolical."

"What? W-What?"

"You heard me, Rankin. Of course, I did not give instructions for any of this to be done. I'm not that brave. I'm an evangelist, I suppose. Maybe I would like to de-emphasize the schools, but my way is by stepping on as few toes as possible. Gradualism."

"But, whoever dreamed this one up is a revolutionist with an in­ strict for planting his bomb where he could get maximum effect. In fact, if I understand you correctly, things are now so blown apart it will be almost impossible to put them back together exactly as they were before."

"That we've got to re-establish the system. How can you sit there and express any admiration for what has happened?" Rankin surged up out of his chair stomping his feet onto the floor. "Our whole system . . ."

"Calm down, Tom." The Dean's voice was suddenly loud, clear, and de­ cisive. "Of course, the culprit will have to be apprehended. "But," and there was a long, firm pause, "I think he should have a fair trial before the Academic Senate and be given a chance to say why he did it. This might be an educational experience. By the way, do you have any idea who he is?"

"No, I will certainly find out, how­ ever." This delivered in crisp, formal, staccato fashion. "And let me say fur­ thermore, that I am overwhelmed by your lack of concern." With long strides, Director Rankin walked out.

The Dean opened a manila folder and went back to musing over a pile of loose yellow pages covered with drawings of little boxes inside boxes, inside boxes, inside boxes . . .
morning.

If otherwise impassive skyward, and then all came in with a building. There, on a professor or maybe being campus. No retire—doesn't have to be apprehended. "But," and there was a long, firm pause, "I think I understand you correctly, things are impossible to put them back together exactly as they were before." "But we've got to re-establish the system. How can you sit there and express any admiration for what has happened?" Rankin surged up out of his chair stomping his feet onto the floor. "Our whole system ..." "Calm down, Tom." The Dean's voice was suddenly loud, clear, and decisive. "Of course, the culprit will have to be apprehended. "But, and there was a long, firm pause, "I think he should have a fair trial before the Academic Senate and be given a chance to say why he did it. This might be an educational experience. By the way, do you have any idea who he is?"

"No, I will certainly find out, however. This delivered in crisp, formal, staccato fashion. "And let me say furthermore, that I am overwhelmed by your lack of concern." With long strides, Director Rankin walked out. The Dean opened a manila folder and went back to musing over a pile of yellow pages covered with drawings of little boxes inside boxes, inside boxes, inside boxes ...
"To stand still is not enough. For, despite the quite substantial gains of recent years, the University System has yet to reach the overall quality consistent with the needs of the State."

Two requests for State appropriations for the University System during each of the next two years. It ends with funds to raise the quality of teaching and research in all of the schools of the System—from Brunswick to Dalton, from Augusta to Columbus, from Dahlonega to Valdosta, from Athens to Atlanta to Carrollton.

"Stand Still" Requirements for Operations

It is clear that there will be an increase of about 10,000 students in the University System during each of the next two years of the next Biennium. If we do not increase the "stand still" there will be required an increase in the first year of $18,406,000 for operations.

To "stand still" during the second year will require $19,240,000. These are substantial figures. But they will be barely adequate to maintain our present situation. For to say that there is a large increase in the number of young Georgians who are going to college simply does not cover the situation. A dam has broken. All of the built-up forces of the modern world—carrying the young people of Georgia into the classrooms and dormitories, and with these young people go the hopes of their parents and much of the future of Georgia.

Words can add little to the facts. In 1950 there were 21,500 students in the University System. During the next TEN years, to 1960, there was an increase of 10,000 students. This was a survival rate of nearly 45 percent of the graduating high school class. But in the FIVE years from 1960 to 1965, there was an increase of 22,000 students, more than double that of the preceding ten years.

And in the SINGLE year between September, 1965, and September, 1966, there will be an increase of about 9,000 students—an increase in one year almost equal to the entire increase of the ten years of the 1950's, and nearly half of the increase of the five years, 1960-65.

It is not yet in sight. The increase during each of the next two years (1967-68 and 1968-69) will be at least 10,000, pushing enrollment by September, 1968, to the neighborhood of 80,000 students.

It is therefore clear that by the early 1970's at least 90,000 students will be in the University System—three times the number enrolled in 1960.

The accurate estimation of enrollment for even two or three years ahead is hard to accomplish. Recent experience in Georgia bears this point out. In 1963 the Governor's Commission to Improve Education, in its excellent report, estimated that in the fall of 1964 there would be 42,500 students in the University System; there were in fact 44,500. The estimate for September, 1964, was 51,000. In fact, approximately 61,000 are being enrolled at this writing. (Governor's Commission figures were adjusted to exclude in-service students.)

Additional evidence of the difficulty of even short-range estimation comes from the present situation in the University System. The budget for the current Biennium (1965-67) was made up on the assumption that there would be 46,800 regular students in September, 1965; there were 52,000. For September, 1966, the estimate was 50,300; there are 61,000. It was in order not to fall back that the Board of Regents raised fees for the school year 1966-67.

One of this trouble in estimation has been caused by unreliable information. The root of the problem, however, has been the difficulty in measuring the new intangible forces that each year have added to the college population above the established trends. The survival of pupils in the public schools is on the upward, producing a larger proportion of high school graduates. Each year an increasing proportion of high school graduates go to college, as both students and parents seize the opportunity and as the new and enlarged schools of the System provide the facilities. More and more young people bring to college a strong purpose to remain; more and more go into professional and graduate schools; and more and more people return to school part-time, as at Georgia State College. Of particular importance is the fact that it appears that Georgia is now showing a net gain because of migration, in contrast to previous years.

Georgia is simply moving to catch up with the Nation. The best estimates suggest that by 1970 Georgia will have reached the current (1965-66) national average of 45 percent of the college age population (ages 18-24), and is increasing about 1/2 percentage point per year. In Georgia the figure is about 36 percent, and is still growing. If today Georgia were at the national average, there would be some 90,000 students enrolled in the University System and an additional 45,000 in Georgia's private colleges. If we make the assumption that by 1970 Georgia will have reached the current (1965-66) national average of 45 percent, then by 1970 we will have 110,000 students. In 1975 we could expect 132,000 in the University System. Whether Georgia will move exactly for that fast may be debated, but that Georgia is moving steadily to such a point is beyond doubt. We have gone up one percentage point in each of the last five years but are still next to the lowest among Southern states. We are dealing with fact, not theory.

Coming back to the estimate for next year (1967-68) and the following year (1968-69), we begin with the fact that there has been an increase of about 9,000 for the current year, an increase of about 17 percent. A similar increase for 1967-68 must be assumed and this will produce the 10,000 being estimated. Next year's graduating high school class will be larger by about 1,500 students; we will have an increased effect from veterans coming to school on the new G.I. Bill; we will have continued increases in the graduate and professional schools; we will have increases in the new teachers' programs at Georgia State, West Georgia, and Valdosta, and from the new nursing programs at Armstrong, Albany, Georgia State, Columbus, Abraham Baldwin, and the Woman's College; there will be increases occasioned by the opening this fall of the Gainesville, Albany and Kennesaw Junior Colleges, in 1967 of the Dalton Junior College, and in 1968 of the Junior Colleges, in 1967 of the Dalton Junior College, and in 1968 of the
"To stand still is not enough. For, despite the quite substantial gains of recent years, the University System has yet to reach the overall quality consistent with the needs of the State."

The request for State appropriations for the University System for the Biennium 1967-69 begins with funds to accommodate the massive enrollment increases of the last two years. It ends with funds to raise the quality of teaching and research in all of the schools of the System— from Brunswick to Dalton, from Augusta to Columbus, from Dahlonega to Valdosta, from Athens to Atlanta to Carrollton.

"Stand still" Requirements for Operations

It is clear that there will be an increase of about 10,000 students in the University System during each of the two years of the next Biennium. If we do no more than "stand still" there will be required an increase in the first year of $19,406,000 for operations.

To "stand still" during the second year will require $19,240,000. These are substantial figures. But they will be barely adequate to maintain our present situation. For to say that there are 61,000. It was in order not to fall back that the Board of Regents raised fees for the school year 1966-67.

Some of this trouble in estimation has been caused by unreliable information. The root of the problem, however, has been the difficulty in measuring the new intangible forces that each year have added to the college population above the established trends. The survival of pupils in the public schools is on the upswing, producing a larger proportion of high school graduates. Each year an increasing proportion of high school graduates go to college, as both students and parents seize the opportunity and as the new and enlarged schools of the System provide the facilities. More and more young people bring to college a strong purpose to remain; more and more go into professional and graduate schools; we will have increased the number of veterans going to school on the new G.I. Bill; we will have continued increases in the graduate and professional schools; we will have increased the number of international students for 1967-68. This will require an additional $13,640,000 in the first year and an additional $27,720,000 in the second year.

Funds for Improved Quality

To stand still is not enough. For, despite the quite substantial gains of recent years, the University System has yet to reach the overall level of quality consistent with the needs of the State and the capacity of the people.

The following is a discussion of certain areas in which improved quality should be achieved during Biennium 1967-69. This will require an additional $8,540,000 in the first year and an additional $32,770,000 in the second year.

Teacher Training

Teacher training, both for undergraduates and graduates, is in a critical state in Georgia. The facts are grim, but they cannot be avoided. In 1965 Georgia produced 2,413 teachers compared to 5,230 in North Carolina, 4,101 in Tennessee, and 3,044 in Alabama. Only South Carolina produces fewer teachers than Georgia. The following table presents the data.

CRUSADER—continued

"For the year 1968-69 a similar estimate is made at this time; should it appear from hard evidence 12 months from now that this estimate is too low, then that fast can be brought to the attention of the Governor and the Legislature."

The "stand still" figure for operations includes a 10 percent salary increase for each of the two years. This is the increase required to meet the competition of raises expected elsewhere in the Nation, and to continue the very modest gains of recent years toward parity with the outstanding institutions of the South.
At least one million dollars could properly be spent in this area. Improved teacher training is all the more important because education in Georgia is not divisible between the public schools and the University System. Both deal with the same student, of the same parents, from the same community. The education of this student is one continuous effort; one stage depends upon all the stages that have gone before. The level and success of college and university work are largely dependent upon the quality of elementary and secondary work.

There are individual exceptions. But as a rule the student who has not studied and learned steadily all along the route will have great difficulty in college and university. Those students whose high school records and college entrance examinations are quite low in comparison to other students at any particular school will, as a group, do poorly; and the great majority will fail. This is not the result of any deliberate policy of hard grading, but rather the same outcome appearing in education as in any other field when preparation is inadequate.

The truth of this statement is borne out by concrete experience in the University System. Several years ago many of the institutions began a Summer Trial Program, in which students denied admission in the regular fall term were admitted to summer school. If their work was satisfactory during the summer, they were continued into the regular term. The results have not been encouraging. During the summer of 1955, 1,247 students entered the Summer Trial Program. Just slightly more than half—646—survived to enter school in September. Of this number, 445 remained in school through the Spring Quarter of 1956, and only 174 of those had achieved a "C" average. Thus, only 36 percent survived; and only 14 percent showed real promise of graduating.

This program will be continued, for we must provide every reasonable opportunity to the young people who want to make the effort. We must do more during the immediate future, as the public schools are improving, to help the many thousands of young Georgians who, over the next decade, will not be able to enter college without a way of overcoming their academic deficiencies. We are talking about remedial work—essentially in grammar, in writing the English language clearly and accurately, and in basic mathematics. The University System will begin right away to offer remedial work on a concentrated basis during the summer in these basic areas. Remedial work cannot guarantee admission; it is simply a second chance. Thus, paradoxically, quality funds must be spent at this level.

Health

Georgia's critical shortages of nurses and other professional and technical health personnel is well known. A comprehensive State study in 1962 and the Surgeon General of the U.S. Public Health Service estimated that at least 1,200 nurses are needed annually in Georgia, while our nursing schools graduate about half that number. Other studies have revealed shortages and anticipated future shortages of medical doctors, dentists, dental hygienists, occupational and physical therapists, and other types of health workers.

