AUDITORY RECOGNITION OF FLOOR SURFACES
BY TEMPORAL AND SPECTRAL CUES OF WALKING

Federico Fontana
University of Udine
Dipartimento di Matematica e Informatica
via delle Scienze 208
33100 Udine, Italy
federico.fontana@uniud.it

Fabio Morreale
University of Trento
Dipartimento di Ingegneria
e Scienza dell’Informazione
via Sommarive 14
38123 Povo (TN), Italy
fabio.morreale@disi.unitn.it

Tony Regia-Corte, Anatole Lécuyer, Maud Marchal
INRIA
Campus Universitaire de Beaulieu
35042 Rennes, France
{Anatole.Lecuyer,Maud.Marchal}@inria.fr

ABSTRACT
In a multiple choice auditory experimental task, listeners had to
 discriminate walks over floors made of concrete, wood, gravel,
or dried twigs. Sound stimuli were obtained by mixing temporal
and spectral signal components, resulting in hybrid formulations
of such materials. In this way we analyzed the saliency of the
corresponding cues of time and frequency in the recognition of a
specific floor. Results show that listeners differently weigh such
cues during recognition, however this tendency is not polarized
enough to enable interaction designers to reduce the functionality
of a walking sound synthesizer to simple operations made on the
temporal or spectral domain depending on the simulated material.

1. INTRODUCTION
Walking sounds play a significant role in everyday listening en-
vironments. They in fact convey information at different levels
of approaching walkers, and about the surface they traverse. By
listening to a temporal sequence of footsteps humans try to iden-
tify surface material [1], meanwhile they make inferences on shoe
types and walking styles to support decisions on gender as well as
about physical, biomechanical, and affective characters of a per-
son [2, 3, 4].

For their importance in the auditory scene, walking sounds
have found place in multimodal displays since the early days of in-
teractive simulation. All vintage electronic game players probably
remember the iconic use of footstep sounds to render the number
and moving speed of the enemies in Space Invaders™, a popu-
lar computer game of the late 70’s. Nowadays, with increasing
computational and memory resources as well as quality of the pc
audio hardware, sound designers can make use of rich collections
of accurate walking sounds recorded under different conditions—
for instance see the related section in sounddogs.com. Fur-
thermore, techniques exist for the interactive synthesis of footstep
sounds [5, 6, 7].

Walking sounds lose ecological coherence if they are inaccu-
rately displayed in an interactive context, in terms of audio qual-
ity or temporal synchronization. When the feedback message can
be completely determined some hundreds of milliseconds before
displaying, or when a comparable latency of the response to an in-
put is tolerated, then accurate pre-recorded footstep sounds can be
selected from an even huge sample database, and post-processed
before reproduction also by devices whose memory and computa-
tion power are relatively smaller, such as mobile platforms. Con-
versely, there are situations in which no more than few tens of
milliseconds are allowed to a computer system for delivering in-
teractive sounds. In the most compelling case, feedback must be
provided under continuously varying control conditions. Consider,
for instance, a virtual environment simulating ground materials
having spatially-varying degrees of compliance, such as gravel ar-
eas of different average composition or mud of variable thickness
covering a solid floor base: In this case, physically based or phys-
ically informed synthesis models such as those mentioned before
become unavoidable.

Techniques for the rendering of continuous interactions be-
tween objects have reached amazing results in the computer graph-
ics field, thanks to efforts in basic, applied, and technological re-
search leading in particular to recent powerful GPU cores. The
audio field, however needing similar research effort and dedicated
resources to achieve goals of comparable impact, has come to rel-
atively less resounding results and technologies for its ancillary
reputation with respect to vision. Furthermore, computer graphics
researchers and developers can rely on the ability of a user to focus
on a selected part of the visual field. As opposed to this ability, listeners integrate all simultaneous events of an auditory stream into a single temporal process, whose overall control is known to be almost impossible to achieve in everyday listening environments and ecological soundscapes powered using consumer audio reproduction hardware.

