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SUMMARY

In the questfor finding renewable and sustainalsleurces of energyhptovoltaics
(PV) is potentially one of the bestnewable energy technology due to the abundance of
solar eergy and the potential for PV to have the lowest environmental impact when
compared with other energy sourcAsmongst existing and emerging PV technologies,
and despite currently achieving power conversion efficiency (PCE) values that are lower
than othe thin-film PV technologies, organic PV (OPV) is very attractive because
estimates suggest that a mature OPV technatogid yield thdowestenergy payback
times (EPBT) and greenhouse gas (GHG) emissibal otherrenewable energy

Source.

Transformabn of OPV from laboratory into economically feasible products, requires
fabrication of modules. Achieving modtllevel PCE values that are comparable to
values displayed by single cells is a critical challenge due to the impact that +ievdlile
PCE vales have in reducing the levelized cost of energy (LCOE) of photovoltaic (PV)

technologies, and consequently on the economic viability of solar energy.

A current paradigm of PV technology is that the PCE values displayed by commercial
PV modules are typitlg smaller than 80% of the values displayed by single PV cells.
This problem is particularly severe in tHilm PV technologies where challenging
tradeoff exists between minimizing PCE losses at the mdeué and increased
fabrication cost due to theeed for cosintensive techniques such as lithography, laser

patterning, etc., that seldom can be scalp@conomically to large areas. This tradeoff

XX



arises as direct consequence tife conventionaktonfiguration used to connect PV cells
in seriesthesoc al | ed A s t.oModules wghethrosroanfiguration inherit two

major loss mechanismshading angbarasitic resistandesses

In this dissertation, a new module geometry is proposed. This module geometry has
the potential to alleviate the imsic tradeoffs introduced by use of the stge®metry
and has the potential to be adapted to scalable anéftiogtnt alladditive fabrication
processes since it avoids patterning of the active |®mrelopingthe necessary
techniques to pattern fational organic materials for fabrication this novel OPV
moduleandperforming theoretical and experimental validation of the proposed structure
through modeling and fabricatipare the primary objectives of this dissertatibhe
realization of this aw novel module architecturelies on developing the ability to
fabricate OPV cells with opposite polarities that display comparable performance. The
selection othe right interlayerso tune thevork functionof electrodes to enable
electrons and holds be collected on adjacent areas of one electrode was a critical

component towards this goal.

The proposed OPV module geometry endlibe demonstration of polymeric
photovoltaic modules with unprecedented performafoell and 8cell modules display
fill -factor (FF) and PCE values that are comparable to the values displayed by constituent
subcells. Fabrication of aimkjet printed OPV module is also demonstrated,

representing a significant step towardsdheadditive fabrication of OPV modules

XXi



CHAPTER 1: INTRODUCTION

1.1 Energy Consumption and Sustainability

Environmental sustainability and growing global demand for energy, due te socio
economic developments, aamongthe most challenging problems of this centiry?2].
According to the U.S. Energy Information Administration (El#hg world energy
consumption will grow by 56% by 204@-om 520 to 820 quadrillion BtUg]. These
estimations are based on certain assumptguth as continuous growth in world
economy, etc. that might notldan a long termnonedheless, fossibasedesourcegoail,
coal, natural gaggret o d angirdseurce of energyin all majoreconomiesas well as

developing countries around the world

Fossitbasedenergy sourceare noarenewable andrhited naturalresourcesthe
continuaus growth in energy demanddizeenraisng concerns abouhedepletion of
these conventional sources of enemgcelerating the need for finding alternative
renewable sources of energy to satisfy the growing global demand. In adtigise of
fossikbased energy sources has resulted in the emission of unsustkavablef
greenhouse gases into the atmosplea@ing toconsiderable impacts upon the

environment by affecting the climate, water, land and wil{#té].

1.2 Renewable Energies

Thenonrenewable naturef fossikbased energy sources, thecreasinghigh-cost

andconcerns ovetheir environmentaimpact,have created globalmomentum tdind



environmentafriendly sources of energyn this regardthere has been an intereféort

to find efficient ways to utilizeenvironmentally sustainab&murces of energknown as

frenewable. These enewableesources of energgre those that can be repished by

nature sunlight, wind, and geothermal heat Hre most widely usedxamplef such

resourcesi Renewabl e energy technol ogieso are th

reliable forns of energyi mainly electricityi from renewable resougs.

Shifting from traditional fosstbased energies to renewable alternatives will help us
meetthe goalsof reducing greenhouse gas emissj@nd ensuring reliable and efficient

energysources for the futurg].