In response to these critical needs and in anticipation of additional funds to support new and expanded programs, plans have been made to increase the class size in human medicine by 50 percent, and approval has been given for the development of a dental school and a graduate nursing program, at the Medical College of Georgia. A baccalaureate program, approved by the University System, and is asking for additional funding for the development of a Master's degree nursing programs at the Womack College of Nursing, at Georgia State College and for new baccalaureate nursing programs at Armstrong State College. Tentative approval has been given for the development of a graduate nursing program at Georgia State College and for new associate degree nursing programs at Albany Junior College, Abraham Baldwin Agricultural College, and Armstrong State College. Tentative approval has been given to associate degree nursing programs at the Womack College of Nursing, Georgia College, Columbus College, Brunswick Junior College, and South Georgia College. Additional programs in nursing, dental hygiene and other health fields are needed and should be supported in the immediate future. Here, again, at least one million dollars is needed to make a substantial step forward.

Attention to the Individual Student

When we talk about improving the quality of education, we must know what we are talking about. Education is neither a collection of facts nor a set of theories. Nor is it a diploma clutched in the hand. Education is found at that moment when the student exerts his mind and character to learn for himself; when he becomes not a spectator but a real player in the game, taking the bumps with the successes. Education is a part of life or it is nothing.

There is no magic formula for bringing...
remedial work on a concentrated basis during the summer in these basic areas. Remedial work cannot guarantee admission; it is simply a second chance. Thus, paradoxically, quality funds must be spent at this level.

Health

Georgia's critical shortage of nurses and other professional and technical health personnel is well known. A comprehensive State study in 1962 and the Surgeon General of the U.S. Public Health Service estimated that at least 1,200 nurses are needed annually in Georgia, while our nursing schools graduate about half that number. Other studies have revealed shortages and anticipated future shortages of medical doctors, dentists, dental hygienists, occupational and physical therapists, and other types of health workers.

In response to these critical needs and in anticipation of additional funds to support new and expanded programs, plans have been made to increase the size of the health curricula by 50 percent, and approval has been given for the development of a dental school and a graduate nursing program, at the Medical College of Georgia; and approval has been given for a baccalaureate nursing program at Georgia State College and for new associate degree nursing programs at Albany Junior College, Abraham Baldwin Agricultural College, and Armstrong State College. These approvals have been given to associate degree nursing programs at the Woman's College of Georgia, Columbus College, Brunswick Junior College, and South Georgia College. Additional programs in nursing, dental hygiene and other health fields are needed and should be supported in the immediate future. Here, again, at least one million dollars is needed to make a substantial step forward.

Attention to the Individual Student

When we talk about improving the quality of education, we must know what we are talking about. Education is neither a collection of facts nor a mass of data. It is a discipline clutched in the hand. Education is found at that moment when the student exerts his mind and character to learn for himself; when he becomes not a spectator but a real player in the game, taking the bumps with the rest of his class, for interaction and stimulation and offer the opportunity to the individual to meet success and failure and be tested and trained in the skills which he must have to do the work of the future. Education is the process of improving, developing, and improving the individual student.

Library Books

Among these resources, perhaps the most important are the library facilities and funds of library books. The holdings of an institution are the most basic resources for learning. Few things thwart the learning process as completely as the absence of needed library resources. The heart of any good college is the college library.

As of June, 1965, University System allocations for library resources were a budget of $1,400,000 library volumes when compared with standards recommend by the American Library Association. The University of Georgia has about 700,000 volumes and Georgia Tech has about 600,000 volumes, each substantially less than the average of the University of Florida, the University of Georgia, 1,087,000; the University of Virginia, 1,200,000; and Duke University, 1,475,000. Augusta College has about 700,000. Brunswick Junior College has about 6,000 volumes where 20,000 are needed. Albany State College has 25,000 volumes short of minimum standards.

New junior colleges and colleges in transition to senior college status face large undergraduate tasks of acquiring adequate library resources for the programs of study being offered.

The necessity for increasing library acquisitions is further accelerated by the rapid creation of new knowledge and the increasing numbers of learned publications released each year. Estimates of current University System library needs would cost approximately $13,000,000. Increases in University System enrollment and the rapid expansion of fields of knowledge will increase this need figure considerably.

In preparing budgets for the current year, the Board of Regents, through direct efforts, was able to increase the amount available to libraries. The Regent's allocation is fifty percent. Little more than this increase can be anticipated from the "stand still" figures for next year. At least two additional million dollars should be allocated for this purpose.

In addition to the increased library facilities and resources which serve as tools of improved scholarship, we must also provide expanded and adequately equipped labor space. It is in these areas that the student comes to explore and to prove subject matter for himself under the guidance of his instructor. It is here that some of the most valuable and lasting learning experiences occur. Today we are exploring at a depth not perceived when most current facilities were planned. Ten years ago the electron microscope was considered to be an instrument of such sophistication that only one was needed for the nation. Today, the electron microscope is considered to be an essential piece of teaching and research equipment at the departmental level. Gas chromatographs, recording spectrophotometers, and other pieces of laboratory instrumentation are additional examples of many which could be cited in the same category. These are expensive items; but today they are no longer luxuries—they are necessities for successful instruction. For instance, at Georgia Tech alone $2,000,000 would be required for the purchase of instruments to bring the teaching and research programs to a level deemed adequate by the faculty.

Quality at the University and Tech

There is a special need at the University of Georgia and at Georgia Tech for quality funds. These two institutions at the present not only conduct large undergraduate programs; they carry out the vast majority of the graduate training and research in the University System. These two schools are therefore competing now across the board with the best universities in the South and in the Nation. They are, or should be, setting increasingly rigorous standards throughout the System. They are the spearhead of public education in Georgia. Not in the near term, certainly, will the general quality of public education in Georgia exceed that at the University and at Tech. These institutions should be the first to reach the front rank of American universities.

The need at these institutions is not primarily for new programs, or for general facilities, or for general expansion. The way to the top in the university world is through the development of individual departments or interdepartmental programs of distinction—units that rank among the top ten or twenty in the Nation. In such departments several senior scholars and a larger number of able younger scholars and faculty members and graduate students establish a high level of undergraduate instruction, and of graduate training and research. It is to such departments and programs that the able students first apply, and toward which the Regents grant funds flow for special instruction and research. It is such departments that carry quality work through the years and give sound direction to the institutions of which they are a part.

And, finally, the building of such departments and areas of excellence is the quickest and most economical way of raising the overall quality of the University and Georgia Tech, and of the System generally.

With these facts in mind, a letter was sent on April 8, 1966, to the presidents of the University and Georgia Tech, which stated in part: "... Will each of you, therefore, in preparing your budget proposals for the Blem-
A major economic renaissance began to occur in the late 1930's and in the early 1940's, and the advances have first been occurring in the Northeast, Midwest and West; the advances have simply entered the game very late. In the Atlanta-Athens area will Georgia secure the full fruits of its splendid universities, both public and private, in the full fruits of its splendid economic growth. The Atlanta area in higher education, and for that reason that in Georgia per capita income is only 79 percent of the national average.

We are not talking theory. A major economic renaissance that has occurred after World War II in Massachusetts in the growth of research and associated production around Harvard and MIT. The same thing next occurred around Stanford University in the Palo Alto area of California, and around the California Institute of Technology in the Los Angeles area.

The Atlanta-Athens area is superior to the Research Triangle in the last two of these factors. It was the concentration of research and graduate training. This was in the Research Triangle of North Carolina around the University of North Carolina, Duke University, and North Carolina State University. Two of the schools—the University of North Carolina and Duke University—are members of the Association of American Universities, along with 47 other institutions across the country.

People who have worked in these affairs know that the primary factors in causing a development like the Research Triangle are: (1) high quality in education, especially in graduate training and research; (2) good location with respect to air travel, to business services such as banking, and to industrial suppliers, services, shopwork and skilled labor; and (3) good living conditions for the families of scientists and engineers, preferably in or with convenient access to a metropolitan center.

The Atlanta-Athens area is superior to the Research Triangle in the last two of these factors. It was the concentration of research and graduate training at the three North Carolina institutions that made the difference.

The proposition can be stated in another way. Not until more and better graduate training and research are established in the institutions of the Atlanta-Athens area will Georgia secure the full fruits of its splendid economic and social advance, of the great strides made in recent years in the institutions themselves.

For to indicate the need for more and better research and graduate training is not to be critical of the situation in our institutions. We have simply entered the game very late. In the Research Triangle, for instance, one institution began broad research and graduate work in the early 1920's, another in the early 1920's, and the third in the late 1930's and in the immediate post-war years. At the University of Georgia and at Georgia Tech, however, research and graduate training were of a limited nature prior to the early 1950's. Since that time notable progress has been made. Virtually all essential graduate programs have been put in; many millions of dollars have been spent on facilities; research funds have grown steadily. All of this has been accomplished under serious difficulties. Even so, a recent study by the American Council on Education of graduate training and research in the United States listed Civil Engineering at Georgia Tech in the “Good” category and three other areas in the “Adequate Plus” category. The University was not included because of a technicality; but it is certain that several areas there, such as elements of the biological sciences, would have been ranked with credit to that institution. At Georgia State, graduate training and research in Business Administration are of a limited nature prior to the early 1920's; but the work there stands with some of the best in the region.

But in these matters the scoring is absolute, not relative. The fact is that perhaps a half dozen institutions in the South scored higher on an overall basis; and in the Nation no Southern school appeared with any significant consistency in the upper categories of “Distinguished” and “Strong.” The study has certain limitations in measuring all of the progress in recent years, but its overall message is clear.

Progress in research and graduate training is neither easy nor cheap, and there is no real short-cut. It rests on the good individual working with adequate resources, sustained when necessary by people who believe that what he is doing is worthwhile.

One of the outstanding phenomena of the University System in recent years has been the growth of Georgia State College in downtown Atlanta. This college has performed the daily miracle of growing space with Atlanta in a physical plant hardly worth the name. It has expanded in both size and in programs to meet the real and pressing needs of a great metropolitan center. In doing so, it has been stretched to the limit in personnel and facilities. The stakes of serving the Atlanta area in higher education, and of being a partner in solving the problems of the new urban world, are so large that an extra application of funds is imperative.

Faculty Salaries

In the highly competitive situation of higher education in the United States, quality is tied in considerable degree to salary level. The 10 percent increase requested for each year in the “stand still” part of this budget request will not make the University System competitive with more than 50 percent of the Nation's schools. It is the upper group that concerns us. For this reason an additional 2 1/2 percent in salary increase is requested for each year for quality improvement.

Georgia’s Own Education

It is customary, especially in the

Economic Advance Through Quality

There is yet another compelling reason for reaching high national standard at these two institutions. Science and technology have become a necessary part of economic growth. The South has lagged behind, Georgia has lagged, in large part because the advances in science and technology have occurred in the Northeast, Midwest and West; the advances have first been put to use there in business and industry that have created millions of jobs, and then the benefits in branch plants and subsidiary operations have trickled down to the South. It is for that reason that in Georgia per capita income is only 79 percent of the national average.

We are not talking theory. A major economic renaissance began to occur after World War II in Massachusetts in the growth of research and associated production around Harvard and MIT. The same thing next occurred around Stanford University in the Palo Alto area of California, and around the California Institute of Technology in the Los Angeles area.

If the South, as elsewhere, this development occurred first at the region's...
The largest concentration of research and graduate training, the search Triangle of North Carolina, is located around the University of North Carolina at Chapel Hill, Duke University, and North Carolina State University. Two of the schools—the University of North Carolina and Duke University—are members of the Association of American Universities and prominent members of other institutions across the country.

People who have worked in these affairs know that the primary factors in causing a development like the Research Triangle are a high quality in education, especially in graduate training and research; (2) good location with respect to air travel, to business services such as banking, and to industrial supplies, shops, work shop and skilled labor; and (3) good living conditions for the families of scientists and engineers, preferably in or with convenient access to a metropolitan center.

The Atlanta-Athens area is superior to the Research Triangle in the last two of these factors. It was the con­struction of research, and graduate training at the three North Carolina universities that made the difference.

The proposition can be stated in another way. Not until more and better graduate training and research are established in the institutions of the Atlanta-Athens area will Georgia se­cure the full fruits of its splendid economic and social advance, of the great strides made in recent years in the institutions themselves.

