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SUMMARY

Two-dimensional2D) and threedimensional3D) periodiclattice-based microstructures
have found multifaceted applications in photonics, microfluidics, tissue engineering,
biomedical engineering, and mechanical metamaterials. To fabiucetigonal periodic
microstructuresin particularin 3D, current available technologiégve proven to bglow
and thusunsuitable for rapid prototyping or largelume manufacturing. To address this
shortcoming, th@ewinnovative field of patterintegrated interference lithography (PIIL)
wasintroduced.PIIL enables the rapid, singlexposure fabrication of 2D and 3D custom
modified periodic microstructuredrough the nofintuitive combination of multbeam
interference lithography and photomask imaging. The researthis thesis aims at
guantifyingP | | fundlaanental capabilities and limitations through modeling, simulations,
prototypeimplementation, and experimental demonstration

PIIL is first conceptualizedsa progressiofrom optical interference and holography
Then, acomprehensivePIIL vector malel is derived ¢ simulate theoptical intensity
distribution produced within a photoresist film dwgia PIIL exposureUsing this model,
the fabrication ofrepresentativgphotoniccrystal devicesby PIIL is simulatedand the
performanceof the PliL-produced devicess studied. Rotomask optimizatiostrategies
for PIIL arealso studiedo mitigatedistortionswithin the periodic lattice. The innovative
field of 3D-PIIL is alsointroduced Exposures ofphotomaskintegrated, photomask
shaped, and microcaviiptegrated 30nterference patterreye simulated tdlustratethe
richness and potential of 3BIIL. To demonstrate Plilexperimentally a prototype

patternintegrated interferencexposure systens designed, analyzedith the optical
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design program ZEMAX, and used to fabricate garnintegrated 2D squareand
hexagonalattice periodic microstructuse To validate the PIIL vector model, the proof
of-concept results areharacterized bgcanningelectron microscopy andtomic force
microscoly and compared to simulated PIIL exposuras.numerous PIIL underpinnings
remain unexplored, research avenaesfinally proposed. Future research paths include
the design of new PIIL systems, the development of photomask optimization strategies, the

fabrication of functional devices, and the ekmental demonstration of 3BIIL.
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CHAPTER 1

INTRODUCTION

1.1 Periodic-Lattice-Based Microstructures

Periodiclatticeebased (PLB) structures are material arrangeméatsed ona one
dimensional (1D),wo-dimensional (2D), othreedimensional (3Dperiodic lattice At
the microscale, PLB structureghibit uniquephysical optical, and mechanicafroperties
[1]. As such, thehave found applications in numerous arebs.exploit these properties,
the shape ofand lattice modifications within PLB microstructarenust be carefully
engineered.

One ofthe most documented applicationd?afB microstructures arehptoniccrystal
(PhC)devicesthat aremadeof dielectric méerials with different refractive indicdg].
PhC devicesxhibitphotoric bandgapandallow the control of light propagatiand light
matter interactiorat the wavelength scal8, 4]. PhC can be engineereto waveguides
[5, 6], resonatorg7-9], filters [9-13], waveguide couplergl4-17], directional coupler
[18], logic gate$19, 20], demultiplexer$21], antennaf2?], switcheg23, 24], and sensors
[25]. PhC devices can further Irgegrated into dense integrated photonic circuits and
systems for telecorar biomedical diagnosticapplicationd26, 27]. Even more compact,
subwavelengtisizedoptical metamateriaksnable new classes of optical devices including
superlenses[28], split-ring resonators forseconeéharmonic generation29], and

metamaterial electromagnetic clgé&].



PLB microstructurs have alsdounduniqueapplications in bioengineering:ordrug
delivery,a pH-responsiveperiodicnetwork of poresas, for exampldyeendemonstrated
to deliver neurotrophins in neural prosthetic devi®&l. Compared to microstructures
with random porosity3D PLB microfluidic mixersexhibiting84% improvedluid mixing
and3D PLB microfluidicfilters blocking submicron particleeave been demonstrati&®,

33]. PLB microstructures also providiexible analysis platforms to study biological
mechanisms.Periodic arrag of sub-micrometerdomains can be used to investigate the
attachment and spreading lmblogical tissuesin contact with specific materiguch as
murine osteoblast cells with fibronecid]. Finally, 3D PLB scaffoldsvith periodic pore
architectureexhibit better pore interconnectivjtynproved wetting propertiegnd thus
improved static ctilires of cells and tissug85].