1.3 Photovoltaics

Quest to find viable alternativs®urces of energy has madepvoltaics (PV)
potentially one of the bestnewable energy technologids 8-10]. Photovoltaics is the
direct conversion of solaadiative energynto electricity usng semiconducting

materials

A.E. Becquerel is credited fordhdiscovery othe photovoltaic effect in 1839 as
result of his studies on liquid electrolyfdd]. This discovery attracted a lot of attention,
and 40 years later, in 1876, the first saltdte photovoltaic device basen selenium
was reported by W. Adams and R. Day. Later in 1883, C. Fritts made one of the first
large area seleniuased solar cells withRCEof about 1%. Although all the early
work in photovoltais were essential ithe overall development of the phefaitaic field,
it was not until 1954 when D.M. Chapamd colleagueat Bell labs reported the

invention of the first practical silicebased single+n junction solar cell witta PCE of



about 69412]; significantly improving the outlook of photovoltaics afeasible
technology[13]. Tablel summarizes majquioneer work irearly development of the

photovoltaic technologjl14].

Table 1: Chronological list of pioneer work in development of photovolte

technology[ 14]
Scientist and innovation Year
Becquerel discovers ¢hphotovoltaic effect 1839
Adams and Day notice photovoltaic effect in selenium 1876
Planck claims the quantum nature of light 1900
Wilson proposes Quantum theory of solids 1930
Mott and Schottky develop the theory of sedidite rectifier (diode) 1940
Bardeen, Brattain and Schockley invent the transistor 1949
Charpin, Fuller and Pearson announce 6% efficient silicon solar cell 1954
Reynolds et al. highlight solar cell based on cadmium sulphide 1954
First use of solar cells on an orbiting satelfif@anguard 1) 1958

Compare to fossibased resources, solar energy provides compelling environmental
benefits.Solar energy is abundant (potentially infinite), safe, free tla@ghotovoltaic
process used to convert light into electrigguses ndired water or air pollutiorduring

the conversion process

In recent years, the global PV capacity has been steadily increasingumititative
installed P\s reported to be 134 GW globallgnd araverage growth of 38 GW just in
year 20132]. Therefore alongside other renewable energy technologies, photovoltaic

technologyis expected thhave a considerable share in the future global energy portfolio.



1.3.1 Solar Energy

The source of sunenergy is a continuous nuclear fusion reaction at its cglipr
which heats the surface of sdoseto 6000K. Thishotsurfaceaccor di ng t o Pl a
black body radiation layradiates a continuowspectum of electromagnetic radiation
(seeFigurel-1). Theradiant power per unit area perpendicular to the direction of the sun
outside the eartho6s atsunaistanteeaconstaatadngat t he
value 0of1.353 kW/ntandr ef erred to as fdsol ar <c[@Shstanto
As the sun radiation passes through the atmosphere, dttggisated deito scattering

and absorption and its intensity and spectral composition changes.

uv EVisibIei Infrared

Sunlight without atmospheric absorption (AMO)
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Specteral irradiance (W.m=2.nm™)
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Figurel-1: Spectral distribution of sunlight AM0 and atAM1.5 (i.e., sun at
48.19° zenith angle) radiation

The magnitude of thiattenuabn depends on how far sun light travels through the

atmosphere. The minimum pd#ngthis when the sun is directly overhead. The ratio of



any actual path | ength to this minimum pat

defined by:

0 Equationl

Whered is thezenith anglegnde between the overhead and sWwsing this
definition, AM1.5 (i.e., sun at 48.19° zenith angle) is the most widely used standard test
condition for measuring solar cell performance. At this condition, the total power density

atthee a r surfalteis 1 KWV/m?[15)].

It is worth to mention that the spectral compositad sunlight is far more
complicatedhan what is presented hetlegrefore for an idepth and comprehensive

discussion reader should consult other resojdces7].

1.3.2 Solar Cell Operation

A photovoltaic cell, also known as solar gglereon will used interchangeahlig
the building block of thehotovoltaictechnologyIn a very simplifieddescription a
conventional inorganic solar cédla twoterminal pn junction devicecomposed of
photoactive pype and ARype semiconducting materials (degurel-2-a). The
fundamental operation mechanisms and governing equations of this device is defined by
crystalline semicoductor physics. The nearly perfect crystalline structure creates well

defined energy barsgdand highly delocalized electronic excitatiqa§].

When light illuminates a solar celhgident fnotons with an average engigrger

thanthe semiconductoband gapenergycan create an electrdrole pair by exciting



electons from top ofthe balance band to the bottom of the conduction i{phdto

excitation) These free charges then move toward their favorable energy levels through a
combination of drift (field driveimn depletion regiopand diffusion (gradient driven n-

and p regiong, anduntil finally reach to the terminals (electrodes) of the de(see
Figurel-2-b). The combination photgenerated voltage and current result in an output

power for a PV cell

a) b)
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top electrode light Neutral ~ Depletion
n-region region
|
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I Depleti
pletion
o region
Voc i bottom
----------- ---- NS N electrode
incident | | 7777 TTTC
Neutral light
p-region

- Neutral
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+ bottom electrode priee

Figurel1-2: Simplified principle operation of an inorganic solar cell, a) photc
generatiorof electronhole pairs inside the depletion region, b) energy leve
diagram (norequilibrium) showing the generation of electioole pairs inside
the spaceharge region. Charge carriers then swept away toward their favo
energy levels and accumulatethe electrodes. Small arrows represent the
direction of free charges movement.