To indicate the need for more and better research and graduate training is not to be critical of the situation in our institutions. We have simply entered the game very late. In the Research Triangle, for instance, one institution began broad research and graduate work in the early 1920's, another in the early 1930's, and the third in the late 1930's and in the immediate post-war years. At the Uni­versity of Georgia, at Georgia Tech, however, research and graduate training were of a limited nature prior to the early 1950's. Since that time notable prog­ress has been made. Virtually all ex­isting graduate programs have been put in; many millions of dollars have been spent on facilities; research funds have flowed in at an ever-increasing rate. Only of this has been accomplished under serious diffi­culties of the new urban world, are so large that an application of funds is imperative.

Faculty Salaries

In the highly competitive situation for the best minds in both public and private institutions in the United States, quality is tied in considerable degree to salary level. The 10 percent increase requested for each year in the "stand still" part of this budget degree to salary level. The 10 percent increase requested for each year in the "stand still" part of this budget, the general advance of the academic marketplace; of the academic depart­ments of the University of Georgia, no Southern uni­versities, and in particular the University of Georgia, were ranked with credit to that institution.

The study has certain limitations in meas­uring all of the progress in recent years, but its overall message is clear. Progress in research and graduate training is neither easy nor cheap, and there is no real short-cut. It rests on the good individual working with ade­quate resources, sustained when neces­sary by people who believe that what he is doing is worthwhile.

One of the outstanding phenomena of the University System in recent years has been the growth of Georgia State College System. This college has performed the daily miracle of growing, expanding, and expanding, in a physical plant hardly worth the name. It has expanded in both size and in programs to meet the real pressing needs of a great metropolitan center. In doing so, it has been stretched to the limit in personnel and facilities. The stakes of the serving the Atlanta area in higher education, and of being in a partner in solving the prob­lems of the new urban world, are so large that an application of funds is imperative.

Summary of Request by Board of Regents for State Appropriations for the University System of Georgia, Biennium 1967-69

State Appropriation, 1966-67	ROPEER CAPITAI OUTLAY TOTAL		
향	$59,193,000	$12,520,000	$71,713,000
INCREASES FOR 1967-68			
Operations			
"Stand Still" Requirements	18,406,000		
Improved Quality	13,640,000		
Capital Outlay			
Authority Lease Rentals			
New Contracts			
Equipment			
Renovation of Existing Plant			
Total Increases for 1967-68	$32,046,000	$12,000,000	$44,166,000
STATE APPROPRIATION, PROPOSED, 1967-68			
$91,239,000	$24,640,000	$115,879,000	
OPERATIONS			
Operations			
"Stand Still" Requirements	19,240,000		
Improved Quality	2,776,000		
Capital Outlay			
Authority Lease Contracts			
New Contracts			
Previous Contracts			
Land Acquisition			
Total Increases for 1967-68	$22,016,000	$2,360,000	$24,376,000
STATE APPROPRIATION PROPOSED, 1967-69			
$113,255,000	$27,000,000	$140,255,000	
Minutes of the Annual Meeting of the Georgia National Alumni Association, 1965-66

Presiding: Mr. Gel

1. The minutes of the Annual Meeting of the Georgia National Alumni Association for 1965, were read and approved.

2. Mr. Gel gave his report. The expenses for the year were $377.31 and the receipts were $190, for an excess of $186.86. The report included several one-time expenditures such as: furnishing and refurnishing, records on the phone system, and personnel. The report was accepted.

3. Reference was made to the Lecture Series on Friday, November 5th. In addition, it was urged to attend the general announcement concerning class events and social events.

4. Mr. Ector, Director of the Alumni Association, mentioned that Dr. Howell, Atlanta Tech, and Mrs. Home both were alumnae of the School of Commerce. (Evie) Rose, (Chip) Rosen, and (Evie) Rose, both were alumnae of Tech.

5. The Queen and Mrs. Home both were student chaperons of the Georgia National Alumni Association.

6. President Ector complimented the selection of Mrs. Home.
Minutes of
the Annual Meeting
of the Georgia Tech
National Alumni
Association

Presiding: Madison F. Cole, President
1965-66

1. The minutes of the previous AN­
NUAL MEETING, held October 30,
1965, were approved as published in
the November-December, 1965 issue of
The Georgia Tech Alumnus.

2. Mr. Gellerstedt, 1965-66 Treasurer,
gave his report. He reported that in­
come for the fiscal year was $170,-
377.31 and that expenses for the year
were $190,461.17, leaving us with an
excess of expenses amounting to $20,-
083.86. The reason for this was sev­
eral one-time, non-recurring items
such as: remodeling of the offices,
refurnishing the offices, putting our
records on microfilm, revamping the
phone system, and an increase in
personnel.

The report was approved as pre­
sented.

3. Reference was made to the Alumni
Lecture Series held the previous day,
Friday, November 11. All alumni were
urged to attend future seminars. Sev­
eral announcements were made con­
cerning class reunions, and other
events of the day.

4. Mr. Ector, Vice president of the
Association, inducted three honorary
alumni—Dr. Vernon Crawford, Direc­
tor, School of Physics; Mr. Arthur
Howell, Atlanta attorney; and Georgia
Tech benefactor and Mrs. L. W.
(Evie) Robert, wife if Mr. L. W.
(Chip) Robert, '08.

Tribute was paid to each for their
interest and their support of Georgia
Tech.

5. The Homecoming Queen and
Mrs. Homecoming and attendants to
both were introduced by Bill Smith,
student chairman of Homecoming.
The Queen was Miss Nancy McLean
and Mrs. Homecoming was Mrs.
Charles (Carol) Mason.

6. President Edwin D. Harrison com­
plimented the Trustees on their se­
lection of Honorary Alumni and con­
HOMECOMING 1966—cont.

had two major goals. These were—

8. Outgoing President Matt Cole

at a cost of over $3-million, and of

Association, and he has learned a

year ago when he assumed the office

ary supplements.

were years of substantial support of

Georgia Tech campus.

in January, 1966. Records were put on

microfilm and the phone system was

overhauled.

Mr. Cole spoke of the fine celebra-

tion held in connection with “John

Young Day,” a highly deserved recog-

nition of our “Outstanding Young

Alumni.” He also discussed the new-

ly instituted “Tech Today” programs,

Club Officers Weekend, the Alumni

Placement Service, and our publica-

tions—the Georgia Tech Alumnus and

Tech Topics.

The trustees who served during the

1965-66 year were introduced, the of-

fice staff was commended as was Mr.

Guthridge, Vice-President for Devel-

opment.

Mr. Cole concluded his report by

thanking the alumni, individually and

as a group, for their support and urged

them to continue this support under

the direction of the current president,

James P. Poole, ’42; George H. Porter,

Jr., ’23; Dr. and Mrs. W. Roane Beard,

Hon.; L. Travis Brannon, ’49; Charlie

Brown, ’36; Willis W. Castle-

berry, ’34; Bob Clegg, ’41; Mansey

Clarkson, ’30; John Cochran, ’31; Mrs.

F. Cole; ’41; Durward C. Collier, ’11;

William N. Cox, ’32; Mrs. Ralph

Brown, ’36; Lydia L. J. Cook, ’32; Mrs.

J. D. Hix, ’25; John H. Hudson, ’18;

Mr. Cole introduced several groups,

including the 1946 class present, and

two members of the 1901 class, Mr.

J. F. Towers and Mr. Julian Ben-

jamin.

The meeting was adjourned at 11:05

A.M.
The growth of the student union called for a new facility. A bond issue of $25 million was proposed, enough to provide a new Student Union and Construction Center, and additions to other university buildings.

Mr. Cowles spoke of the fine celebration held with the "John Young Day," a highly deserved recognition of our "Outstanding Young Alumnus." He also discussed the newly instituted "Tech Today" program, Club Officers Weekend, the Alumni Placement Service, and our publications—the Georgia Tech Alumnus and Tech Topics.

The trustees who served during the 1965-66 year were introduced; the alumni office staff was commended as was Mr. Guthrie, Vice-President for Development.

Mr. Cowles concluded his report by thanking the alumni, individually and as a group, for their support and urging them to continue this support under the direction of the current president, Mr. Ferst. (See page 59.)

Mr. Ferst expressed his pleasure at the opportunity of serving Georgia Tech and spoke of the fine relationship that exists between the Association, Foundation, and Institute. He stated that we now have the staff organization to do the job that needs to be done.

President Ferst introduced Mr. James P. Poole and Mr. J. Erskine Love, co-chairmen of the Fund Raising Committee, and commended them for the job they are doing and the results they have achieved. He then presented a gift (silver tray) to Thomas H. Hall, III, in recognition of his outstanding service during the past few years.

Secretary Beard presented a gift (silver tray) to Thomas H. Hall, III, in recognition of his outstanding service during the past few years.

The meeting was adjourned at 11:05 A.M.

FIVE, SIX, SEVEN, EIGHT, NINE, WATERLOO

The moment of truth arrived for the 1966 Tech team on an Indian summer afternoon in Athens, but this time the ball was too much for the matador as the Jackets' best shot at an undefeated season in 14 years was crushed by a great Georgia team. The Orange Bowl-bound Jackets made a 28-yard field goal in the first half to overtake the Bulldogs, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.

Tech's first score came at the end of the touchdown drive, a series of offensive errors forced by the fierce Georgia defense, and a never-miss field goal kicker closed Tech out in this one, 14-23.
Tommy Carlisle (92) makes a typical Raiders' stop in the surprisingly tough Virginia game.

The face of what had all the earmarks of a rout showed the character of this group much more than most of their wins in this surprising year.

Carson's Raiders certainly did their part in this one. Georgia got a quick score on a punt return by track star Kent Lawrence and then got the ball at the Georgia 46 (short kick), the Georgia 46 (short kick), the Virginia 46 (short kick), the Virginia 46 (short kick), and the Virginia 25 and 27 (on missed first-down tries) and yet only managed three field goals and one touchdown out of all this. The Bulldogs' only long drive was for 54 yards for the go-ahead score and their total yardage (net) for the day was 185 against Tech's 230. But as good as was Tech's defense under this pressure, the Georgia stoppers were better.

After the Bulldogs got a 23-7 lead, W. J. Blane intercepted in Tech territory and returned to the Georgia 47. Tech then pulled out Georgia's punt play, a pass to the split end (Fortier) and a lateral to a back (Snow) and went to the Georgia 17. In six plays, Larry Good got over from the four and Bunky Henry added his 73rd PAT in 75 tries to put the final point on the scoreboard with five seconds remaining.

In earlier games, Tech ran into rain and mud and a determined Auburn team on its first road trip. The Jackets, as was their wont all year, got behind 0-3 in the first half. But a blocked kick by Haven Kicklighter off the ten-man rush pioneered by Carson and a recovered fumble deep in Auburn territory finally got Tech ahead late in the third period after a Henry field goal had tied it up. Kim King scored the first touchdown on a four-yard run. The final Tech score came on Jimmy Brown's punt return of 60 yards, his second touchdown of the season. Henry made it 17-3.

Trailing 0-3 for the third game in a row, the Jackets went out at the half leading Tulane, 14-3, on a three-yard pass from Larry Good to wingback Johnny Sias with two seconds on the halftime clock. Tech ran it to 21-10 and then Tulane came back on a long drive that ended when defensive back Bill Eastman intercepted a pass in the end zone and returned it 100 yards for the touchdown that put it out of reach. Both Tech and Tulane scored again before it was all over at 35-17.

Again the defense was the story in Durham as Carson's Raiders blocked a punt for one touchdown, recovered three fumbles that led to two scores, and intercepted a pass, all in the second period to put Tech out in front of Duke at the half, 24-7. Larry Good, playing his first of three games as a starter in place of Kim King, injured in the Tulane game, was the leading rusher with 95 yards in 15 carries including a 37-yard touchdown run. Tech scored 24 points in the second half to win this one, 48-7.