Researchers in interactive synthesis look for models providing accurate sounds and direct access to their distinctive parameters, meanwhile parsimonious in terms of needed computational and memory resources. Successful modeling is usually based on applicable psychoacoustic results, helping sound interaction designers to get rid of redundancies otherwise burdening the resulting synthesis engine. In our specific case, we aim at interactively synthesizing realistic walking sounds by means of a simple model, whose computations and continuous control are at reach of current consumer hardware. Our basic hypothesis, elaborated in the next section, is that perceived material properties in walking sounds map to temporal or spectral auditory cues proportionally to the nature and, hence, category of the floor material.

2. EXPERIMENTAL HYPOTHESIS

Footstep sounds range across a number of possibilities depending on the shoe type, nature of the floor, and foot action. We restrict the pool of possible interactions to those generated by a male, walking with normal style upon a flat floor using leather shoes. The only experimental variable then will be the floor material.

We categorize floors into solid or aggregate. The former, such as concrete, marble, wood, are stiff. The latter, such as gravel, dry leaves, sand, allow relative motion of their constituent units and progressively adapt to the sole profile during the interaction. Now,

- solid materials give rise to short, repeatable impacts having a definite spectral color;
- aggregate materials elicit sequences of tiny impacts having distinctive temporal density, that create a sort of “crumpling”, less resonant sound.

We hypothesize that the perception of solid materials is mainly determined by spectral cues, conversely the perception of aggregate materials is mainly determined by temporal cues. In particular, we experiment using concrete (C) and wooden (W) floors, representative of solid materials, as well as with gravel (G) and dried twigs (T), representative of aggregate materials. Figure 1 illustrates the hypothesis.

3. METHOD

A non-interactive setup was used in the experiment. Although forcing the subjects to perform a passive task, this choice was made to keep control on the stimuli and, more in general, focus on the auditory modality. In particular, by avoiding interactive sonic augmentations in the context of a multimodal walking task, subjects could just listen to footstep sounds without incurring in potential bias, determined by self-locomotion over a room floor having completely different visual and tactile attributes.

3.1. Setup

The experiment was set up in the VIPS laboratory at the Department of Computer Science, University of Verona, Italy. Subjects were sitting in front of a Mac Pro pc running a Java application communicating (via the pdj library) with Pure Data, a free software environment for real time audio synthesis also enabling simple visualizations (through the GEM library). They listened to the auditory stimuli through a pair of AKG K240 headphones.

3.2. Participants

Thirteen male and three female undergraduate computer science students aged 22 to 31 (mean = 24.62, std = 2.55) participated in the experiment. Few of them had some experience in sound processing. All of them reported to usually wear snickers.

At the end of the experiment, every subject completed a subjective questionnaire about the realism and ease of identification of the audio stimuli.

3.3. Procedure

One footstep by a normally walking male wearing leather shoes was repeatedly recorded while he stepped over a tray filled with gravel and, then, dried twigs. Recordings were made inside a silent, normally reverberant room using a Zoom H2 digital hand recorder standing 0.5 m far from the tray. For either material, seven recordings were selected and randomly enqueued to create walking sequences lasting 12 s and containing 13 footsteps. In addition to the in-house recordings, high quality samples of a male walking on concrete and on wooden parquet were downloaded from the commercial database sounddogs.com. Using these samples, two further walking sequences were created having the same beat and average Sound Pressure Level as of those based on in-house recordings.

Temporal envelopes were extracted from every sequence, by computing the signal

\[
e_M[n] = (1 - b[n])|s_M[n]| + b[n]e_M[n - 1]
\]

out of the corresponding sequence \(s_M, M \in \mathcal{M} = \{C, W, G, T\}\). (Refer to Figure 1 for the meaning of the C, W, G, and T.) As in previous research on synthetic footsteps, the envelope following parameter \(b[n]\) was set to 0.8 when \(|s_M[n]| > \epsilon_M[n - 1]\), and to 0.998 otherwise [5]. By following the input when its magnitude is greater than the envelope, and by in parallel allowing a comparably slow decay of the envelope itself when the same magnitude is smaller, this setting ensures that amplitude peaks are tracked accurately, while leaving spurious peaking components off the envelope signal \(e_M\).

By dividing every sequence \(s_M\) by its envelope \(e_M\), we computed signals \(u_M = s_M / e_M\) in which the temporal dynamics was
removed. In other words, we manipulated the footstep sequences so to have stationary amplitude along time.