1.3.3 Equivalent Circuit

Thecurrentvoltage characteristiasf a solar cell can be described using an

equivalent circuitlepicted in Figure &here the DC current source reets the



photocurrent densityd¢n), the diode represents an ideal solaricethedark Jois the
reverse saturation curremtjs ideality factor), the shunt resistan&®)(represents

leakage, an®sis the series resistand& andRs are referred tas the parasitic

resistances.
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Figure1-3: a) Equivalent circuit of a solar cells with total active area equi
A, b) theJ-V characteristic of a solar cell at dark and under illumingti@h

The operation of a solar ceflamely itsJ-V characteristic in the dark and under
illumination as depicted iRigure1-3 with its equvalent circuit is analytically described

by the following characteristic equation which is based 8hockley diod€18]:

. p .. W UGYO , w So ¥ Equation2
S N — Q — —=
O vy Qg PV g iwa

WhereA is the effective area of the cdllis the Boltzmann constank,is the device

temperatureq is the elementary charge, amds the ideality factor.



1.3.4 Performance Metrics

The typical parameterssal to characteriza solar celbreextracted from thé-Vv
characteristic curvander illumination. These parametarg the opeitircuit voltage
(Voc), shortcircuit current Jsg), and the maximum poweensity(Pmay [19], asshown

in Figurel1-4.

o
—

Power, P

—
—

Current Density, J

J ST \Light
Voltage, V

Figurel-4: Power and current density as a function of voltage for a solar c
under llumination.

TheVoc is the maximum extractable voltage from the solar cell under
illumination with zerecurrent flow.Voc is defined bythelevel of illumination and the
properties of the photoactive semiconductorsiaradso defined byhedifference
between quasi Fermi level energdslectrons and holes the ntype and gype

semiconductoregions respectively

The Jscis the maximum current density drawn from a solarwadler

illumination. Jscis a direct representation of phegeneratedwrent in a solar cell.



Analytically, the VocandJsccan also be calculated using the following expressions:

e QY 0 W . :
—0a ¢ — — ho Equation3
® n P V] P U YO
, P , s D SYO v, Equation4
0 v U L Qw oy P hoTw a

Another important performance metriglefill factor FF), a normalized

parameter that is calculated using tbkofving expression:

® O :
00 Equation5

w O

WherelmaxandVmaxare the current and voltage at which the maximum power is

generated (also shown figure1-4).

The power conversion efficiency (PCE), the most important performance

indicator of a solar cell, is calculated using the following expressions:

. w © w O w U

_ "0°0 00 Equation6
8

WherePy is the incident poweMat), andl is the irradiance of the incident light

(Watt/cn?).



1.3.5 Existing Technologies

A variety of different semiconductor materials and deaichitectures hae been

usedover the years to produce solar cais it is shown irfrigure1-5 [20].
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Figure1-5: Existing PV technologies and their corresponding efficiency values (f
NREL [20])

The classificationsised in Figure 5are mainly lased on type of semiconducting
material and solar cell configuratiased A list of most recent single solar cells and
moduleg(an array of connected single cefigym different PV technologies with record

high efficiencies are shown in Table 2 (adodtedh referencg21]):
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Table2: Confirmed terrestrial single cell efficiencies measured under globe
AM1.5 spectrum (1000W/f at 25°C

Classification Single cell Module
Technology Material Efficiency (%) Note Efficiency (%) Note
Crystalline Si 25.6 Panasonic HIT 22.4 SunPower
Thin-film a-Si 10.2 ASIT
Thin-film CIGS 20.5 Solibro 17.5 Solar Frontier
Thin-film CdTe 21.4 First order 17.5 First Solar
Emerging Dye 11.9 Sharp N/A
Emerging Organic 11.0 Toshiba 8.7 Toshiba
Emerging Perovskite 11.1 Mitsubishi Chemical

As it is shown in this table, efficiencies largely vary between different PV
technologies. It islso evident fromhis data that between a single solar cell and a solar
module there is a considerable drop in efficiency. This issue will be discussed in more
detail inthefollowing chapter. But at &rst glance crystalline silicon with highest power
conversion efficiency, both for single cell and module, may seem the best stddtign

for thePV industry.

There is no doubt that efficiencyanimportantmetric, butfrom economical
perspectivethere are also other components tattribute tathe overall cost of a

technology[22].

Levelized cost of energy (LCOR an economic metric representing tost in
dollars per kilevatt-hour ($/kWh) to build and operate an energy generating system
(mainly electricity power plantg)ver an assumed financidetime and duty cycleKey
inputs to calculating LCOE include capital costs, fuel costs, fixed and variable operations

and maitenance costs, and financing cd23, 24].
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LCOE is widely used to make comparison between diffexeagy generating
technologies Figure1-6 shows an example of such calculations reported by the U.S.
Energy Information Administration (EIAh their 2014 annual repdi8]. For PV
technologyto be economically feasible,must reach to a LCOE that is comparable or

lower than LCOE of fossibased energs[25].
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Figurel-6: LCOE of differentrenewabldechnologies

However from environmental sustainability standpoint, LCOE does not consider or
associate any cost for activities that harm the environment, such as greenhouse gas
(GHG) emismns. Inclusion of such environmental aspects in the LCOE calculations can
drastically change the competitive scene for all renewable energies in their economic

battle with traditional fossibased sources of energy.
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The energy payback time (EPBT) of areggy generating system is another relevant
metric for cross comparison between different technologies. EPBT is the total time
(typically expressed in year)at an energy generating system requires to generate as

much energy as was consumed for produatibthat systeni26, 27].