Virginia surprised Tech in the eighth game, forcing the Jackets to come from behind twice to win a 14-13 thriller that was virtually a replay of the Clemson game even down to the Orange helmets worn by the opposition. Trailling the Cavaliers, 0-7, Good led an 85-yard drive that was climaxd with his touchdown pass to Steve Almond and Henry's point that put Tech in a tie late in the first half. Midway in the third period Tech was behind again, this time 7-13. The Jackets took the next kickoff and went 73 yards with Snow leading in from the one to tie it up and Henry again winning it with his kicking. The Jackets had to fight off several more Virginia threats including one that ended on the Tech two with a fumble recovery to preserve this one.

The 1966 Tech alumni featured lively Orange helmets worn by the opposition. Doc Carson called his finest team in 18 years, finishing 6-4-1, the most recent era of Tech's dominance over the A & M. This season, the Jackets played in the state for the first time in 25 years. Doc also made note of the difference in scoring. The 1966 team outscored its opponents by a 19-13 margin. The 1967 team was outscored by a 19-13 margin.

On Homecoming, relatively early in the season, Georgia scored touchdowns in the third and fourth quarters when Snow and Snow again scored touchdowns in the second period. The Jackets worked so hard to replace the Titans that they nearly outscored Georgia. Tech's other games included victories over the state, with a 42-7 win over State, scoring touchdowns in the second period. The 1966 season was a success, with Tech winning its first state championship since 1956.
Larry Good, who came in to save the season when King was hurt in the Tulane game, led the charge against Penn State.

On Homecoming Day, Tech had a relatively easy afternoon against Penn State, scoring 14 points in the first quarter and seven in the final period when Snow scored his twelfth touchdown of the season, a new record for a Tech back. Tech's speed was the difference in this one.

The 1966 squad has now officially replaced the 1948 Orange Bowl champions as Coach Bobby Dodd's personal favorite. Dodd, who has consistently called his first great team which also had a 9-1 record his pet group for some 18 years, finally replaced it with his most recent edition on the day following the Jackets' only loss.

"This is the finest group of men I have ever coached," he said on November 27. "They have done so much more than I ever dreamed they could when this season began. And they have done it mainly on desire, for they don't have nearly the talent of many of Tech's other bowl teams. They have worked so hard all season that they have made coaching a pleasure for me."

Since the first game with Texas A & M, this has been a come-from-behind team, the mark of a champion. It has never been outscored in the second half in ten regular season games, and has trailed six of the teams it counted among its nine victims.

It is a different type of a team in other ways — it boasts two offensive stars — center Jim Breland and halfback Lenny Snow — who have made several of the top All-America teams, yet its basic strength all year has been in the consistent and often spectacular performance of its defensive unit molded by assistant coach Bud Carson who joined the staff last January. Using a pro-type defense with a roaming back nicknamed the Tech Wrecker, Carson's Raiders were the difference in all of Tech's big wins.

Lenny Snow (above) broke all Tech rushing records and combined with Jimmy Brown (below, breaking for a punt return against Auburn) to give the Jackets an effective one-two punch at tailback all year long.
Policies In Viet Nam Discussed

Clay Eubanks, Correspondent for Newsweek Magazine, Arnaud de Borchgrave, spoke to students at Tech and said, "Hanoi feels that the war in Viet Nam will be won or lost in the United States itself." He explained that the Communist leaders believe the anti-war feeling in this country will force the American government to back down from its commitment.

De Borchgrave, considered to be one of the world's finest foreign correspondents, has reported from over 60 countries operating from his dual headquarters in London and Paris. He came to Tech only a few weeks after being twice wounded while covering the battle of Hill 400 in Viet Nam.

"It is hard to understand this philosophy of unilateral cessation of bombing against North Viet Nam," de Borchgrave said. "It has been the key factor in our present successes. I feel that U.S. intervention has altered profoundly, and for the better, the picture of Asia."

In various interviews while in Atlanta, de Borchgrave said that he felt the United States position in Viet Nam is correct and that Hanoi is not interested in negotiating a peaceful settlement of the conflict. He predicted that the U.S. is going to find it necessary to remain in Asia for a number of years if it expects to suppress the advances of Hanoi, Peking, and Moscow.

Director of Construction Named

Oglee W. Williamson has been named Director of Construction for the Georgia Institute of Technology, and will be responsible for Tech's construction which is now estimated to be over $30 million.

Williamson will be the institutional representative for all construction projects, and will expedite, coordinate, and control the costs of construction from the planning stages through completion of buildings. He will serve as the liaison man between the Engineering Mechanics, will work at the Ford Foundation has made it possible for two faculty members to participate in a $300,000 residency program to gain experience in industry at high levels of decision-making.

Dr. Charles S. Martin and Dr. James T. Wang are among 22 other young engineering professors from the United States and Canada who will participate in the program. The aim of the residency is to help counterbalance a tendency toward abstractness in technological education by encouraging a closer relationship between engineering teaching and practice.

Dr. Wang, an associate professor of Engineering Mechanics, will work at the Harza Engineering Company of Chicago while Dr. Martin, a professor of Civil Engineering, will be employed by the Harza Engineering Company of Chicago. Both were nominated for the program by the engineering dean, screened by a committee of advisors from industry, then selected by the Ford Foundation.

They will spend from a year to 15 months gaining experience in industry at high levels of responsibility and will be just as fine an addition to a library as many of the books published by the Georgia Tech Press.

Ground Broken for Library Tower

The $3.5-million structure will rise seven stories above the Tech campus and will have a foundation that will allow another five stories to be added later. Floors two, three, and four will be connected with the present building by bridges and the roof level of the two structures will be joined by an underpass. The entire tower will be faced with brick, and will be the most prominent building on Tech's campus. Structures will be joined by an underpass.

Dr. Wang, an associate professor of Engineering Mechanics, will work at the Harza Engineering Company of Chicago while Dr. Martin, a professor of Civil Engineering, will be employed by the Harza Engineering Company of Chicago. Both were nominated for the program by the engineering dean, screened by a committee of advisors from industry, then selected by the Ford Foundation.

They will spend from a year to 15 months gaining experience in industry at high levels of responsibility and will be just as fine an addition to a library as many of the books published by the Georgia Tech Press.

Ground Broken for Library Tower

The $3.5-million structure will rise seven stories above the Tech campus and will have a foundation that will allow another five stories to be added later. Floors two, three, and four will be connected with the present building by bridges and the roof level of the two structures will be joined by an underpass. The entire tower will be faced with brick, and will be the most prominent building on Tech's campus. Structures will be joined by an underpass.
Alumni Hear Scientists Reports

Industrial Residency Program has made it possible for numbers to participate in industry at high levels.

Martin and Dr. James From a year to 15, students will be able to attend Tech and return to the program.

Blueprint 1966 is All American

Out of the present possessions on any Tech alumna's bookshelf is a copy of the Blueprint. Now these volumes can take on additional prestige since the 1966 edition was awarded the All American Honor Rating, the highest possible distinction given to a yearbook by the Associated Collegiate Press.

Last year's book was edited by Phillip L. Miller, who is from College Park, Georgia, and is a 1966 graduate with a degree in Mathematics. The entire publication operation was supervised by faculty advisor Frank Beckum, Jr., an associate professor of Architecture, and associate dean W. Eugene Nichols, chairman of the Tech Student Publications Board.

In receiving the award, the Blueprint scored over 200 points that were necessary for the honor. It was displayed and further honored at the Associated Collegiate Press convention that was held in Philadelphia.

Reports are that the 1967 edition will be just as fine an addition to a library since many of the previous year's staff members are still on the campus and have continued their work on the Blueprint while they are finishing their education.

Ground Broken for Library Tower

Ground was broken for a new graduate student dormitory building on the campus, which will be the latest in a series of advances from the Board of Regents, which have come from a 15-year effort to expand the planning engineering program.

U.S. Has Space Lead Says Tech Man

"The United States is unparalleled by any other nation in its accomplishments in space, and figures indicate that we are quite far ahead," says Dr. Nathaniel Snyder of Georgia Tech.

In a recent lecture to Tech alumni, Snyder said that currently the United States has 100 space vehicles in orbit, while Russia has only 39. "We have spent around 1700 hours in manned space flights to 507 Russian hours, and with our 22 manned space craft we have twice as many flights as the USSR," he continued.

Snyder, who is a Neely Professor of Aerospace Engineering at Tech, was in Washburn to conduct the annual alumni lecture series held during the Homecoming weekend.

Enrollment Breaks All Records

Enrollment at Georgia Tech for the fall of 1966 broke all records. There are more students than there have ever been, more women enrolled in classes than ever before, and it is the first time that there have been more than a thousand graduate students.

Of the 7,349 students, 6,354 are in undergraduate schools, and 1,145 are in graduate or research studies. There are 108 women in 17 of the 26 fields.

The undergradautes, 98.9 per cent are under the age of 19 and 13.6 per cent are married. Male graduate students make up 96.9 per cent of the total and 58.4 per cent are married.

There are more students enrolled in Electrical Engineering than any other college (1,165), followed by Industrial Management (730) and Marine Engineering (786). Freshmen are drawn primarily to Electrical Engineering and Aerospace Engineering (587 and 532) and the largest number of women are enrolled in Civil Engineering (1,004) and in any subject is 24 who are studying for degrees in Mathematics.

Reactor Promises Arthritis Cure

The new Nuclear Reactor has already been proveed to be one of the most valuable pieces of research equipment on the campus as its studies may extend to the eventual curing of arthritis. "At least," says a spokesman, "we haven't had any negative results to prove otherwise this year yet."

Experiments have not been conducted on humans, though. Animals have been studied and have shown no harmful effects from the radioactive isotopes to insure the safety of the work. No order, however, that no negative results are found, a layman who has been operating the Atomic Energy Commission near at hand in the cities, more so than in our own home town. We have had no negative results to prove that the Arthritis has been operating the Atomic Energy Commission.

Arthritis is the inflammation of the members to the joints and the bone joints. It is caused by injecting a radioactive isotope, yttrium 90, into the body and trauma to the joints of an experimental animal. By irradiating the surfaces of the joint, the arthritic condition has been mini-

Not only have these experiments proved hopeful in the treatment of arthritis, but the studies indicate that there are many other medical applications for the procedure, such as the use of the yttrium 90 isotope for cancer therapy.

Enrollment Breaks All Records

Enrollment at Georgia Tech for the fall of 1966 broke all records. There are more students than there have ever been, more women enrolled in classes than ever before, and it is the first time that there have been more than a thousand graduate students.

Of the 7,349 students, 6,354 are in undergraduate schools, and 1,145 are in graduate or research studies. There are 108 women in 17 of the 26 fields.

The undergraduates, 98.9 per cent are under the age of 19 and 13.6 per cent are married. Male graduate students make up 96.9 per cent of the total and 58.4 per cent are married.

There are more students enrolled in Electrical Engineering than any other college (1,165), followed by Industrial Management (730) and Marine Engineering (786). Freshmen are drawn primarily to Electrical Engineering and Aerospace Engineering (587 and 532) and the largest number of women are enrolled in Civil Engineering (1,004) and in any subject is 24 who are studying for degrees in Mathematics.

U.S. Has Space Lead Says Tech Man

"The United States is unparalleled by any other nation in its accomplishments in space, and figures indicate that we are quite far ahead," says Dr. Nathaniel Snyder of Georgia Tech.

In a recent lecture to Tech alumni, Snyder said that currently the United States has 100 space vehicles in orbit, while Russia has only 39. "We have spent around 1700 hours in manned space flights to 507 Russian hours, and with our 22 manned space craft we have twice as many flights as the USSR," he continued.

Snyder, who is a Neely Professor of Aerospace Engineering at Tech, was in Washburn to conduct the annual alumni lecture series held during the Homecoming weekend.

Enrollment Breaks All Records

Enrollment at Georgia Tech for the fall of 1966 broke all records. There are more students than there have ever been, more women enrolled in classes than ever before, and it is the first time that there have been more than a thousand graduate students.

Of the 7,349 students, 6,354 are in undergraduate schools, and 1,145 are in graduate or research studies. There are 108 women in 17 of the 26 fields.

