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papillary serous ovarian cancer samples and -staitye endometid ovarian
cancer samples

Figure 4.1 170
Effects of exposure to exudates of Ikarenia brevison the growth of
Asterionellopsis glacialisndThalassiosira pseudonang?) A. glacialis(red)in
vivoandT. pseudonanéblue)in vivofluorescence (arrow indicates day of
harvest for metatdomics and proteomicsY.he ®lid lines indicate fluorescence
of diatomonly controls,and thedashed lingindicate fluorescence of diatoms
exposed t&. brevis Initial K. brevis(red open circles foA. glacialis
experiment; blue open circles for pseudnanaexperimentoncentrationgrom
cultures used to fill dialysis tubes (n = 1), final concentrations from experimental
flasks at time oharvest (n = 15). (BCalculated percent growth of competitévs
glacialis (red)andT. pseudonanéblue)relativeto their own controls after 8 and
6 days exposure . brevis respectively. Theotted line indicates growth
equivalent to controh = 15 P < 0.0001 indicated by asterisk (*), unpairetst
Error bars represent £1 S.E.M
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Figure 4.2 171
Orthogonalprojection to latent structure@scriminant analysis @RLS-DA) shows
effects ofKarenia brevisallelopathy on the metabolomes of competitor drego
oPLSDA calibration scores plot of (A) UPL-®IS metabolic features and (Bl
NMR spectral data fofhalassosira pseudonanaxposed td. brevis(filled
squares) or dilute media control (empty squares) with eralsdated accuracies
of 87% and 100%, respectlyeoPLSDA calibration scores plot of (C) UPLC
MS metabolic features and (BBl NMR spectral data foAsterionellopsis
glacialis exposed to livék. brevis(filled circles) or dilute media controls (empty
circles) with croswalidated accuracies of 57% and 63%, respectively

Figure 4.3 172
Principal component analygIBCA) shows effects dkarenia brevisallelopathy
on the metabolomes of competitoattims. PCA scores plot of (A) UPLKS
metabolic features and (B) NMR spectral data foFhalassiosira pseudonana
exposed tk. brevis(filled squares) or dilute media control (empty squares)
showing signifcant separation along th&and ! principal components,
respectively (MS: unpairedtést, n = 30p = 0.002; NMR: unpairedtest, n =9
14,p < 00001). PCA scores plot of (C) UPLKAS metabolic features and (EB
NMR spectral data fohsterionellops glacialisexposed to live. brevis(filled
circles) or dilute media controls (empty circles) with only#HeNMR spectral
data showing significant separatiof* {&incipal component, unpaireddst, n =
9-11,p=0.033)

Figure 4.4 181
Network of cdular pathways, enzymes, and metabolites in the diatom
Thalassiosira pseudonam@apacted by exposure tarenia brevisallelopathy,
derived from NMR and MS metabolomics and proteomics. Pathways and
metabolites enhanced by allelopathy are indicated bgnredvs and compound
names, respectively. Blue arrows and compound names denote pathways and
metabolites thatvere suppressed by allelopathy

Figure 5.1 203
TWIMS schematic. A traveling voltage wave-{#ave) appliedo a series of
electrically connected rgnelectro@s (stacked ring ion guide: SRIBushes ions
through the devicd-or a given wave speeamd magnitudepnscarried forward
by the Twave have short drift times (redyhile ions that roll over the -ivave
take longer to exit the devicflue). R-, radiofrequency

Figure 5.2 206
Photograph of the automated FDART MS system

Figure 5.3 207
Photograph of the automated TIWART system. The top panel displays the
module used to hold the stainless steel mesh strip or discs, as well as a stainless
steelmesh strip. The bottom panel shows the automated TM system during an
analysis placed between the DART ion source and the GIST inlet
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Figure 5.4 213
Microscopic image of a dried, derivatized human serum sample (a) before and (b)
after TM-DART analysis witththe (c) corresponding backgroundrrected
positive ion mode mass spectrum in tha Bb0m/zrange. The inset details the
signals observed upon zooming into the baseline

Figure 5.5 218
Total ion chronogram observed during IART analyses of a derivaed
serum sample showing an increase in the abundance of detected ions for each
successive analysis prior to sample introduction method modification