These all said, the lack of clarity in reporting assumptions, justificationsemnded
of completeness in LCOE and EPBT calculations, have created contradictory results and

a lot of debates over the validity and comprehensiveness of such asse§gn2éhts

This dissertation is not going to treatdeeconomic assessment tapic details.
Nonethelesshesides the importance of addressing key cost items in aforementioned
LCOE, it is critcal for PV technology to find ways to increase the efficiency, and reduce
the cost of material and manufacturing, for it to becoomapetitivealternative to fossil

based resourcgg2, 23, 28].

In the following sectioawe briefly introduce angurveythreePV technologies
crystalline silicon, thiffilm, and energing PV This section is mainly focused on the

advantages and associated challenges of each technology.

1.3.5.1Crystalline Silicon PV

Crystalline silicorbased solar cell ihe first generation anthe most maturand
widely used PV technologono-crystaline and polycrystalline are the main two

classes of crystalline silicarsed to produce these PVs

Mono-crystalline siliconPV accounsf or 8 0 % s wthl PV roadketdisplaying

singlecell PCE valuesf 25%][29]. These solar cells are crystalline silicom punction

13



that ae manufactured frorasingle crystal ingot usinthe Czochralski methogil4, 15].
Although this technology offe highPCEvalues, it also has a high associated
manufacturing costdecauseachievinghigh yields and reliable slar cellsrequires
highly specialized facilities and virtually defdcee fabrication processésat are very

energy intensivewhichrequres considerableapital investmeist

Polycrystalline solar cell technology offers lowRCE values, typicallipelow 20%
[30] but allows for reductions in theost of manufacturingompared to monrorystalline
silicon solar cell§14, 15, 31]. Although siliconbased PV solar cellemain the dominant
player in the PV market due to its higfficiency, ther fabricationprocesseare very
complex and energyitensive whiclover the years has made tustof-energy
produced by this technologypically uncompetitive with conventional sources such as

fossil fueb.

Although in recent yeargiovernmental subdies and incentivelsave madé¢he cost
of-electricity of silicon solar cellsompetitive with conventional sources of enengy
certain marketdabrication complexiesand associated casif silicon PVlead also to
long EPBT of a few yearsandundesirély high GHG emissiong 25, 32-34], making
themaless appealintpng-term solutiorfrom a sustainability perggtive. These
disadvantages of silicon PV are the main reason for the research community and industry

to explore alternative materials for solar energy generf3ign

1.3.5.2Alternative PV Solutions

Thin-film solar cells are the second generation of photovoltaic technology. These

devicesarecomposed ofhin layers of semiconductor materials stacked on top of each

14



other Themain objective of the thHfilm technology isto reduce the cost of P&ystem

by lowering the cost ahaterias usecand manufacturingfhinner films, less expensive
deposition techniques (such as sputtg, ink printing and electroplatingand possibility
scalinginto largeinexpensive substratese the major advantages of this technology over
conventional crystalline silicof86]. Leading thinfilm solar cell technologies with
commercial importance aramorphous silicona-Si), poly-crystalline silicon (polysi),
cadmium telluride (CdTe), and variations of copper ind{gath as copper indium

gallium selenide: CIGS)

Thin-film photovoltaicshave beetess efficient than crystalline silicaounterparts
[14]; howeverthey havethe potential of leadingtsignificantlylower costproduction
costsand lower EPBT and GHG emissiofi®day,the main focus of the research in this
field is on processing optimization to improve the performance and Vieiial-
generatiorsolar cellsare made frondifferent clasf semiconduaghg materials Dye-
sensitized solar cells (DSSC), and organic solar cells (@&@xamples of this class of
photovoltaic devicethat use light absorbing organic semiconducting compound
Amongst all the alternative PV solutions, organiotoholtaics (OPV) is the most
promising one because it material diversity and low cost manufacturiid®, 37]. The

focus of thisdissertations onthis group of photovoltaic materials

1.4 Organic Photovoltaics

Organic photovoltaicOPV)is aclass of PV devicelsased ortonjugatedrganic
moleculesandpolymers The strongpoints and major advantages of OPV otresr

existing technologies are in two areas: materials and manufacturing.
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From material perspectiy®PV uses a wide véety of synthesized aterialsthatcan
be processed in air, at room temperature,car@cyclable substrates and mater[&8
39]. Theimportance of this aspect of OPV is that fiysical ancchemical properties of
the aganic semiconductors such as energy lewglcal absorptionsolubility, etc.can

be tailored by modifying the chemical structure of the moled@¢ls

High degree of disorden organic semiconductoedong with weak electronic
coupling (wll be explained later) and electretbration couplingresult in chargearrier
mobility values- how easy charge carriers can move in the bulk of material under applied
electric field- with orders of magnitudes lower than inorganic semicondufi@sOn
the other handrganic semiconductofsave a relatively strong absorption coefficients
usuallyin the range ol (®® cm?. . This featuregeneraly leads toOPV devices with very

small thicknesses<(200 nm)[40Q].