The undergraduates, 98.9 per cent are under the age of 19 and 13.6 per cent are married. Male graduate students make up 96.9 per cent of the total and 58.4 per cent are married.

There are more students enrolled in Electrical Engineering than any other college (1,165), followed by Industrial Management (730) and Marine Engineering (786). Freshmen are drawn primarily to Electrical Engineering and Aerospace Engineering (587 and 532) and the largest number of women are enrolled in Civil Engineering (1,004) and in any subject is 24 who are studying for degrees in Mathematics.

U.S. Has Space Lead Says Tech Man

"The United States is unparalleled by any other nation in its accomplishments in space, and figures indicate that we are quite far ahead," says Dr. Nathaniel Snyder of Georgia Tech.

In a recent lecture to Tech alumni, Snyder said that currently the United States has 100 space vehicles in orbit, while Russia has only 39. "We have spent around 1700 hours in manned space flights to 507 Russian hours, and with our 22 manned space craft we have twice as many flights as the USSR," he continued.

Snyder, who is a Neely Professor of Aerospace Engineering at Tech, was in Washburn to conduct the annual alumni lecture series held during the Homecoming weekend.

Enrollment Breaks All Records

Enrollment at Georgia Tech for the fall of 1966 broke all records. There are more students than there have ever been, more women enrolled in classes than ever before, and it is the first time that there have been more than a thousand graduate students.

Of the 7,349 students, 6,354 are in undergraduate schools, and 1,145 are in graduate or research studies. There are 108 women in 17 of the 26 fields.

The undergraduates, 98.9 per cent are under the age of 19 and 13.6 per cent are married. Male graduate students make up 96.9 per cent of the total and 58.4 per cent are married.

There are more students enrolled in Electrical Engineering than any other college (1,165), followed by Industrial Management (730) and Marine Engineering (786). Freshmen are drawn primarily to Electrical Engineering and Aerospace Engineering (587 and 532) and the largest number of women are enrolled in Civil Engineering (1,004) and in any subject is 24 who are studying for degrees in Mathematics.

U.S. Has Space Lead Says Tech Man

"The United States is unparalleled by any other nation in its accomplishments in space, and figures indicate that we are quite far ahead," says Dr. Nathaniel Snyder of Georgia Tech.

In a recent lecture to Tech alumni, Snyder said that currently the United States has 100 space vehicles in orbit, while Russia has only 39. "We have spent around 1700 hours in manned space flights to 507 Russian hours, and with our 22 manned space craft we have twice as many flights as the USSR," he continued.

Snyder, who is a Neely Professor of Aerospace Engineering at Tech, was in Washburn to conduct the annual alumni lecture series held during the Homecoming weekend.

Enrollment Breaks All Records

Enrollment at Georgia Tech for the fall of 1966 broke all records. There are more students than there have ever been, more women enrolled in classes than ever before, and it is the first time that there have been more than a thousand graduate students.

Of the 7,349 students, 6,354 are in undergraduate schools, and 1,145 are in graduate or research studies. There are 108 women in 17 of the 26 fields.

The undergraduates, 98.9 per cent are under the age of 19 and 13.6 per cent are married. Male graduate students make up 96.9 per cent of the total and 58.4 per cent are married.

There are more students enrolled in Electrical Engineering than any other college (1,165), followed by Industrial Management (730) and Marine Engineering (786). Freshmen are drawn primarily to Electrical Engineering and Aerospace Engineering (587 and 532) and the largest number of women are enrolled in Civil Engineering (1,004) and in any subject is 24 who are studying for degrees in Mathematics.
The Nashville Georgia Tech Club didn't have a conveyor. In a while on the trip back I would look back at a car that had been followed by a Varsity car. The alumni should readily understand why.

Nashville did and had a most wonderful evening. Other Georgia Tech clubs were mentioned in passing, but I think that the Nashville area's alumni support in the last 25 years is worth a special mention. Secretary-Treasurer John Wimberly had a large role in the planning and execution of the evening's events. Dick Wood, Vice President, wearing a Varsity hat, served the food and poured orange drinks and PC's, making coffee and running his legs off. The food was brought up that morning by a special committee of one, with the line forming just like always at the Varsity and the food was served. The entertainment for the evening was playing "Idiot Bridge" with prizes for the winning idiots. While it's not unusual for lobsters or clams to be served at such events, it was unusual for Tech to be there. Other alumni groups were mentioned in passing, but the Nashville club's support over the years is worth a special mention.

A New Approach

The Nashville Georgia Tech Club comes up with the newest form of an Alumni get-together

The Varsity opened a new branch in Nashville, Tennessee, on October 22. Well, it really wasn't the Varsity, it was the Nashville Georgia Tech Club, and it wasn't really a new branch but it was the swingiest meeting ever.

The food was brought up that morning by a special committee of one, with the line forming just like always at the Varsity and the food was served. The entertainment for the evening was playing "Idiot Bridge" with prizes for the winning idiots. While it's not unusual for lobsters or clams to be served at such events, it was unusual for Tech to be there. Other alumni groups were mentioned in passing, but the Nashville club's support over the years is worth a special mention.
A New Approach

The Nashville Georgia Tech Club comes up with the newest form of an Alumni get-together

The Varsity opened a new branch in Nashville, Tennessee, on October 22. Well, it really wasn’t the Varsity, it was the Nashville Georgia Tech Club, and it wasn’t really a new branch but it was the swingiest meeting ever.

The food was brought up that morning by a special committee of one, club recorder, and accouteramas Rogers, in a Corvair. His description of the wild trip went this way:

“I had made arrangements with Mr. Gordy and Mr. Minix earlier and at 9 a.m. Saturday they had all the food packed and ready. The trunk was soon loaded with the cold hamburger, hot dogs, oranges drink and PC’s. The back seat and right seat were piled high with buns, potato chips, fried pies, and wives of the Florida West Coast Club. He resides at 2203 Stonewall Street, Atlanta, Georgia. We have recently learned of the death of John H. Grothol, Jr., died in August, 1965.

Childress B. (Buck) Guyrn, Jr., EE, has resigned from a position as the special projects engineer for Gibson Electric Company in Delaware in his home state of Georgia. Mr. Grothol was recently appointed as director of engineering for Fintech. Incorporated and is located in Wethersfield, Connecticut. He resides at 851 Folly Brook Boulevard, Wethersfield, Connecticut 06109.

Simon C. North, M.S., 312 Main Street, Winston-Salem, North Carolina, died on August 6.

Howard Brewton, Jr., dies on August 28 in Baltimore, Maryland. Howard Brewton, Jr., dies on August 28 in Baltimore, Maryland.

Mr. Brewton was employed as a space science lecturer, to return to Georgia Tech, where he is now a prominent member of the realty profession, to be a highly complimentary write-up in “Eska Voice.”

Frederick R. ("Hank") Hudson, ME, has left the Goldsboro Space Flight Center, NASA, where he has been employed as a space science lecturer, to become the new director of the National Aeronautics and Space Administration, Goddard Space Flight Center, in his former position as aeronautical engineer. Hudson is president of the Aerospace Sciences and Engineering, University of Virginia, and the American Astronautical Society, at the development center in Avon Lake, Ohio. Mr. Brewton specializes in the field of metals.

President of Home Savings and Loan Association, Atlanta. Mr. Brewton was recently appointed the death of Clarence H. Smith, Jr.

R. W. Ross, Allen, ME, of 235 Avalon Road, Winston-Salem, North Carolina, died on August 6.

Harrison D. Watts, of 814 Carwell Avenue, Waycross, Georgia, died on June 12.

A. B. Zollars, TE, Manager, Tech- Country, Inc., a division of the company, Enka, North Carolina, received the distinguished award of "Eska Voice.""
Greetings to students and alumni everywhere. We share your interest in the advancement of our alma mater, Georgia Tech.

Finnigan Hot Water Generators are engineered to give you large quantities of hot water for low operating cost. The finest materials, creative skill and quality construction assure efficient performance. "Fabricated by Finnigan" assures quality. Finnigan builds hot water generators to your specifications. Call, wire or write today for complete information with no obligation to you.

W. J. McAlpin, President, '27
W. J. McAlpin, Jr., Vice-President, '57
F. P. DeKoning, Secretary, '48

J. J. FINNIGAN CO., INC.
P. O. Box 2344, Station D Atlanta 18, Georgia

Look for Quality

Is a sure thing in each hot water generator built by FINNIGAN

as a visiting research scientist. Dr. Shuler is the author of numerous papers on various aspects of chemical physics. He is a Fellow of the American Physical Society, a member of the American Chemical Society, the Washington Academy of Sciences, and the Washington Philosophical Society.

John M. Walker, EE, controller of Texas Instruments Incorporated, has been elected principal accounting officer. Mr. Walker will have the responsibility for matters pertaining to accounting policies and control systems of TI and its subsidiaries.

Paul Lee, CE, was recently appointed chief chemical engineer in charge of production planning and scheduling of Holston Defense. Mr. Lee will be responsible for coordinating production schedules for the plant.

Frank H. Inscho, Jr., ME, Miami, Florida, plumbing-heating-cooling contractor, has been elected second vice president of the National Association of Plumbing-Heating-Cooling Contractors at the 84th Annual NAPHCC Convention in Atlantic City, New Jersey. Mr. Inscho, along with his wife and daughter reside at 10010 S. W. 65th Avenue, Miami, Florida.

George H. Kendle, CE, has been promoted to the newly created position of management development supervisor—division technical personnel for International Paper Company's Southern Kraft Division.

Lieutenant Colonel William T. Kay kendall, USAF, has entered the Air War College, the United States Air Force senior professional school, at the Air University, Maxwell AFB, Alabama.

Crawford S. Anderson, assistant engineer at the St. Regis Paper Company Plant in Pensacola, Florida, has been appointed power superintendent of the company's pulp, paper, and paperboard complex being constructed at Monticello, Mississippi. Mr. Anderson was formerly employed by Union-Camp Corporation at Savannah, Georgia.

George H. Kendle, CE, has been promoted to the newly created position of management development supervisor—division technical personnel for International Paper Company's Southern Kraft Division.

Joel T. Murphy, IM, former district manager of Southern Bell Telephone and Telegraph Company in Athens, Georgia, was recently appointed district manager in the Marietta, Georgia, district.

Dock F. Black, IM, has been promoted to manager, personnel administration, for the marketing division of
NEWS BY CLASSES—cont.

as a visiting research scientist. Dr. Shuler is the author of numerous papers on various aspects of chemical physics. He is a Fellow of the American Physical Society, a member of the American Chemical Society, the Washington Academy of Sciences, and the Washington Philosophical Society.

43 John M. Walker, EE, controller of Texas Instruments Incorporated, has been elected principal accounting officer. Mr. Walker will have the responsibility for matters pertaining to accounting policies and control systems of TI and its subsidiaries.

44 Paul Lee, ChE, was recently appointed chief chemical engineer in charge of production planning and scheduling of Holston Defense. Mr. Lee will be responsible for coordinating production schedules for the plant.

46 Frank H. Inscho, Jr., ME, Miami, Florida, plumbing-heating-cooling contractor, has been elected second vice president of the National Association of Plumbing-Heating-Cooling Contractors at the 86th Annual NAPHCC Convention in Atlantic City, New Jersey. Mr. Inscho, along with his wife and daughter reside at 10901 S. W. 65th Avenue, Miami, Florida. George H. Kendley, CE, has been promoted to the newly created position of management development supervisor—division technical personnel for International Paper Company's Southern Kraft Division.

Lieutenant Colonel William T. Kaykendall, USAF, has entered the Air War College, the United States Air Force senior professional school, at the Air University, Maxwell AFB, Alabama.

47 Crawford S. Anderson, assistant engineer at the St. Regis Paper Company Plant in Pensacola, Florida, has been appointed power superintendent of the company's pulp, paper, and paperboard complex being constructed at Monticello, Mississippi. Mr. Anderson was formerly employed by Union-Camp Corporation at Savannah, Georgia.

49 M. C. (Bill) Bowers, IE, was recently appointed general marketing manager for Southern Bell Telephone and Telegraph Company in North Carolina. John I. Cox, JR., IM, was recently appointed assistant director of industrial relations of Tennessee Eastman Corporation.