Figure 5.6 218
Thermal IR images of the TNDART ion source and sampling module assembly
during the analysiof a derivatized serum samples. The DART cap (1) in the IR
images rests in close proximity of the module (2) where the sample is spotted for
analysis. Two previoustgnalyzed mesh holder samples positions (3) are shown
on the left, and two mesh positioinsthe queue (4), waiting to be analyzed, on
the right. The color scale displays the measure temperature in Celsius. The set
DART temperature was 250 °C

Figure 5.7 221
Extracted ion chronograms for selected reagent water cluster ions present in the
DART ionization regions for a period of ~50 minutes after application of high
voltage to the discharge electrode. No signals for reagent ionswzitbwer than
~75 were observed

Figure 5.8 223
Effect of serum sample deposition strategy (A: liquid samplsaBiple dried
with heated Mfrom DART source; C: selfiried sample) on sensitivity and
reproducibility of successive TNDART analyses for mass spectrometric signals
atm/z=315.1042, @&H2305Sip, m/z = 416.2246, @H3sNOsSik, (top panel) and
signals am/z = 640.3391, GsHs4N304Sizs, m/z= 714.3601, @oHsoN706Sia,
(bottom panel)

Figure 5.9 224
The sensitivity of TMDART MS analysis is influenced by the position of the SS
mesh substrate in the ionization region. Two parameters (a) determine this
position: he distance from the GIST to the SS mesh (i) and the distance from the
mesh to the DART cap (ii1). The effect
for untargeted metabolic profiling of deriized serum is displayed in (b)

Figure 5.10 225
Effect of kelium gas temperature on FMIART MS sensitivity for untargeted
metabolic profiling of derivatized serum: (a) absolute intensities of monitored
signals in the low mass range and (b) absolute intensities of monitored signals at
higher masses. Intensities wenonitored at DART set temperatures of 100, 150,
200, 250, 300, 350, and 400.
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Figure 5.11 227
Effect of ramping the set helium gas temperature on intensities of monitored mass
spectrometric signals in the low (top panel) and high (bottom panel) nmaggsra
The set helium gas temperature was ramped fronT@30 450°C over 3
minutes

Figure 5.12 228
Effect of helium gas flow rate on TNAART MS sensitivity for untargeted
metabolic profiling of derivatized serum: (a) absolute intensities for selected io
belowm/z = 600, (b) absolute intensities for selected ions aboze 600.

Intensities were monitored at flow rates of 0.50, 0.75, 1.00, 1.25, and 1.50 L min
1

Figure 5.13 230
Signal linearity for TMDART (left) and PMDART (right). The absolute
intensity of the [M+HJ quinine ion was monitored (n3) for 1 (PM), 10, 15, 25,
75 (TM), 100 (TM), and 150 (TM) uM solutions. The experimental data was
linearly fited to ao & @ model. The regression parameters for each DART
operational mode are digpyled within each panel

Figure 5.14 231
Extracted ion chronograms of the [M+Hin/z 325.1920) ion observed during
TM-DART (top panel) and PNDART (bottom panel) analysis of a 15 uM
guinine solution

Figure 5.15 232
TM-DART full scan MS (a) and 30 eV procluon spectrum (b) for &rythro-
sphingosine. The quadrupedelected precursor ion wagz 300.2919

Figure 5.16 237
Orthogonal projection to latent structwdiscriminant analysis (0PLBA)
models for the discrimination of CF patients (orange cirdtes) healthy
controls (black squares). (a): oRDR calibration scores plot using the total
initial set of 66 spectral features. The model consisted of 2 LVs with 46.43% and
93.79% total captured-Xand Y-block variances, respectively. The cross
validated accuracy, sensitivity, and specificity were 88%, 100%, and 75%,
respectively. (b): The corresponding CF creabdated prediction plot for (a).
There was 1 misclassified CF EBC sample. (c): eBPScalibration scores plot
using the 9 discriminant negtolic feature panel obtained from genetic algorithm
variable selection. The model consisted of 2 LVs with 84.24% and 94.29% total
captured X and Y-block variances, respectively. The accuracy, sensitiaitd
specificity were all 10%. (d): The corrgmonding CF crossalidated prediction
plot for (c). There were no misclassified samples.
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Figure 5.17 238
Principal Component Analysis (PCA) of cystic fibrosis (CF) patients (orange
circles) and healthy controls (black squares). (a): PCA scores pigtthsi initial
set of 66 spectral features. The model consisted of 2 PCs with 72.89% total
captured variance. (b): PCA scores plot using the 9 discriminant feature panel
obtained from genetic algorithm variable selection. The model consisted of 2 PCs
with 84.49% total captured variance
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SUMMARY