Fromamanufacturing perspectivééexibility on tailoring the material properties
enables utilization dfigh throughput, lowmateriatlconsuming fabrication methods such
as altadditiveprinting[41, 42] and roltto-roll printing [43, 44]. To illustrate the
difference, some studies suggest thatdtild takeoneyear for a silicorbased
manufacturing to make the same total area OPV systems fabricated onedby by an
industrial screen printingd2]. In a similar manner, the EPBDuld scale down from a

few years foisilicon PVto a few days for OPVs.

1.4.1 Evolution of OPV

The very first organibased photovoltaic effect was reported in 1958 by Kearns and

Calvin[45]. Their device was made of a magnesium phthalocynine (MgPh) disk coated

16



with a thin film of airoxidized tetramethyp-phenylenediamine (TWD) with maximum
output voltage of 200 mV and power output &fl82 W [45]. However, active interest
in the research community did not really start ub@86 whenTang, et al. reported a
single hetergunction organic photovoltaic cell with a power conversion efficieof

about 19446)].

Such a major improvement wagesult of thelevelopmenof highly-pure
synthesized small organic molecules as well as advancements in physical vapor
deposition (PVD) techniques at room temperaturende a r | y [1B9Sh€edhen,
and mainly in last ten years, the field of organic photovoltaic has progressed significantly
as apotential candidate for affordablenewableenergyproduction[47].The following

table is a summary gifrior-art reports on OPV single cells with the highest P@kEas:

Table3: The highest PCE values for OPV technology reported in literature until 2

Device type Jsc(mA/cm?)  Voc (V) FF (%) PCE (%) Activearea Reference

(cr)
Polymer Single junction 175 0.75 70 9.2 0.16 (48
Tandem 10.1 1.53 68.5 10.6 0.1 [49
Small molecule Single junction 155 0.8 724 8.94 0.05 [50
Tandem 6.2 1.97 54 6.6 NA [51]
Polymer Single junction 8.9 0.68 57 3.5 1 [33]
processed in air
on flexible Tandem 511 1.02 35.8 1.3 1 [52]
substrate
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1.4.2 Organic Semiconductors

To understand the operation mechanism of organic solar cells, it is necessary to
understand theundamental physics and chemistry of organic matei@iganic
semiconductors ar@group of carborbased material@ith optoelectronic propddsthat
originate from carbon atomic orbitals asgkecificbondng with other atoms, andan be

synthesized anchodified using chemistry techniques.

Organic semiconductoereclassified as polymers small moleculesSmall
molecules arehemicalcompounlswith specific molecular weightvhile polymersexist
in a form of long chains of repeating molecular-suiits, without a specific (weH
defined) molecular weighT.o make organic thifilms, polymes are typically solution
processed (i.e. spitoating) while small moleculeompoundg can either be solution

processed or thermally evaporated.

In contrast to crystalline silicon where the nearly perfect crystalline structure creates
a welldefined energy band formation and highly delocalized electrogita¢ions[15],
solid-state organic thifilms contain disordemwith weak interactiosibetween adjacent
molecules, and highly localized electronic excitations. Therefore packing of the
molecules and morphology of the films have vital effect on the electronic prop8aies
53]. This makes theptimization of fabrication ocessinga critical stepto makeefficient

organic devices.
1.4.2.1Atomic Orbitals

The optoelectronic properties @fganicsemiconducta@aredetermined byhe
electronic configurationsf the atoms and molecules that form the film and by the

electronic couplig between them. Such a description on a molesgkeis the realm of
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guantum mechanic¥he Schibdinger equatiots a partial differential equation that
describes how the wasanction of a physical system evolves over tii@elutiors of the
Schibdingerequation for an electron imatom provideelectronwavefunctions and
allowableenergystates. These allowable energy states for an electron around a nucleus
are also calledatomic orbitalsd These atomic orbitals have a specific spatial
distribution,energylevel, and orientationFigure1-7 showss andp orbital. As it is

shown, thes orbital has a symmetric spherical shape, wheregs dhleitals have a

dumbbelishape.

~

Figurel-7: Representation of andp atomic orbitals.

1.4.2.2Bonding

In aneutral carbormtom, there are six electrons representedsz2s12p?. The
preceding numeric | abel s, 1 and 2, are cal
(conventionally showiby n). This number corresponds to the level of gyenf that
orbital. The hidper the quantum number of an orbital, the higher the energy of that
orbital. An orbital with the highest principal quantum number in an atom is the furthest

orbital from the nucleu&lso called outer shell)
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Out of six electronsf carbon atomtwo are n thels orbital, and the othefour in
the 2s and2p orbitals. Thesefour electrons in the outermost orbi(al= 2), 25> 2p?, are
called valence electrormdare involved irforming covalent bondwith other atoms
Covalent bond is a chemical bondingahich atoms share a pair of valence electrons

(one electron from each atom)

Considering the spatishape andrientation, the four valence orbitals of carbon

atomare: &, 2px, 2py, and .