40 Dock F. Black, IM, has been promoted to manager, personnel administration, for the marketing division of

TECH ALUMNUS

It's a good system if you like it

There are slots. Slots need people to fill them. Someone exists who was born and educated to fill each slot. Find him. Drop him in. Tell him how lucky he is. Look in once in a while to make sure he still fits his slot.

This orderly concept has much to commend it, plus one fault: some of the people most worth finding don't like it. Some very fine employers have not yet discovered the fault. It is not up to us to point it out to them. Luckily for us, we needn't be so tightly bound to the slot system.

We can offer choice. A certain combination of the factors diversification, size, centralization, and corporate philosophy makes it feasible to offer so much choice.

Choice at the outset. Choice later on. Choice between quiet persistence and the bold risks of the insistent innovator. Choice between theory and practice. Choice between work in the North and South. Choice between work wanted by the government and work wanted directly by families, by business, by education, by medicine, by science. To the extent that the slot idea helps channel choice we use it, of course.

A corporation such as this is one means of coordinating the strengths of large numbers of effective persons. You may feel that in the years ahead this type of organization must change. You may feel that it must not change. Either way, to get a chance to steer you have to come on board.

Advice to electrical engineers, mechanical engineers, chemical engineers, chemists, and physicists—still on campus or as much as ten years past the academic procession: while one starts by filling a slot, it soon proves more fun to make one. No detailed list of openings appended herewith. Next week it would be different. G. C. Durkin is Director of Business and Technical Personnel, Eastman Kodak Company, Rochester, N. Y. 14650.
International Paper Company, 230 East 42nd Street, New York, New York 10017. Col. Charles H. Livingston, Assistant Professor in Military Science (ROTC), E.E., joined the Roed Polytechnic Institute faculty in 1964 upon completion of a year's assignment as an assistant sector advisor in South Viet Nam. George Mayfield, ChE, has been ap­pointed superintendent, Area B Acid, at Holston Defense of Tennessee Eastman Corporation.

Sidney Rayney, ME, has recently joined the Atlas Chemical Industries, Inc., as a senior engineer in the engineering and product assurance de­partment of the aerospace components division. Before joining Atlas, Mr. Rayney was lead designer for the Allstates Engineering Company, Philadelphia, Pennsylvania.

Frontis B. Wiggins, Jr., E., was recently assigned as economic officer, sec­ond secretary, The American Embassy, Rome, Italy.

Richard W. Taneshiill, S1, is now area sales manager for R. F. Goodrich Chemical Com­pany's newest sales of­fice in Philadelphia. He joined NFG Chemical in 1951 as junior technical sales man in Akron, was gen­eral clerk, senior prod­uct engineer and senior sales representative.

R. R. Bailey, S1, has been appointed the As­sistant Budget Advisor for Southern Services, Inc., Birmingham. He will provide assistance relating to construction and budget reviews for the southern power com­pany as well as budget development for South­ern Services.

Maj. Peter Y. Stanton, S1, a veteran of Southeast­ern Corp.'s Von Karen Center in Anniston, was recently assigned to the GMSG and is responsible for research manage­ment in an area of trade with Industry. He will pre­pare for assignments in Alabama.

Glenn Summette, S1, was elected president of the Georgia Industrial Editors Association for the 1966-67 year. He is now Sales Manager of Garnett Advertising, Inc., of Atlanta, is a member of Atlanta City Salesmen's Club and is editor of Atlanta Lions Club "Lionews."

Dr. Maynard Fuller, ChE, (Ph.D. ’62), has been appointed associate professor in the chemical engineering de­partment of McGill University, Montreal, Canada. Mr. Fuller resides at 886 Rue Boissy, St. Lambert, P. Q., Canada.

John R. Porter, IM, has recently started a firm which will be named John R. Porter Company, Incor­porated. Offices will be in the Henley Build­ing, Suite 1616. Mr. Porter is a member of the Commerce Club, the At­lanta Athletic Club and the Capital City Club.

Wu-chich Cheng, Chem., has re­cently accepted the position of as­sistant professor of Chemistry at George Peabody College, Nashville, Tennessee. Mr. Cheng resides at 1120 Davidson Road, Nashville, Tennessee 37205. Collins Choe, ChE, has been appointed a senior chemical engineer, nitrile acid, at Holston Defense of Tennessee Eastman Corporation.

C. William Davis, ChE, was recently promoted to manager of industrial chemi­cal sales of the Aluminum Company of America (Alcoa). Mr. Davis is affiliated with the American Chemical Society and TAPPI (Technical Association of the Pulp and Paper Industry).

J. R. Fincher, CR, assistant professor of civil engineering, Georgia Tech, will give a lecture at the George Washington Hotel, 356 West Adams Street, Jackson­ville, Florida, sponsored by the American Institute of Steel Construction.

Emilio M. Zolliceco-Vancker, IE, recently received his master of public administration from Harvard University.

Major C. W. Burchett, USA, IM, was recently awarded the Army Commendation Medal for meritorious service as the assistant professor of Mili­tary Science at the Ohio State University from July, 1963, to July, 1966. Major Burchett is presently assigned as the Army liaison officer to the advanced research projects agency of the Defense Department located on the National Range at Kwojalein Atoll in the Marshall Islands. His mailing address is Box 123, APO San Francisco, California 96955.

Joseph D. Clem, Jr., IM, has recently become assigned to the new position of plant engineer at Susquehanna Fibers Com­pany, Scranton, Pennsylvania, a subsi­diary of Rohm and Haas Company.

Robert Frederick Cook, Jr., IE, has been named manager of manufacturing services in the industrial fabrics division, West Point-Pepperell, Inc.

Ronald S. Jordan, ME, has been ap­pointed manager of the eastern sales dis­trict of the General Electric Silicone Prod­ucts Department. Mr. Jordan is a mem­ber of the New York Rubber Group, Rubber Division, and American Chemical Society.

A. Duane Wills, IM, has been promoted
We assist America in its pursuit of peace — We serve Science in its pursuit of new knowledge.

If you are a graduate in engineering, mathematics, or the physical sciences, Sandia Corporation would like to hear from you.

Sandia Corporation is a Plan for Progress company, and an equal opportunity employer. U.S. citizenship is required.

For further information write to Employment Division, Sandia Corporation, P.O. Box 5800, Albuquerque, New Mexico 87115.

Sandia is diversity in depth.
NEWS BY CLASSES—cont.

to advisory systems engineer with the IBM Corporation and serves as a technical adviser to the Naval Supply data processing system in Norfolk and throughout the United States. He lives with his wife and two daughters at 540 Canterbury Road, Virginia Beach, Virginia 23452.

56 Major Michael Harold Hall, USA, IE, was recently promoted to major in the United States Army. Major Hall, along with his wife and son reside at 1105-A Thomasson Circle, Ft. Eustis, Virginia.

Robert M. McAlister, ME, is presently employed with Daniel Construction Company as project manager. He resides at 2701 Rockwood Road, Greensboro, North Carolina.

Engaged: C. Leon Sherman, IM, to Miss Sheila Greenberg. Mr. Sherman is presently employed as plant manager for the Society Brand Hat Company, St. Louis, Missouri.

Ralph Z. Parks, IM, has recently ended over five years of service with the First Baptist Church of Woodruff, South Carolina, as Minister of Education and Assistant Pastor. He then became the pastor of the Mayo Baptist Church of the Broad River Association. Mr. Parks' address is Box 37, Mayo, South Carolina 29368.

W. A. L. Sibley, Jr., Text., has recently become manager of the new department of textile engineering of J. P. Stevens and Company, Inc. Mr. Sibley resides at 200 E. Prentiss Avenue, Greenville, South Carolina.

57 Alexander B. Abel, ME, was recently appointed as district application engineer assigned to the Detroit district office of the A. O. Smith Corporation's Clark Control Division. In this capacity, Mr. Abel is responsible for developing sales of Clark's complete line of industrial and commercial electrical controls.

Married: George A. Dick to Miss Rosalind Bucker. The wedding took place on June 11. Their mailing address is Box 325, Bartsville, Oklahoma. Edmund C. Maney, III, IE, an industrial engineer in WRAMA's vast maintenance directorate, was presented his certificate of membership in the National Institute for Public Affairs by Colonel Robert A. Wys, WRAMA deputy commander. Mr. Maney and his wife live at 2773 Waverland Circle, Macon, Georgia.

Robert Davis Turner, IM, has been recently appointed as district application engineer in Tupelo, Mississippi. Mr. Gwaltney is employed by the Westinghouse Electric Corporation as a sales engineer.

58 Frank Stephens Chou, IE, has received an M.B.A. degree from Harvard University.

Married: Claude Spencer Godey, IM, to Miss Mary Ann Dickey. The wedding took place on October 8 at Glenn Memorial Methodist Church in Atlanta.

Married: Chester D. Marks, Jr., ME, to Miss Rachel Ann Dickson. The wedding took place on July 23 in Los Angeles, California. Mr. Marks is presently employed by the Westinghouse Electric Corporation as a sales engineer.

J. Robert Spencer, ChE, completed an internship at Johns Hopkins in June, and has accepted a position at the Commissary Division at Emory for two years. He and his wife reside at 3469 Canadian Way, Tucker, Georgia.

Robert Davis Turner, IM, has been named manager of industrial relations in the industrial fabrics division, West Point-Pepperell, Inc.

Dr. John Waters, EE, (Ph.D. '65), has recently accepted a position as a research physicist on underwater sound with Hydrospace Research Corporation in Rockville, Maryland. Dr. Waters resides at 11238 Evans Trail, Apt. T-3, Bethesda, Maryland.

60 David L. Bergman, IE, has been named transportation development manager for Southern States Feed Corporation in Atlanta. The Bergman reside at 4366 Rosewood Road.

William H. Calvert, ChE, (MS IM, '65), has been transferred to Koln, Germany, by the Goodyear Tire and Rubber Company. He is in charge of marketing v-belt sales.

Major Henry J. Dehlebs, III, USA, AE, has recently received the Bronze Star Medal and the Army Commendation Medal.

Married: Willis Henry Goodnall, ChE, to Miss Emily Ann Underwood. The wedding took place November 20 in Tupelo, Mississippi. Mr. Goodnall is employed as an engineer by E. I. duPont de Nemours and Company in Old Hickory, Tennessee.

Gerald L. London, IM, has recently become employed by the Columbia Broadcasting Systems as a market planner in the New York office.

Richard C. Roley, EE, was recently promoted to manager of systems engineering with Mohrrend Co., Inc. Mr. Roley lives at 101 Simpson Place, College Park, Georgia.

Louis Traitt Wells, Jr., Phys, has received a D.B.A. degree from Harvard University.

Married: Warren L. Williams, IE, to Miss Sandra Elizabeth Joy. The wedding took place on August 9. They reside at 4 Thayer Road, Hampton, New Hampshire 03824.

Married: Chester D. Marks, Jr., ME, to Miss Rachel Ann Dickson. The wedding took place on July 23 in Los Angeles, California. Mr. Marks is presently employed by the Westinghouse Electric Corporation as a sales engineer.

J. Robert Spencer, ChE, completed an internship at Johns Hopkins in June, and has accepted a position at the Commissary Division at Emory for two years. He and his wife reside at 3469 Canadian Way, Tucker, Georgia.

Robert Davis Turner, IM, has been named manager of industrial relations in the industrial fabrics division, West Point-Pepperell, Inc.

Dr. John Waters, EE, (Ph.D. '65), has recently accepted a position as a research physicist on underwater sound with Hydrospace Research Corporation in Rockville, Maryland. Dr. Waters resides at 11238 Evans Trail, Apt. T-3, Bethesda, Maryland.

David L. Bergman, IE, has been named transportation development manager for Southern States Feed Corporation in Atlanta. The Bergman reside at 4366 Rosewood Road.

William H. Calvert, ChE, (MS IM, '65), has been transferred to Koln, Germany, by the Goodyear Tire and Rubber Company. He is in charge of marketing v-belt sales.

Major Henry J. Dehlebs, III, USA, AE, has recently received the Bronze Star Medal and the Army Commendation Medal.