Another application areaf PLB microstructuresare mechanical metamaterials that
demonstratéarge strengttio-weight ratios and better mechanical performance than most
engineered cellular structures widmdom porosity36]. Mechanical metamaterials find
applications in catalyst supports, filtration devices, and micro-éredtangergl1]. In
addition to photonics, microfluidics, tissue engineering, biomedical engineering, and
mechanical metamaterials applicatigihsstratedin Figurel1.1, PLB structures havalso
been usedn nanoelectronics, surface texturing, magnetic nanostructures, plasmonic

structures, fieleemission devices, and forlmrefringent polarization elemeng37].

1.2 Fabrication Techniques forPLB Microstructures

Significant efforts have been dedicated over the past detades! the development of

fabrication techniqueto produce 2D and 3D PLB microstructure¥hese techniques
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Figure 1.1: Example PLB microstructurega) PhC band edge laser arrg88g]. (b)
Schematic description of PhC biosensd&/]. (c) pHresponsive 3D periodic
microstructure for drug delivey1]. (d) Microfluidic mixer[33]. (e) Microfluidic filter
[35]. (f) 2D array of fibronecti domains to study murine osteoblast cells growtf) 3D
PLB scaffold for cell culture[35]. (h) Lightweight and ultrastiff 3D mechanical
metamaterial§36).



include constructiofased methods and approaches derived from-imegtm interference

lithography (MBIL).

1.2.1Construction-BasedMicrofabrication Techniques

Numerous constructiehased microfabrication techniquesexist to fabricate PLB
microstructures. Some of their kbaracteristics are compared in Tablé With electre

mechanical etching, a substratéh a prepatterned surfaae placed in a hydrofluoric acid

solution under electrical bias such that current density drives selective etching tim@ugh
substrateresulting in a 20periodicarray of hole§39]. 3D PLB microstructures can be
produced by modulating the electrical b@ager time and thus, the etching through the
substrate Glancing angle deposition uses an analogous appf4dchvhere he substte

surfaceis also prepatterned with seed posts before being exposed to a collimated vapor

flux at largeincidentangle. During nucleation, the seed posts grow toward the incident

vapor flux. 3D PLB microstructures can be grown by rotating and tittiegsubstrate

during the growth.Yet, introducing custom modifications to the periodic lattice i

two aforementionedechniques isimited and challengingDirect writing techniques are

more flexible and include robotic ink writing1], which employs a mic
and an engineered in&nd twephoton polymerizatiofd2], whichinvolves the nodinear

excitationof a photosensitive material in the focal spot of a focused laser beam. In both
cases, arbitrary 3D pattetriacluding PLB microstructuregan bei wr i t t eno i n a
fashion by controlling piezoelectric stagéslding the photosensitivenateriatcoated

substrate More sophisticated, micnmanipulationrequires the handling and assembly of

pre-fabricated microscopic building blocks using optical tweezers ortt@gblution robots



Table 1.1: Comparison of chracteristics of fabrication techniques for PLB microstructures. Dashes indicate conditional/limited yes.

Fabrication Techniques Latti_ce , 2D /.3D Large SubMicr_on Rapid
Customizatior Lattice Format Resolution
ConstructionBased Fabrication Techniques
Electrochemical EtchinfB9] b Vv Vv X X
Glancing Angle Depositiof40] b Vv Vv X X
Robotic Ink Writing[41] Vv V V X X
Two-Photon Polymerizatiof42] Vv Vv b V X
Micromanipulation43] V V X V x
Conventional Lithographj44] V V V V X
Extrinsically-Modified MBIL Techniqueg!5-49] V V V V x (multi-step)
Intrinsically-Modified MBIL Techniques

MaskDelimited MBIL [50] v x (1D) Y, v v
Modified Diffractive-Mask[51] Vv Vv Vv X V
Modified PhaseMask[33] b b V V V
PhaseControlled MBIL [52-55] V b X X V
BesselBeamAssisted MBIL[56-58] b b V X V
DefectEngineered Multiple Plané/ave vV 5 vV “ vV

Interference PEMPI) [59]

Pattern-Integrated Interference Lithography \% \% \% \% \%




under a microscopd43]. This technique enables the fabrication of arbitrary
microstructures, but is extremely complex and slow. Finally, -estthblished
conventional photolithography can be used to produce 2D PLB microstructures directly
and 3D arrangements, yet withegerby-layer proces§44].