In the case of methane (G)Hvalence electrons of carbon cdapwith valence
electrons (&) of four hydrogen atomand form fourcovalent bong, in whichone
electronfrom carbon and onelectronfrom hydrogerare sharedAccording to
Ahybridized orbital wvehdenticalwingleWwdndswithoés r bon at
atoms és isthe casein CHy), acarbon 2 orbital hybridizes with three D orbitalsto form

four equal(in terms of shape and energyy hybridized orbitalg39].

v

7|4‘ ~ sp?hybrid orbitals /K
OO g ® 0
P2, Plm Y70

2s =

Encigy

Figure1-8: Representadn of 2sand 2 orbital hybridizationn methane
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A carbon atom can undergo another kind of hybridization when it binds to another

carbon atom such as in ethylene.

In a case of ethylenejherecarbon atoms bonds to threthersatoms, the 2orbital
and twoof the2p orbitals px andpy) are involved in the creation of three new orbitals
calledsp? hybridized orbitalsAfter sp? hybridization,a singleremainingun-hybridizedp
orbital (p,) staysperpendicular to the plane containing gpéorbitals(shown in
Figure1-9). These two urhybridizedp; orbitals can overlap, and form a-called” -
bond. Therefore the two carbon atoms will hawewalentdouble bondfour electrons

are shared between two atorne)nposed of oné-bond and oné-bond.

@ @
@@ @Q

Figure1-9: Schematic of-bond ando-bond in ethylene (&4).

The strength of &-bond is much greater than that of-aond; consequently, the
electrons forminghe " -bond (known as-electrons) are less tightly boutwnucleusand

more delocalized ispace
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1.4.2.3Conjugated Molecular Systems

Moleculeswith a series omultiple alternating single and doubb®nds arealled
conjugatedFor example inpolyacetylene (R) each carbon on PA backbone uses three
hybridizeds? orbitals and form threg-bondwith one hydrogen and two other carbons.
All p;orbitalson the other hanstay normal to the-bondplane and overlagrhis

overlapleads tdong rangedelocalization bthesep-electrons across thHeA chain

Figurel-10: Schematic ok-bond ando-bond in conjugated polymer
polyacetylene (PA).

These loosely bound-electronsn organic systemsre the origin oftheelectrical

and opticapropertiesn organicsemiconductors

1.4.2.4Molecular Orbitals

As we discussed the covalent bondinew two atoms get close, their atomic
orbitals overlap to form a covalent bond. However, the two shared electrons cannot have

the same energy levels (Pauli exclusion principle) therefore the two oveflafmeic

22



orbitals split into two new different orbitals (in terms of energy and shape) called
Amol ecul ar orbitalso (MOs). These LiBGrs ar e
combination of the wave function tio atomic orbitalgenerates pair aholecular

orbitals, one with an energy level below the original atomic orbital level, called bonding
molecular orbital, and one with a higher energy level, calledoammuing molecular

orbital. For examplehie overlap of théwo p; orbitals oftwo carbonatomsin ethylene
(Figure1-9) results inonebonding () andoneantibonding ( ¥ orbital. When there is

no perturbation the two electrons (opposite spins) reside in the bghiliorpital which

has a lower total energy (stable). Therefore since the bondiogbftal is thefilled with

the valence electrons (electrons in the outer shell with the highest energy), in this two
atom system, this is callede highest occupied molecular orbital (HOMO). The same
concept holds for the artonding ( ¥ and it is called the lowest aocupied molecular

orbital (LUMO). The HOMO and LUMO are known as the

All discussed up to this point was basedaos-electron wavdunction In a real
casewhat is measured upon excitatipanization) is the energy difference betwethe
N-electron ground state of the molecule andNkedectron excited stafghe N+1-

electron ionized sta¢54].

For thepurpose of calculations, it Boweverassumed that the HOMO level is minus
the energy of the ionization energy (IE) and the LUMO is minus the energy of the
electron affinity (EA)[54]. lonization energy (IEylefined aghe minimum amount of
energy required to remove an electrand electron affinity (EA) defined as the amount
of energy releaseoly adding arelectronto a moleculasystemThe difference between

these two ioftencalledthetransport gap diundamental gap:
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0 ‘00 08 Equation7

The frontier orbital levels can be estimated by using a number of spectroscopic
techniqus, such ag-ray photoemission spectroscopy (XPS), ultraviolet photoemission
(UPS),and inverse photoemission spectroscopy (IPES) orfitms. Also
electrochemical analysis such as cyclic voltammetry (CV) in combination witNigV

optical absorptiomls commonto measure the frontier molecular orbitals in ionic solution.

In molecular systems, optical géfopt) of a molecule (lowest electronic transition
due to absorption of single photon) is substantially lower than the fundamentahgap.
reason ishattheexcitedelectron andhe correspondinfole are electrostatically bound.