Metabolomics is the methaxl scientific study of biochemical processes
associated with the metaboloéng/hich comprise the entire collection of metalies in
any biological entityMetabolome changes occas a result of modifications the
genome and proteome, aact therefor, directly related to cellular phenotype. Thus,
metabolont analysis is capable of providing a snapshot of cellular physiology
Untargetednetabolomics is an impatrtial, aliclusive approach for detecting as many
metabolites as possible withaupriori knowledge of their identityHence, iis a
valuable exploratory tool capable of providing extensive chemical information for
discovery and hypothesgeneration regding biochemical processddntargeted
metabolomic analysis is the first step toward gieisig targeted assays to study specific
metabolic pathways, detect clinical disease, onitor environmental phenomen.
history of metabolomics and advances in the field corresponding to improved analytical
technologies are describadChapter 1 of ths dissertation. Additionally\Chapter 1
introduces the analytical workflows involved in untargeted metabolomics regearch
provide a foundation fo€Chapters 2 5.

Part | of this dissertation which encompasses Chaptedescribes the
utilization of mass spectrometry[S)-based untargeted metabolomic analysadguire
new insight nto cancerdetection There is a knowledge deficit regarding the biochemical
processes of the origin and proliferative molecular mechanisms of many types of cancer
which has also led to a shortage of sensitive and specific biomdPkessate cancer

(PCa) is the P leading cause of caneeglated mortality in men worldwide. Although the
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introduction ofprostatespecific antigen#SA) screening has slightly decreals

mortality, it is still a norspecific diagnostic serum marker aeeated concentrations are
also indicative of benign prostatic hyperplasia and prostatitis. Chapter 2 describes the
development of am vitro diagnostic multivariate index assay (IVDMI#&r PCa
prediction based on ultra performance liquid chromatographsys spectrometry (UPLC
MS) metabolic profiling of blooderum samplesom 64 PCa patients and 50 healthy
individuals.A panel of 40 metabolic spectral features was found to be diffarenth
92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the
IVDMIA was higher than the prevalent PSA test, thus, highlighting that a combination of
multiple discriminant features yields higher predictive power for PCa datdbiam the
univariate analysis of a single markumerous discriminant metabolites were mapped
in the steroid hormone biosynthesis pathway. The identification of fatty acids, amino
acids, lysophospholipids, and bile acids provided further insightshatmetabolic
alterations associated with the disease.

Chapter 3 describdg/o approachethatwere taken to invéigate metabolic

patterns for early detection ofarian cancer (OCPC s the %' leading cause of cancer
related deaths for U.S. womddue to the unavailability of reliable screening tests in
clinical practice and the asymptomatic course through stafjes of the disease, the
majority of ovarian cancer casese diagnosed as advanced, metastatic disease with poor
survival Early detection is thus crucial in reducing ovarian cancer mortglitst, Dicer-
Ptendouble knockout (DKO) mice that phenocopy many of the features of metastatic
high-grade serous carcinoma (HGSC) observed in women were studied. HGSC is the

most commorand deadliest subtype that results in 90% of OC dea#isgUPLC-MS,
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serum sampkefrom 14 earlystage tumoDKO mice and 11 controls were analyzed in

depth to screen for metabolic signatures capable of differentiatingstagy HGSC

from controls. Iteative multivariate classification selected 18 metabolites that, when
considered as a panel, yielded 100% accuracy, sensitivity, and specificity for
classification. Altered metabolic pathways reflected in that panel included those of fatty
acids, bile acid, glycerophospholipids, peptides, and some dietary phytochemicals.
These alterations revealed impacts to cellular energy storage and membrane stability, as
well as changes in defenses against oxidative stress, shedding new light on the metabolic
alterations associated with early OC stagesthe second approach, serum metabolic
phenotypes of an earbtage OC pilot patient cohort were characterized. Serum samples
were collected from 24 earlstage OC patients and 40 healthy women, and subsequently
analyzel using UPLGMS. Multivariate statistical analysis emplagi support vector
machineearning methods and rasive feature eliminatioeelected a panel of