What remained in u_M was a spectral color, that we extracted with a 48th-order inverse LPC filter h_M^{-1} estimated in correspondence of those parts of the signals containing footstep sounds. Using this filter order, if training the model using one footstep then we could not detect differences between the original sound and the correspondingly resynthesized footstep. We emphasize that the resulting LPC filter in any case estimated one single transfer function, independently of the number of footsteps taken from the original sequence which informed the model. Since we trained the estimator with the entire sequence, the resynthesized sound had a slightly different color compared to any other footstep belonging to the original sequence.

In the end, for every material M a highly realistic version \tilde{s}_M of the original sequence s_M could be resynthesized by convolving digital white noise w by the “coloring” filter h_M, and then multiplying its output, i.e. the synthetic version \tilde{u}_M of u_M, by the envelope signal e_M:

$$\tilde{s}_M[n] = (w * h_M)[n] \cdot e_M[n] = \tilde{u}_M[n] \cdot e_M[n]. \quad (2)$$

This technique draws ideas from a family of physically-informed models of walking sounds [5, 7]. In the meantime it provides a simpler, more controlled resynthesis process avoiding stochastic generation of patterns as in such models. In our case, the silent parts of the four envelopes were tailored to generate synthetic sequences having identical walking tempos. This simple manipulation ensured seamless mutual exchange of the envelopes among sequences, as explained in the following.

Sixteen stimuli were created by adding twelve hybrid resyntheses to the native stimuli \tilde{s}_C, \tilde{s}_W, \tilde{s}_G, and \tilde{s}_T. Every hybrid stimulus \tilde{s}_{M_1,M_f}, $M_1, M_f \in \mathcal{M}$ was defined as to account for the spectral color of material M_f and the temporal envelope of material $M_1 \neq M_f$:

$$\tilde{s}_{M_1,M_f}[n] = (w * h_{M_f})[n] \cdot e_{M_1}[n] = \tilde{u}_{M_f}[n] \cdot e_{M_1}[n]. \quad (3)$$

For each material M_f, we checked that all hybrid temporal manipulations using $M_1 \neq M_f$ did not notably alter the spectral information of \tilde{s}_{M_1}, and thus its original color. In fact, an inspection of the spectra $E_M(\omega)$ of the various envelopes made by Fourier-transforming e_M, i.e., $E_M(\omega) = \mathcal{F}\{e_M(\omega)\}$, shows that they all have a comparable spectrum. More precisely, all spectra E_C, E_W, E_G, E_T exhibit similar magnitudes, that are shown in Figure 2 after removing the respective dc component for ease of inspection. This means that the spectral differences in $\tilde{S}_{M_1,M_f}(\omega)$ caused by multiplying \tilde{u}_{M_f} by e_{M_1}, that is,

$$\tilde{S}_{M_1,M_f}(\omega) = F\{\tilde{u}_{M_1} \cdot e_{M_f}\}(\omega) = (\tilde{U}_{M_f} \ast E_{M_1})(\omega), \quad (4)$$

are substantially independent of the material, hence almost identical to those introduced in \tilde{s}_M by its own envelope e_M.

Symmetrically, the temporal artifacts which are caused by hybridization between two different materials can be considered minor. In fact, because of the LPC design methodology, all filters h_C, h_W, h_G, h_T do transform white noise into a stationary signal independently of the material.

3.4. Protocol

To become confident with the auditory stimuli and the graphic interface used in the experiment subjects trained for some minutes before starting an individual session, by selecting and playing each one of the original sequences s_C, s_W, s_G, s_T for several times. Figure 3 shows the four graphic buttons exposed by the interface, enabling subjects to play the corresponding original sequences during training.
Each individual session consisted of 192 trials, obtained by randomly playing each one of the sixteen synthetic stimuli for twelve times. At each trial the subject listened to a stimulus, and selected one material by clicking the related button in the interface. When the button was released, the screen froze for two seconds and changed color to inform subjects of the conclusion of the trial. After this short pause, a new trial was performed. The four buttons randomly switched position at each trial. Subjects could temporarily stop the experiment by clicking the pause icon ‘||’ located in the middle of the screen, whenever they wanted to take a short break among trials. It took approximately 45 minutes for each participant to complete the session.