This binding energy(Es) can be calculated using the following formula:

0 0 0 Equation8

1.4.2 5Excitons

The excited kectron and its associated hole are initially bound to each other through
columbic forces. This bound state[3f an
53]. In "-conjugated molecules, the exciton binding energy is typically on the order of a
0.1- 0.5 eV. This high exciton bonding energy is maimhated to the low dielectric
constant ) < 5) of these materialthe electrorelectron and electrevibration
interactionsIn contrary, in conventional crystalline inorganic semiconductors with a
well-defined crystdine structure, thexciton binding eergyis in the order of 0.0&V

which is much lower than thermal energy at room temper@u025 eV). Therefore
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optical excitatiorevenat room temperaturean result in freearrier formatior{40, 47].

The schematic of excitons in crystalline vs. disorders system is illustraftegie1-11.

(@) (b)

Figurel-11: Schematic representation of exciton formation in (a)
perfectly ordered crystalline inorganic material, and (b) in disorder
organic material.

Excitons are aimtermediate species arganic photovoltaienergy conversion
processbut theirhigh bindingenergyimpedeghe formation of freeeharge carriers

Thereforeadriving force in required to break theimo freecharge carrierf4Q].

A dénoo materialhaslow HOMO energy (lowionizationenergy: 15 andis
suitable for holenjection/collection from high work function electrodeghereasan
flacceptod material hag high LUMO energy (high electron affinitygA) and suitable for

electroninjection/collection from low work funatin electrodes[13, 39, 53].
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Figure1-12: Simplified energy diagram of a donor/acceptor interfac

When a donor and an acceptor are brought togatidform an interface, theffsets
between their energy levels creatafriging forcethat @nfacilitate the dissoeition of
excitong[47]. As of today, there is no cleaxkplanation to describe exciton dissociation at
donor acceptor interfas@asseveral factors can come into play and complicate this

dissociation proced43].

A number of widely used donor and acceptor organic photoactive semiconductors

are shown irFigure1-13.
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Figurel-13: Chemical struatres of commonly used (a) donor and (k
acceptors organic semiconductors in PV.

1.4.2.6Charge Transport

In materials that are highlgrderedJike inorganic crystalline materiglghe
electronic wavdunctionsaredelocalize over thewhole systemresuling in aband

regime behaviom which the charge carriers can freely move over the entire structure
[55].
In organic(polymeric)materials,weakerintermolecular interactions cause the

energy levels to broaden into electronic bands with widths determined by the strength of

the intermolecular interactionk disordereatonfigurations like in organic thifilms,
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due to a very weak colipg, the wavefunctions are localized over a fesumrrounding
moleculesin suchhighly disordered systems, transport generally procéedagh

hopping and is thermally activatgso).

1.4.3 OPV Cells

OPVs are typicallybuilt ontransparent substratésuch as glassjaving aayer of
atransparent conducting metal oxi¢gich as indium tin oxide) as bottom electrode, a
stack of organic layers including the phattive organic semiconductor, and a back
metal contactThe photoactive layas typically composed ad combination oin
electrondonor (donorwith anelectronacceptor (acceptarThese donor and acceptor
materialscan either be stacked as separaterk(ypi-layer hetergunction), or mixed
together as one single layer, called bulk hefjenationas shown irFigurel1-14. The

focus of this dissertation is on bulk hetgmaction OPV cells.

(@) (b)
metal contact metal contact
Acceptor Acceptor & Donor

Donor compound

transparent electrode transparent electrode

transparent substrate transparent substrate
((( ('
AR R AR

Figurel-14: Schematic of typicaDPV cellstructures: (a) bilayer cell ir
which the acceptor and donor materials are deposited separately, a
bulk hetergjunction cell in which the acceptor and donor matsraak
mixed and deposit together.
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The photoactive layer is generally sandwiched betweleol@collecting electrode

(HCE) with high work functionandanelectroncollecting electrode (ECEyith low

work function

The energy levels of these organic layEmg with the position of their

corresponding electrodes in a simplified energy diagram are shdvigure1-15.

EVAC
Energy l
LUMO EA
LUMO
|| e
ECE
Donor
_ Acceptor
v HCE
HOMO

HOMO

Figurel-15: Energy diagram of a typical OPV cell composed of: hole
collecting electrode (HCE), donor organic semiconductor, acceptor org
semiconductor, and electron collecting electrode (ECE¢ vacuum is the
reference to measure the ionization potential (IP) of the donor material

the electron affinity (EA) of acceptor material.

1.4.4 OPV Operation

At this point, t is worth mentiomg thata detailedpicture of the operation @
OPV cel is still an active area of research ansuajectof debate in the community.