metabolites that differentiated between-aggtched samples with 100% cresdidated
accuracy, sensvity, and specificity. This small pilot study demonstrated that metabolic
phenotypes may be useful for detecting eathge OC and, thus, supports conducting
larger, more comprehensive studies.

Many challenges exist in the field of untargeted metabasiRart 11 of this
dissertation which encompasses Chaptér® 4ocuses on two specific challeng@éghile
metabolomiaata may be used to generate hypothesis concerning biologicesgesc
determiningcausal relationships within metabolic networks with only metabolomic data
is impractical Proteins play major roles in these netwqrtkerefore pairing

metabolomidnformation with that acquired from proteomics gives a more
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comprehensive snapshot of perturbations to metabolic path@agpter 4escribeshe
integraton of MS- and NMRbased ratabolomicawvith proteomicsanalyseso

investgate the role of chemically mediated ecological interactions betitaemia
brevisand two diatom competitordsterionellopsis glacialiandThalassiosira
pseudonanaKarenia brevigs a toxic dinoflagellate known to exude allelopathic
compounds that dectly inhibit the growth of species with whom it competes for
resourcesThis integrated systems biologpproactshowed thaK. brevisallelopathy
distinctively perturbed the metabolisms of these two competioigacialishad a more
robust metabolicesponse t&. brevisallelopathy which may be a result of its repeated
exposure t&. brevisblooms in the Gulf of Mexico. HoweveK, brevisallelopathy
disrupted energy metabolism and obstructed cellular protection mechanisms including
altering cell merbrane components, inhibiting osmoregulation, and increasing oxidative
stress inl. pseudonanal his work represents the first instance of metabolites and
proteins measured simultaneously to understand the effects of allelopathgarany

form of compdtion andhighlights the ability of systems biology to shed light onto the
nature of complex ecological interactions.

Chromatography igraditionallycoupled to MS fountargeted mebolomics
studiesWhile coupling chromatgraphy to MS greatly enhances metabolome analysis
due to theorthogonality of the techniquethelengthy analysis times pose challenges for
large metabolomics stueB.Consequentlythere is still a need for developing higher
throughput MS approache&.rapid metabolic fingerprinting method that utilizes a new
transmission mode direct analysis in real timBl{DART) ambientsampling technique

is presenteth Chapter 5In this approach, the sample is deposited directly on a stainless
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steel mesh that is held in the ionization region by a custsihmodule. As a result, the
DART plasma gas stream interacts with shenple in a floathrough fashion, which
maximizes the sampl@nizing species interaction and minimizes variance in sample
positioning. The optimization of TNDART parameters directly affecting metabolite
desorption and ionization, such as sample posér@hionizing gas desorption
temperature, was critical in achieving high sensitivity and detecting a broad mass range
of metabolites. Ramping the ionizing gas desorption temperature further enhanced
analysis by adding a simple separation dimension tathisent approach. In terms of
reproducibility, TMDART compared favorably wh traditional probe modeART
analysis, with coefficients of variation as low as 16%. The lofagging TMDART
signals enabled the acquisition of full scan and product ion @ecorass spectra in a
single experiment, resulting in greater confidence in metabolite identificatiofDARIT
MS proved to be a powerful analytical technique for rapid metabolome analysis of human
blood sera and was adapted for exhaled breath condeBB#i¢ énalysis. To determine
the feasibility of utilizing TMDART for metabolomics investigations, FMART was
interfaced with traveling wave ion mobility spectrometry (TWIMS) tiaidlight (TOF)
MS for the analysis of EBCasples from cystic fibrosigatients and healthy controls.
TM-DART-TWIMS-TOF MS was able to successfully detegstic fibrosisin this small
sample cohorthereby, demonstrating it can bm@oyed forprobingmetabolome
changes