Congructionbased microfabrication techniques have the potential to produce large
format 2D and 3D PLB microstructures. However, they are-tamsuming and prone to
overlay and misalignment errors because the fabricatitypisally performedlayerby-
layer or even poinby-point [60, 61] Therefore, they are usually not suitable for rapid

prototyping or for largevolume manufacturing.

1.2.2Multi -Beam Interference Lithography

A significantlymore rapid approach to produce PLB rogtructures employsthe periodic
interference pattern producdsy multiple overlapping laser beams. The amplitude,
wavelength, wavevectaonfiguration phases, and polarizations of the interfering beams
can be adjusted to produce particular 2D or 3D periodic interference patterns. With three
interfering laser beam2D periodic interference patterns including all five 2D Bravais
lattices can be producef62]. With four or more interfering beams, 3D periodic
interference patterns including all fourteen 3D Bravais lattices can be acl&8jed
Complex 66fold 2D quasiperiodic[64], 3D chiratbasis[65], icosahedral66], spatially
variant[67], and dualattice interference patterfi€8] are furthermore feasible.

For microfabrication purposes, a 1D, 2D, or 3D optical interference pattern can be
recorded within gohotosensitive material (or photoresist) coated on a substrate. This
method is knownas MBIL a nd i s someti mes referred

Ai nt er f er ome timthecliteratura[1}. hVeity suffigemtyoptical power, the



exposure of the photoresist can be shorter than one second, making MBIL extegnakly r
compared to constructidmased techniques. Upon exposure, the solubility of the
photoresist changesA positive (negative) tone photoresidgiecomes moréess)soluble
when exposed After a development step,latentimageof the interference patters
created in the photoresistThe photoresist structure can be used directly or serve as a
sacrificial template for lifoff [34], substrate etchind9], infiltration/inversion stepg7qQ],
or double infiltration/inversion stepls’l]. In addition, thepairing of the lightfield
(intensity maxima) or darkeld (intensity minima) mterference pattern to positivand
negativetone photoresist extends the variety of feasible PLB microstructures by MBIL.
As early as 1970,wo-beam interference lithographyas usedto produce one
dimensional gratings used as opticaliplerg72]. Two-beam interference lithography is
also currently employedto fabricatedense line/spaceancstructuresn the study of the
chemistryand performancef extremeultraviolet photoresist@~igurel.2(a))[73]. Using
threelaserbeams Bergeret al.[74] recordedfor the first timea 2D interference patte
with hexagonal symmetrwithin a photoresistfilm and transferredhe patterninto a
gallium arsenide substrate through reactive ion etctitigure 1.2(b)). Later, 3D MBIL
was demonstrated by using faur-beam configuration to produce 3D periodic
microstructurs with submicron periodicityas shown inFigure 1.2(c) [75]. Sincethe
initial MBIL demonstratios, numerousVIBIL methodologies have been developed using
a diffractive beam splitte[76], aL | oy d 6 77]paiprism 8], a phasemask([79],
optical fibers[8(], or half-wave plates and beasplitter cubes for individual beam

control[81]].



As a flexible, rapid, and costffective approach MBIL has found numerous
applications in photonics, microfluidics, tissue engineering, biomedical engineering, and
optical metamaterials, where larfgrmat periodic microstructures are needéd82].
Unfortunately, MBIL in its current form only produces continuous periodic structures and
does notenable the fabrication of periodicmicrostructures with controlledattice
modificationsin a single step As a result, MBIkproduced structures have limited
functionalities and applicationsTo address this isspextrinsically and intrinsically
modified MBIL techniques have been developeddd functionalities to MRI-produced

structures

Top view Side view

Substrate ~ 2HM

(c)
Figure 1.2: Multi-beam configurations and correspondingBIL -produced periodic
microstructures (a) Onedimensionagrating produced by twbeam interferendg’ 3. (b)
2D PhC producedy threebeam interferencgz4]. (c) 3D periodic lattice producedy
four-beaminterferencd75]. The lattice constant depends on the common beam incidence
angle,dbeam