Married: Willis Henry Goodnall, ChE, to Miss Emily Ann Underwood. The wedding took place November 20 in Tupelo, Mississippi. Mr. Goodnall is employed as an engineer by E. I. duPont de Nemours and Company in Old Hickory, Tennessee.

Gerald L. London, IM, has recently become employed by the Columbia Broadcasting Systems as a market planner in the New York office.

Richard C. Roley, EE, was recently promoted to manager of systems engineering with Mohrrend Co., Inc. Mr. Roley lives at 101 Simpson Place, College Park, Georgia.

Louis Traitt Wells, Jr., Phys, has received a D.B.A. degree from Harvard University.

Married: Warren L. Williams, IE, to Miss Sandra Elizabeth Joy. The wedding took place on August 9. They reside at 4 Thayer Road, Hampton, New Hampshire 03824.
Mr. Pattillo is residing at 4 Thayer Road, Hampton, New Hampshire 03822.

59 Frank Stephens Chew, IE, has received an M.B.A. degree from Harvard University.

Married: Claude Spencer Godfrey, IM, to Miss Mary Ann Dickie. The wedding took place on October 8 at Glen Memorial Methodist Church in Atlanta.

Married: Chester D. Marks, Jr., ME, to Miss Rachel Ann Dickson. The wedding took place on July 23 in Los Angeles, California. Mr. Marks is presently employed by the Westinghouse Electric Corporation as a sales engineer.

J. Robert Spencer, CHIE, completed an internship at Johns Hopkins in June, and has accepted a position at the Community Disease Center at Emory for two years. He and his wife reside at 3469 Canadian Way, Tucker, Georgia.

Robert Davis Turner, IM, has been named manager of industrial relations in the industrial fabrics division, West Point-Pepperell, Inc.

Dr. John Waters, KE, (Ph.D. '65), has recently accepted a position as a research physicist on underwater sound with Hydrospace Research Corporation in Rockville, Maryland. Dr. Waters resides at 1236 Evans Trail Apt T-3, Beltsville, Maryland.

60 David L. Bergman, IE, has been named transportation development manager for Southern States Feed Corporation in Atlanta. The Bergmans reside at 4966 Roswell Road.

William R. Calvert, CE, (BS FM '65), has been transferred to Koln, Germany, by the Goodyear Tire and Rubber Company. He is in charge of marketing v-belt sales.

Major Henry J. DeMely, III, USA, AE, has recently received the Bronze Star Medal and the Army Commendation Medal.

Married: William Henry Gaultney, CHIE, to Miss Emily Ann Underwood. The wedding took place November 20 in Tupelo, Mississippi. Mr. Gaultney is employed as an engineer by E. I. duPond de Nemours and Company in Old Hickory, Tennessee.

Gerald L. London, IM, has recently become employed by the Columbia Broadcasting System as a market planner in the New York office.

Richard C. Foley, ER, was recently promoted to manager of systems engineering with Motorola Com. and Elect. Inc. Mr. Foley lives at 101 Seaborn Place, College Park, Georgia.

Louis Travis Wells, Jr., Phys, has received a D.B.A. degree from Harvard University.

Married: Warren L. Williams, IM, to Miss Sandra Elizabeth Joy. The wedding took place on August 9. They reside at 1 Farrar Road, Kendall Park, N. J.

61 Adopted by: Mr. and Mrs. Ernest R. Anderson, EE, a daughter.

CONSIDER A BALANCED CAREER

Work with Sperry Rand on the Saturn/Apollo program. Actively participate in the development of missile systems guidance and control instrumentation, communication and tracking equipment. Work in an ultra modern laboratory with the ultimate in research facilities.

Live in Huntsville, home of the Marshall Space Flight Center, where large space rockets are conceived and developed. Here nestled in the scenic Tennessee River Valley, at the foothills of the Appalachian Mountains you enjoy North Alabama's ideal climate.

For a challenging job as well as an ideal living conditions contact:

Bob Orr, Personnel Administrator, Space Support Division, 716 Acadia Circle, Huntsville, Alabama or call collect 1-205-539-3771 an equal opportunity employer
Regina McCain, nine months old, on August 12. Mr. Anderson is a senior engineer with Federal Electric Corporations. Mrs. Anderson and Gina reside at 1008 Clairmont Drive, S.E., Atlanta, Georgia.

Married: John Otis Etheridge, EE, to Miss Barbara Jean Bohannon. The wedding took place on October 15 at the First Methodist Church in Monterey Park, California. Mr. Etheridge is a member of the technical staff of the Hughes Aircraft Company in Los Angeles.

Married: Marion Woodard Glenn, Jr., IM, to Miss Katherine Louise King. The wedding took place on November 12. Mr. Glenn is employed as sales manager for Southern Tack in Dalton, Georgia.

First Lieutenant Daniel D. Hall, CE, has been selected for promotion to captain in the U.S. Air Force.

J. Wayne Little, ME, has been named manager of the Heat Transfer Laboratory. Brown's Mechanics and Thermodynamics Department, Brown Engineering company. Mr. Little, along with his wife and one-year-old daughter, live at 6007 Robin Head Lane, Huntsville, Alabama.

James J. McAlpin, CE, has joined Baytown Research and Development Division. He will be engaged in research work on molecular weight distribution and chain branching in polyolefins. Mr. McAlpin and his family reside at 134 MacArthur, Baytown, Texas.

Major Warner D. McClure, USA, IM, has been assigned as project officer in the Army Surgeon General's MUST Office in Washington, D.C. In this capacity, he will be engaged in the development of the Army's new hospital concept, MUST (Medical Unit Self-Contained Transportable). Major McClure and family reside at 6841 Nashville Road, Langham, Maryland.

Married: Robert Brannon McElvah, IM, to Miss Susan Caroline Dunlap. The wedding took place on December 17. Niel Chase Morgan, Jr. IM, has received a M.B.A. degree from Harvard University.

Married: James J. McAlpin, CE, has joined Baytown Research and Development Division. He will be engaged in research work on molecular weight distribution and chain branching in polyolefins. Mr. McAlpin and his family reside at 134 MacArthur, Baytown, Texas.

Major Warner D. McClure, USA, IM, has been assigned as project officer in the Army Surgeon General's MUST Office in Washington, D.C. In this capacity, he will be engaged in the development of the Army's new hospital concept, MUST (Medical Unit Self-Contained Transportable). Major McClure and family reside at 6841 Nashville Road, Langham, Maryland.

Married: Robert Brannon McElvah, IM, to Miss Susan Caroline Dunlap. The wedding took place on December 17. Niel Chase Morgan, Jr. IM, has received a M.B.A. degree from Harvard University.

Married: James J. McAlpin, CE, has joined Baytown Research and Development Division. He will be engaged in research work on molecular weight distribution and chain branching in polyolefins. Mr. McAlpin and his family reside at 134 MacArthur, Baytown, Texas.

Major Warner D. McClure, USA, IM, has been assigned as project officer in the Army Surgeon General's MUST Office in Washington, D.C. In this capacity, he will be engaged in the development of the Army's new hospital concept, MUST (Medical Unit Self-Contained Transportable). Major McClure and family reside at 6841 Nashville Road, Langham, Maryland.

Married: Robert Brannon McElvah, IM, to Miss Susan Caroline Dunlap. The wedding took place on December 17. Niel Chase Morgan, Jr. IM, has received a M.B.A. degree from Harvard University.

Married: James J. McAlpin, CE, has joined Baytown Research and Development Division. He will be engaged in research work on molecular weight distribution and chain branching in polyolefins. Mr. McAlpin and his family reside at 134 MacArthur, Baytown, Texas.

Major Warner D. McClure, USA, IM, has been assigned as project officer in the Army Surgeon General's MUST Office in Washington, D.C. In this capacity, he will be engaged in the development of the Army's new hospital concept, MUST (Medical Unit Self-Contained Transportable). Major McClure and family reside at 6841 Nashville Road, Langham, Maryland.
The Baylor School
A Leading Boys' Preparatory School
Since 1893

dents. Ideal location, modern facilities. New science and li-
brary building. Athletics for all ages. Indoor and outdoor swim-
pools. Attend own church. Summer sessions: also separate
SUMMER CAMP for boys 8-15.

Write for illustrated catalog.

135 Cherokee Road
Chattanooga, Tennessee

NEWS BY CLASSES—cont.

Captain Studer was also awarded the sixteenth through the twenty-fifth Oak
Leaf Clusters to the Air Medal and also received the Air Force Commendation
Medal.
First Lieutenant Ralph E. Vick, AR, has recently returned from a 12-month
tour in Southeast Asia. During that
tour he received two air medals while
making flights into Southeast Asia. His
promotion is to the 76 MAS, Charles-
ton AFB, North Carolina.
Lieutenant Stuart Ald. USA, who is stationed at Shaw AFB, South Carolina,
where he is flying H43B rescue helicop-
ters, Lt. and Mrs. Vick reside at 4425
Dorsey Drive, Sumter, South Carolina.
Jack Wilson, IM, was recently chosen
a Student Associate Representative for
Harvard Business School.

64 Edwin A. Allbright, IM, has been
commissioned an Ensign in the United States Navy upon graduation from
Officers Candidate School in Newport,
Rhode Island.
Lt. William B. Andrews, USAF, was recently commissioned as an Air Force
duty.
Lt. Carl A. Bogenholm, IM, is a
second lieutenant in the
Army Signal Corps, 243rd Field Service Company,
United States Army Quarter-master
Corps, 243rd Field Service Company,
North Carolina. He is living at Apartment 204, 110 Royal
Road, Roswell, Georgia.

Lt. John R. Sellmer, USAF, IM, has
recently returned from a year in Viet
Nam and has been released from active
Duty. Lt. Doobrow is presently em-
ployed as an electronics engineer at the
Charleson Naval Shipyard, Charleston,
South Carolina. He and his wife reside
at 1501 Highway 7, Charleston Arms
Apartments 121, Charleston.

William Wallace George, III, graduated magna cum laude from Harvard Univer-
sity with a M.B.A. degree.

Born to:
Mr. and Mrs. Joseph H. Hummelt,
New York, New York.

Married to:
Miss Marcia Joan Dunn. The
wedding took place on November 26. Mr. Hummelt is employed as project engi-
neer for the Charles M. Grivas Organiza-
tion in Atlanta.

Arthur W. Jappe, CE, has recently transferred from Chevron Oil Company to
American Overseas Petroleum Limited, where he will take the position of con-
struction engineer for Nafoora Field. Mr.
Jappe lives at c/o Amchems, P. O. Box
603, Tripoli, Libya, North Africa.

Lt. William A. Johnson, IM, was
killed on October 30 as a result of fire
aboard the USS Orekini off the coast of
Troo Island near North Viet Nam.

Marvin E. Kee, IE, has recently be-
come sales representative of the Indus-
trial Products Division of Good year in its
Wichita, Kansas territory. Mr. Kee will
handle sales of conveyor belting, hose,
v-belts, tank lining materials, sheet pack-
aging rubberized fabric containers and other
rubber products for industry and agri-
culture.

Lt. John R. Selzer, USAF, IM, has
recently completed a two-year tour at
Tachikowa AFB, Japan. During that
tour he received two air medals while
making flights into Southeast Asia. His
promotion is to the 76 MAS, Charles-
ton AFB, North Carolina.

Henry L. Hicks, IM, was recently ap-
pointed controller of Home Savings and
Loan Association. Mr. Hicks is serving
at St. Stephens Episcopal Church in
Chattanooga. Tennessee.

Walter Goza Cornett, III, was
recently commissioned as an Air Force
pilot in the Air Force Reserve at Reese AFB,
Texas.

Walter C. Strange, IM, has recently ob-
tained a new job as sales engineer with the outdoor lighting division of General
Electric Company in Hendersonville,
North Carolina. Mr. Strange resides at
527 Justice Street, Hendersonville, North Carolina, 28792.

Married: Ernest Walter Webb, IM, to
Miss Jacqueline Parker Crafton. The
wedding took place on November 4. Mr.
Webb is employed in the Southern
Underwriters Association in Atlanta.