However; in this sectigra highlevel picture ofcommonly accepted princiggof

operation will be briefly discussl
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When light illuminates and OPV devigghotons withanenergy larger than the
optical bandgap of the photoactiverganiclayer are absorbedrming anexciton[57].
As discussed beforanexciton inanorganic semicoductorhasabinding energyn the
order of 0.1 to 0.5 eVl his high excitorbindingenergy does not allo@asydissociation
at room temperatur&{ = 0.025 eV afl = 300K). We have to remember thatcitons
are neutral specigbatdiffuse throughrandan hopg13, 57]. Excitonsthatreacha
donor/acceptor interfacevill have a chance to dissocidteough & dectrontransfer
reaction between a donor and an acceptor molediiedifferencein energybetween
thefrontier orbitalsat the interfac@rovidesadriving force for a transfer of theectron
onthe acceptor moleculend holeonthe donor moleculgs7], as depicted in
Figurel-16. It is also worth to mention that excitons have a short lifetime, and short
diffusion lergths before they decay, therefore, the nanoscopic morphology of the

photoactive material is critical for the operation of an OPV[&&8|59].

A - - —
i — —
1 — i — P
3:( ey
Photon Exciton Exciton
absorption formation diffusion
P >
— ECE
HCE
— ——
O
«2 ©
Exciton Charge
dissociation collection

Figurel-16: OPV OperationStarting from top left: Photo absorptitgads to an

exciton formation (shown only in donor side), then exciton migrates toward

donor/acceptor interface. At the interface electron and hole dissoaiadehen
each migrates toward the corresponding electrodes.
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When electron and holes aeparatedhesecharge carrierbave a chance tmove
towardtheir correspondin@lectrodesThe migration of free charge carriers toward
collecting electrodes isfluenced by many factors such as degreengfrgetiadisorder
and vibrational coupling. Therefotlee transport of thesgharge carriexis governed by a

hopping mechanisiibe)].

Finally, those charge carrgthat have reached to the electrddemiconductor
interfacebefore recombining wilhave a chance of getting collected and contribute to the

overall currentAll the aforementioned steps are summarireigure1-16.

To enableefficient charge collection at the electrodes, one reeisictelectrode
materials and interfaces that yielavark-functionthatmatcresthe EA of the acceptpr

anda WF thatmatchesthe IE of the donor materiak shown irFigure1-15.

1.4.5 OPV DeviceStructures: Conventional vs.Inverted

OPV cells are fabricated based on two device geoméianaag different polarity
conventional and inverted hese configurationsre shown irFigurel1-17. In OPV cells
with conventional geometry, tH¢CE is at the bottom and tHeCEis on top of the
device. The ECg&aretypically low work functionmetabk such a&iF/Al, Ca/Al, etc.thus
arevery reactive angetsoxidized in the presence of ambient oxygen and wéadetil
recently, thidimitedthe air stability and overall lifetime of OPV cells with conventional
geometry. To address the astability issue due to low Wkeactivemetaltop contads,
finvertedd OPV cell s used as an alternative structig(re1l-17-b). In this geometry

the ECE is placed at the bottom of the OPV cell and HCE goes on top. The I®&C®B/F
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is typicallyanindium tin oxide (TO) layer that is covered with low Wé&lectron

collecting interlayer

a) b)
ECE HCE
Photoactive Photoactive

layer layer

HCE ECE

transparent substrate transparent substrate

Ahi Ahi

AR Y AR Y
/(¢ ho /(¢ ho
M) M)

Figurel-17: Two typical geometries odn OPV cells: a)
conventional, b) inverted

Recently, we have shown thatrfacemodifiers based on aliphatic amine
polymerscan be used asterlayers to very significantly reduce tWé- traditional high
WEF electrods. In fact, we have shown thdti$ group of materialsansubstantially
reduce the WF ofariety of differenttonductorsuch asnetals, conductive metal oxides,
conducting polymersetc. This WF reductionoriginatesfrom physisoption of the
neutral polymeand the creation of an interfacial surface dipalkich turns the modified
conductors into efficient ECEs. These polymer surface modifiers are processed in air
from solution, providing arnWFanptpissal i ng al te
Polyethylenimine ethoxylated (PEIE) is an example of such poly(régsrel-18-a). A
thin layer of PEIE reduces the WF of ITO from 4.4 eV dowB.8eV (UPS
measurement$p0]. PEIE is an insulatgibut the amine groups in its structure allows for

electrons to be partially displaced or transferred towards the surface of a conductor, thus
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creaing a dipole momentn the modified surface which in turn results in a strong shift in
vacuum level. This shift in vacuum level correspondsdecrease of th&/F

(Figurel-18-b).

(@) (b)

(:
H
X y z
Ho My O

J

OH

Figure1-18: Polyethylenimine ethoxylated (PEIE)) the chemical
structure, (b) the shift in vacuum due to the dipole moment createc
PEIE molecule

Shown inTable4 is a list of differentmetals and conductive metal oxides that are
treated with EIE and PEI Of particular important, is the fact that PEIE or PEI
significantlymodify the WF of organic semiconductors suchraly/(3,4
ethylenedioxythiophene) Polystyrene sulfoné@EDOT:PS$and graphene, opening the
door for all plastic polymeric single and tandem ORYd significantly improving the
outlook for improving the environmental stability of OPV devices in both, inverted and

conventional geometries.
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