Finally, in Chapter 6, a perspective on the presented workvi&palong with

goals on which future studies may focus.
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CHAPTER 1. UNTARGETED METABOLIC FINGERPRINTING: AN
OVERVIEW

1.1 Abstract

Untargeted metabolomias an impartial, alinclusive approach for detecting as
many metabolites as possible withaugriori knowledge of their identityThis chapter
presents an overview of untargeted mass spectroifM8)based metabolomics which
has become a valuable exploratory tool capable of providing extensive chemical
information for discovery and hypothegjsreration studies regarding biochemical
processes. Metabolomics is a recently emer
holistic approach to comprehensively characterize the small molecule metabolites (<
1500 Da) in biological systems. A historyragétabolomics and advances in the field
corresponding to improved analytical technologies are described. The metabolome is
estimated to be comprised of thousands to tens of thousands of chemically diverse
metabolites at varying concentrations. These ingastins can be challenging, and the
main analytical platforms employed for contemporary untargeted metabolomics are
reviewed; primary focus is placed bt-based methods as they are utilized for analyses
throughout the subsequent chapters. Untargeted oletaizs requires unique
methodologies for sample preparation and mass spectrometric analysis in addition to
chemometric data analysis tools; thud&based untargeted metabolomics workflow is

introduced.



1.2 An Origin Tale of Metabolomics

Metabolomicss the methodical scientific study of biochemical processes
associated with the metabolome which comprises the entire collection of metabolites in
any biological entity. These metabolites are intermediates and end products of cellular
metabolism. Thusnetabolomics is critical for probing changes in metabolite levels and
collecting pertinent metabolic pathway information in an effort to investigate the
biochemical fingerprints specific to particular cellular processes. The total number of
human metabolits is currently unknown, but 4,000,000 are estimateédvietabolome
changes occursaa result of modifications ithe genome and pi@ome, and are,
thereforedirectly related to cellular phenotype. Thus, metabolomic analysis is capable of
providing a sapshot of cellular physiology (Figure 1.1). Metabolomic studies can be
conducted in both targeted and untargeted manners. Targeted metabolomics detects and
measures known metabolites or metabolite classes. Conversely, untargeted
metabolomicd fingerprinting (often interchanged with profiling)is an impatrtial, a
inclusive approach that detects as many metabolites as possible \&iftronri
knowledge of their identity. Although fingerprinting and profiling are used
interchangeably, profiling classically refers to the quantitative analysis of a particular
class of metabolites or a set of metabolites involved in a specific biochemical pathway.
Untargeted metabolomic (or metabolic) fingerprinting is a valuable exploratory tool
capable of providing extensive chemical information for discovery and hypaothesis
generation studies concerning biochemical processes. Additionally, information acquired
from metdoolomics studies can be used to characterize disease states of organisms and

monitor their responses to external stimuli.
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Figure 1.1 Omics Cascade. Metabolomics is the last level of the omics cascade and is
more directly related to cellular phenotype.

Although metabolomics is still considered to be an emerging systems biology
field, its origins can be traced back to traditional Chinese medicine. During 150D
BC, traditional Chinese doctors employed ants to determine if urine glucose levels were
too high in patient$ an indicator of the metabolic disease diabetes meflifirese
medical practitioners also detected diabetes by tasting urine for the sweetness associated
with high glucose levels. While Chinese doctors did not have a hame for thisotiteta
disease at that time, they recognized that characteristics of urine, a biological fluid
containing many end and {products of cellular metabolism, could be used to assess the