Douglas Alton Cooper, ME, has recently completed a two-year military
assignment in the United States Air Force at Tonkin Gulf near North Viet Nam.

Eric W. Reece, ME, has recently re-
ceived a M.B.A. degree from Harvard Univer-
sity.

William N. Mize, EE, has completed
his two-year military obligation at Ft.
Lewis, Washington, and has accepted a
position as junior engineer with IBM
in Raleigh, North Carolina.

William H. Moore, Jr., EE, has re-
ceived a M.B.A. degree from Harvard Univer-
sity.

Harold H. Noyd, Jr., EE died as the
result of Hodgkins disease on August 14.
Eric W. Reece, MB, has recently re-
ceived a M.B.A. degree from Harvard Univer-
sity.
A new communications network
gives police the jump on fast-moving fugitives

It takes a suspect 85 hours to drive, and nearly six to fly, from New York to Los Angeles. California is ready and waiting for him just four minutes after he starts.

Reason? A fully automatic teletypewriter network just completed by the Bell System to provide better communications for law enforcement agencies from coast to coast.

The new national service, known as Law Enforcement Teletypewriter Service or LETS, cuts from days to minutes the time required to transmit criminal descriptions, license checks, bulletins and other vital police data.

The Bell System is also working on other service improvements to help combat crime and protect the public.

The reason is simple enough. We have an obligation to keep providing the best communications possible—for law enforcement or for you and your family at home.

TECH ALUMNI

\[\text{A Leading Boys' Preparatory School Since 1893} \]

Write for illustrated catalog.

135 Cherokee Road
Chattanooga, Tennessee

NEWS BY CLASSES—cont.

Captain Studer was also awarded the Oak Leaf Clusters to the Air Medal and has been released from active duty. Mr. Doobrow is presently employed as an electronics engineer at the Lincoln National Life Insurance Company in Atlanta.

Born to: Walter George Cornell, III, B.Ch.E., graduated magna cum laude from Baylor School in Atlanta.

Married: Lt. William B. Andrews, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Kemp is district sales representative for E.I. duPont De Nemours and Company in Chattanooga, Tennessee.

Mr. Burgess is employed by the Lincoln National Life Insurance Company in Atlanta.

Born to: Lt. j.g. and Mrs. George R. Burgess, III, USN, Phys., a daughter, Katherine Anne, on September 23. After a wedding trip to Acapulco, the newlyweds will live in Atlanta.

First Lt. Joel H. Dufoe, USNR, EE, has recently returned from a year in Vietnam and has been released from active duty. Mr. Dufoe is employed as an electronics engineer at the Lincoln National Life Insurance Company in Atlanta.

Married: Charles Hill Brittain, Arch, to Miss Amy Sue Green. The wedding took place on September 23 at the Cross Keys Methodist Church in Atlanta. Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.

Born to: Mr. and Mrs. Jerry Wallace Burgess, III, a daughter, Marla Lyn, on August 4. Mr. Burgess is employed by E. I. duPont De Nemours and Company in Chattanooga, Tennessee.

First Lieutenant James P. Burke, USAF, ME, has been awarded the Air Medal at Bolling AFB, Washington, and has accepted a position as junior engineer with IBM in Washington, D.C.

Mr. Brittain is associated with Henry A. Corinid, Architects.
STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION

The Georgia Tech Alumnus is published six times a year (September, October, November, December, February, March, May, and July) by the Georgia Tech National Alumni Association, 225 North Avenue, N.W., Atlanta, Fulton County, Georgia. The location of the general business offices of the publishers is in the Georgia Tech Building, Georgia Tech, Atlanta, Georgia 30322.

The editor is Robert B. Wallace, Jr., director of information services and publications of the Georgia Institute of Technology, and the advertising manager is Brian D. Hagg, associate secretary of the Georgia Tech National Alumni Association, Atlanta, Georgia 30322.

The average number of copies printed of each issue during the preceding 12 months is 18,720 while the single issue printing nearest the filing date of September 23, 1966, was 18,000.
The paid circulation by mail subscription averaged 10,970 during the preceding 12 months and the issue nearest the filing date totaled 17,890 paid. Free distribution on the average issue was 1,250 for the 12 months and was 1,261 for the September issue. This made the total average distribution 18,220 for the preceding 12 months and 19,111 for the September issue.

NEWS BY CLASSES—cont.

served a master of science degree in Mechanical Engineering from the University of New Mexico.

James William Simpson, ME, has recently completed a M.B.A. degree from Harvard University.

Ronald G. Stock, IM, has recently become affiliated with Holland Laboratories, Inc., a subsidiary of Baxter Laboratories, Inc. Mr. Elson will be Hyland’s sales representative in the San Diego, California area. He resides at 3076 Fullerton Parkway, Apartment 211, El Cajon, California.

Married: Patrick Scoville, Jr., to Miss Eunice McMichael. The wedding took place on August 20 at Epworth Methodist Church in Atlanta. They reside in Alkeda, South Carolina, where Mr. Scoville is associated with Owens-Corning FiberGlass Corporation.

Charles D. Tuney, IM, EM, has recently became affiliated with the Florida Research and Development Center of the Pratt and Whitney Aircraft Division, United Aircraft Corporation, as an experimental stress analysis engineer. Mr. Tuney resides at 938 Magnolia Drive, Apartment A, Lake Park, Florida 33463.

Married: Edith Franklin Womack, Jr., ME, to Miss Elaine Whitten. The newlyweds live in Norcross, Georgia. Mr. Womack is a mechanical engineer associated with Ingersoll-Rand Company in Chambélie.

1965 Thomas R. Brandes, IM, has completed his master’s degree in business administration at the University of North Carolina and is now connected with the Monsanto Chemical Company, St. Louis, Missouri.

Married: Alan Eggleston Canfield to Miss Judith Ann Essam. The wedding took place on September 10 at the North Decatur Presbyterian Church in Decatur, Georgia. Mr. Canfield is employed by Douglas Aircraft in Huntington Beach, California.

George R. Cargill, III, BS, recently received his MS degree from Harvard University.

Married: First Lt. William J. Cochran, Jr., USA, IM, to Miss Dixie Lee Sterling. The wedding took place on August 12 in Salina, California. First Lt. Cochran is presently serving in Viet Nam.

Marine Officer Candidate Dennis W. de Givin has recently completed a special Platoon Leaders Class at the Marine Corps Schools Command in Great Lakes, Illinois.

Born to: Mr. and Mrs. C. E. “Dick” Deinereath, EE, a daughter, Susan Michelle, on September 30. Mr. Deinereath is an engineer in the electronic countermeasures department of Raytheon Company in Santa Barbara, California. They reside at 223 A. W. Constance Avenue, Santa Barbara.

Married: Lt. and Mrs. Raymond Donohue, IM, a daughter, Maureen Allison, on March 30. They reside at 100-07 Ascan Avenue, Forest Hills, New York 11375.

Married: Hubert Lamar Harris, Jr., IM, to Miss Joan Marie Cole. The wedding took place on October 22 at the Church of the Immaculate in St. Louis. Mr. Harris is presently affiliated with the Monsanto Company in St. Louis.

Married: Malcolm Gordon Reiser, Jr., to Miss Nancy Butler Stone. After a wedding trip to Cloudland Canyon, the newlyweds will live in Philadelphia, Pa., where Mr. Reiser will attend the Wharton School of Finance.

Daniel Peter, USAF, has been commissioned a second lieutenant in the U. S. Air Force upon graduation from Officer Training School (OTS) at Lackland AFB, Texas.

1966 Wayne L. Adamson, ME, is presently employed as a project engineer at the United States Navy Marine Engineering Laboratory, Annapolis, Maryland. Mr. Adamson, his wife and son, reside at 1155 Madison Street, Apartment B-3, Annapolis, Maryland 21403.

Married: George Torrence Davis, Jr., to Miss Alice Rudino Jones. The wedding took place on September 10 at the Flat Rock Baptist Church in College Park, Georgia. Mr. Davis is employed by the Vulcan Materials Company.

Engaged: James Hamilton Evans, CE, to Miss Sandra Marie Houston (Class of ‘66, Text). Wedding plans are to be announced at a later date.

Daniel L. Gatos, AE, was recently commissioned as an Air Force lieutenant. Lt. Gatos will now attend pilot training school.

Married: Weller Hensell Harris, Jr., to Miss Sara Todd Aton. The wedding took place on November 19. Mr. Harris is presently attending the Emory University School of Law.

Married: Malcolm Gordon Keiser, Jr., to Miss Nancy Butler Stone. After a wedding trip to Cloudland Canyon, the newlyweds will live in Philadelphia, Pa., where Mr. Keiser will attend the Wharton School of Finance.

Married: Kenneth W. Best has recently completed a special platoon leaders class at the Marine Corps Schools Command in Great Lakes, Illinois.

Marine Officer Candidate John M. Mills has recently completed a special platoon leaders class at the Marine Corps Schools Command in Great Lakes, Illinois.

Married: Ruben Frame Owens to Miss Joanne Louise Reich. The wedding took place in September. Mr. Owen is affiliated with Alpha Epsilon Pi and is a member of the American Institute of Aeronautics and Astronautics. He is currently working toward a master’s degree at Georgia Tech in aerospace engineering.

Honorary: Collie Everman Woolman, who brought Delta Air Lines from the world’s first commercial air crop-dusting firm to the world’s seventh largest airline, died on September 11. Mr. Woolman was chief executive officer and chairman of the board at the time of his death.

Friend: William E. Farrell, of 1447 Peachtree Street, N. E., Atlanta, Georgia 30309, died on April 30.

Georgia Tech in aerospace engineering.

Honorary: Collie Everman Woolman, who brought Delta Air Lines from the world’s first commercial air crop-dusting firm to the world’s seventh largest airline, died on September 11. Mr. Woolman was chief executive officer and chairman of the board at the time of his death.

Friend: William E. Farrell, of 1447 Peachtree Street, N. E., Atlanta, Georgia 30309, died on April 30.
Glenn Francis Webb, Math., received his M.S. in Mathematics from Emory University in September, 1966.

Wayne L. Adamson, ME, is presently employed as a project engineer at the United States Navy Marine Engineering Laboratory, Annapolis, Maryland. Mr. Adamson, his wife and son, reside at 1185 Madison Street, Apartment B-3, Annapolis, Maryland 21403.

Married: George Terrell Davis, IE, to Miss Alice Rudine Jones. The wedding was on September 10 at the Flat Rock Baptist Church in College Park, Georgia. Mr. Davis is employed by the Vulcan Materials Company.

Engaged: James Hamilton Evans, CR, to Miss Sandra Marie Hesterlee (Class of '66, Text). Wedding plans are to be announced at a later date.

Lt. David L. Gates, AF, was recently commissioned as an Air Force lieutenant. Lt. Gates will now attend pilot training school.

Married: Weller Hensall Harris, Jr., to Miss Nancy Butler Stone. After a wedding trip to Chautauqua, New York, the newlyweds will live in Philadelphia, Pa., where Mr. Keiser will attend the Wharton School of Finance.

Daniel Peter, USAF, has been commissioned as a second lieutenant in the U.S. Air Force upon graduation from Officer Training School (OTS) at Lackland AFB, Texas.

Married: Ruben Fraser Owen to Miss Joan Louise Reich. The wedding took place in September. Mr. Owen is affiliated with Alpha Epsilon Pi and is a member of the American Institute of Aeronautics and Astronautics. He is currently working toward a master's degree at Georgia Tech in aerospace engineering.

Honorary Collett Everman Woolman, who brought Delta Air Lines from the world's first commercial air crop-dusting firm to the world's seventh largest airline, died on September 11. Mr. Woolman was chief executive officer and chairman of the board at the time of his death.

STANFORD Y. SMITH, C.L.U.
Executive Vice President, Agency

Home Office: 1197 Peachtree Street, N. E.
Phone: 875-0621 – Atlanta, Georgia 30309
You'll go better refreshed with ice-cold Coca-Cola. Gives a lift to your spirits, a boost to your energy, a big, bold, unmistakable taste. In short: Coca-Cola is more than an ordinary soft drink.