1.2.3Modified MBIL Techniques

1.2.3.1Extrinsically-modified MBIL

To address MBIL patterning limitations MBIL-produced structures have been
functionalizedby usingan additionalmicrofabrication techniquén a twostep process
This approach is hereafter referred toeasinsicallymodified MBIL Characteristics of
extrinsicallymodified MBIL are listed in Tabld.1 The alditional techniques include
electronbeam lithography45], focused ion beartithography[46], direct laser writing
[47], projection lithography48], or multiphoton polymerizatiop49]. Variousfunctional
2D and 3DPLB microstructurehave leenproducedwith extrinsicallymodified MBIL as
illustrated inFigurel.3. However modifying analreadyconstructegberiodiclatticeusing
an additional fabrication step atime-consumingand expensive procesn addition, this
two-step approach igrone to misalignment isssiand sampledeterioration Therefore,
extrinsicallymodified MBIL does not address thapidity issueof constructionbased

microfabricationtechniques

1.2.3.2Intrinsically-modified MBIL

To avoid the need for multiple processing steps, the holy grail for experimentalists would
be the singlestep creation of an interference pattern with intrinsic lattice modificsitio
[83]. Intrinsically-modified MBILtechniques have been introduced to address this need
and produce custommodified interference patterns in a singbgposure step.
Characteristics of the described intriradig-modified MBIL techniques are compared in

Tablel.1
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Figure 1.3: Example PLB microstructures produced by extrinsieaiydified MBIL
techniques, where MBIL is combined with (a) electbmamlithography{45], (b) focused
ion-beam lithography46], (c) direct laser writing47], (d) projection lithographj48], and
(e) two-photon polymerizatiof49].

Using two photomasks, a confocal e ns sy st e m, and a Fresr
Chen et al. [50] produced a ondimensional interference pattern delimited by the
photanask opening as illustrated in Figuted(a) and (b). However, this approach does
not allow for more than two interfering beams and thus, is limited tedomensional
fringes. Linet al.[51] proposed a fivdoeam diffractive mask depicted in Figafe4(c)
and (d) to produce a 3D interference pattern embedding a line as shown in1H{gire
However, the line is created by casting the shadowva gthotanask within the 3D
interference pattern. Therefore, the line width is orders of magnitude larger than the lattice

constant of th&D interference pattern.
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Figure 1.4. (a) Maskdelimited twebeam interferencesystem[50]. (b) Schematic
illustration ofa maskdelimited interference pattern produced with (@) Implementation

and (d) fromtview of the modified diffractive mask with an amplitude mask in the center
[5]]. (e) Line-integrated 3D periodic lattice produced with).((f) Phase mask missirgy
singlepost (left) and resultinD cavity-integratedoeriodic structure(right).
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Phase masks are commonly used to implement MBIL and produce large areas of 3D
periodic structuref84-86]. To modify locally the surface of the 3bterference pattern,
Jeonet al [33] removed a single post from phase mask as shown in Figurek(f).
However, lattice modifications deeper in the photoresist are poorly contesittanore
complex geometries seem limited since removing more posts from the phaseonsk
deteriorate the formation of the interference pattern.

Recently, several intrinsicalijnodified MBIL techniques employing a spatial light
modulator (SLM) have beeproposed. In phasmntrolled MBIL, a phasenly SLM
placed at the Fourier plane of a théms system is used to control the phase of telasge
diameter (typically thm) beamlets as illustrated in Figutexa) [52-55]. The required
phase and spatial distribution of the beamlets displayed on the SLM acelqrkated
using an optimization routine such as the genetic algorithm. The beamlets are then focused
and superposedo produce a custormodified interference pattern as shown in the
scanning electron microscope (SEM) image in Figuib). Zhanget al. [54] further
improved thisapproach by updating the SLMixels in real time using a simulated
annealing algorithm and a feedback loop between a camera and the SLM. The integrated
functional elements, however, are repeated periodically within the interference pattern and
the size of the exposure spot is agriform and limited to about 5@O?. The exposure
area can possibly be extended with a diffractive optical element but only to a few square
millimeters[55].

Alternatively, the SLM can be placed at tiigect plane of a twdens confocal system

to display a phase pattern that produces upon illumination the interfering beams as

12



Figure 1.5: (a) Implementation of phasmntrolled MBIL and (b) SEM imagef a
resulting 2D PLB microstructur4]. (c) DEMPI systeni59]. (d) BesselBeamAssised
MBIL CCD image. (e)2D line- and cavityintegrated periodic microstructuobtained by
DEMPI [59]. (e) SEM image dine-integrated periodienicrostructureproduced by
displaying a graded phase pattern on the SLM ip8d)
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