4. RESULTS

For each participant, percentages of selection for the four materials C, W, G, T were analyzed. We considered the fraction of participants who showed significantly correct (random is 25%) material recognitions from the four synthetic stimuli \tilde{s}_C, \tilde{s}_W, \tilde{s}_G, \tilde{s}_T, across the twelve repetitions. The critical value (with $\alpha = 0.05$) of the one-tailed binomial test $\text{Bin}(12,0.25)$ is 7 trials (i.e., 58.33%): only the participants with an auditory recognition of the original materials higher than 58.33% were included in the analysis. After this check, 16 participants were considered for the recognition of dried twigs, 15 for gravel, 16 for wood, and 10 for concrete.

The results of the analysis are presented in Figure 4. In these plots, a bar exhibiting a low percentage means that the correspondingly substituted information (either temporal or spatial) is important for the recognition of the original material, represented by the leftmost bar in the same plot. The difference from random percentage (25%) was tested using one-proportion (two-tailed) z tests.

By aggregating the data, we also evaluated the auditory recognition of material categories. Again, this analysis was conducted using data from participants exhibiting an auditory recognition significantly higher than random concerning the two sets of stimuli accounting for the respective categories (24 trials for each category). In this case, the critical value (this time computed by a one-proportion/one-tailed z test to account for the larger number of trials, with $\alpha = 0.05$) is 10 trials, corresponding to 41.67%. All the participants passed the check.

The results of the new analysis are presented in Figure 5. For the different percentages of selection, the difference relative to ran-
5. DISCUSSION

The histograms for concrete and wood in Figure 4 show that subjects tolerate swapping between the temporal features of C and W, both belonging to the solid category, conversely the substitution in the same signals with temporal features extracted from aggregate materials (i.e. G and T) harms the recognition. This result is in favor of the initial hypothesis. The effect of spectral manipulations of C and W is more articulate. In this case the hypothesis is essentially confirmed with wood, whose distinctive color cannot be changed using any other spectrum. In parallel, subjects are tolerant to substitutions in C with spectra from aggregate materials. This greater tolerance may be due to the basic lack of distinct color of concrete floors, especially for listeners who usually wear rubber sole shoes such as snickers (indeed the majority of our sample). The same conclusion finds partial confirmation by Figure 6 which, in the limits of the significance of its data, shows greater...
confidence by subjects in recognizing aggregate materials.

The histograms in Figure 4 regarding gravel and twigs partially support the initial hypothesis. Time swaps between G and T are tolerated to a lesser extent compared to solid floors. Like before, substituting the temporal features of solid materials in an aggregate sound is not tolerated. Spectral substitutions are not as destructive as they were for solid materials, especially in the case of gravel. The worst situation is when the spectrum of W is substituted in T, again probably due to the distinct color that wood resonances bring into the sound.

Figure 5 would further support this discussion. In fact, in spite of the low significance of the data from time manipulations (i.e. black bars), it shows that subjects are primarily sensitive to temporal substitutions between solid and aggregate materials. In parallel, spectral changes are more tolerated during the recognition of aggregate material compared to solid floors.

6. CONCLUSIONS

The proposed experiment has confirmed that solid and aggregate floor materials exhibit precise temporal features, that cannot be interchanged while designing accurate walking sounds. Within such respective categories, spectral color represents an important cue for the recognition of solid materials, conversely sounds of aggregate materials seem to tolerate larger artefacts in their spectra.

Current interfaces operating at ground level, capable of conveying augmented sensations of material properties over otherwise neutral floors, exist in form of active tiles [8] and instrumented shoes [9]. Such interfaces sense the force exerted by a walker over the ground, and instantaneously react by providing auditory and vibrotactile feedback to her or his feet through the action of specific actuators.

The proposed model has been conceived as an alternative to existing real-time physics-based synthesizers onboard those interfaces. Once connected to the physical components realizing their input and output stages, it could easily generate interactive walking sounds by controlling at runtime, through the force sensors and depending on the simulated material, the attack time and shape of the temporal envelope signals, and consequently the amplitude of the LPC-filtered noise forming the auditory and, possibly, also the vibrotactile feedback.

7. ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under FET-Open grant agreement 222107 NIW - Natural Interactive Walking.

8. REFERENCES