state of health of any individual. During this same time period, Hinduipoaers of



Ayurvedic medicine also noted that swagetting urine was associated with certain
diseases$.Later in history (Middle Ages: 40il1 500 ) , ancient Greeks u
to link the tastes, smells, and colors of urine to medical illnéssi#sough
contemporary metabolomics involves more sophisticated technologies, these ancient
doctors correlated chemical patterns to biological proc&sadandamental notion upon
which metabolomics was founded.
Thegrowth ofchromatography aided in thelaent of contemporary
metabolomics. Thigamily of analytical separation technicg@low for simultaneous
detection of many metabolites. C. E. Dialgliesh developed altmensional paper
chromatography method to profile urinary indolic compounds; indolapounds may
have been associated with bladder cancer and could provide information regarding
vitamin nutrition! From the late 1940s to early 1950s, Roger Williams and his research
team utilized paper chromatography to acquire urinary and salivary ahietab
fingerprints of many peopfe? Subsequently, Williams found that similar groups of
people, such as alcoholics or individuals suffering from mental disorders, may have
characteristic metabolic finger pdrmomt s. Wi
than 200,000 paper chromatograms were analyZée. availability of liquid
chromatography (LC) and gas chromatography (GC) analytical separation techniques
reduced the effort needed for such studies and, consequently, further expanded the field
of metalmlomics throughout the 1960s and 19%0%.Linus Pauling and collaborators
bel i ev afdrmdtidn altout ine genetic nature of an individual human being, as
reflected in the rates of various chemical reactions that take place in his body, usually

catdyzed by enzymes, could be obtained by the thorough quantitative analysis of body



fluidso 1 Pauling developed a GC method to investigate biological variability by
guantifying metabolites in wurithoeugmnd breat
guantitatve analysis of body fluids might permit differential diagnosis of many diseases

in a more effective way'! Additionally, Malcolm et al. demonstrated that metabolic

profiles acquired from cerebrospinal fluid may be useful for the diagnosis of neurological
disorders/infections in infants after profiles showed qualitative and quantitative

differences between infant sufferers and controfdthough GC and LC are very

powerful separation techniques, neither has the abiliiyréztly identify molecules in

complex biological samples. LC was generally coupled to U\iiB/detectors and GC

to flame ionization detectors, so analysis of chemical standards was required for

metabolite identification. But, this changed when GC and LC techniques began to be
coupled © mass spectrometry (MS) in the 1970s and 1980s. MS has undergone many
technical advancements since the first modkay mass spectrometevere created™ 1

These advancements greatly supporteceipansion of contemporary metabolomics

since numerous atabolites could be simultaneously detected and identtie@. and

M. G. Horning developed G®IS analysis methods to acquire urinary metabolic profiles

of steroids, acids, and drug metabolite48In fact, the Hornings coined the term

omet abollied.prnaof was their belief that metab
characterizing both normal and pathologic states, for studies of drug metabolism and the
effects of drugs on human met abollThem, and
development and commercialization of atmospheric pressure ionization (API) techniques,
chiefly electrospray ionization (ESf)(for which Fenn shared the chemistry Nobel Prize

in 2002) and atmospheric pressure chemical ionization (A®@llpwed for the mass



spectrometric analysis of a broad range of analytes with varying chemical moieties and
masss, in addition to the coupling @C to mass spectrometers. As a result, the usage of
LC-MS for metabolomics studies began to be on par witAiMEZ! In 1978, Henion
presented research on the coupling of LC to MS to study drugs and their metabolites in
biological matrice$#2* Games et al. utilized a newly developed interface which coupled
LC to MS to metabolically profile planfs.In time, more and more clinical amésts

began to realize the utility of chromatographic separation techniques coupled to MS for
metabolic fingerprinting of biological samples and how impactful they could be for
detection of inherited metabolic diseases and other diseases of ittéPdsiditionally,
clinical chemists and other researchers began to use multivariate pattern recognition
methods to analyze and assist in the interpretation of their metabolomic dafd°SEte
importance of dimensionality reduction of the immense dasaaset the need for sample
class discrimination functions were recognized.

Concurrently with the development of @@S and LCMS, advancements in
nuclear magnetic resonan@MR) spectroscopy instrumentation, first introduced in
19463 **allowed for meaibolite profiling of biological fluids> *6During the 1980s:H-
NMR analysis of urine proved to be successful in detecting several inherited metabolic
disorders, including maple syrup urine dise¥sagthylmalonic academi; 3and
phenylketonuri&® Nicholson et al. demonstrated tABNMR blood plasma
fingerprinting could be used to monitor diabetes patients when they were no longer
undergoing insulin theragy.Similarly to hyphenated MS analysis techniques,

contemporary metabolomics underwenitemdous growth once NMR spectroscopists



also began to use multivariate analysis techniques to interpret their substantial data sets.
35

From the 1990s to present time, metabolic fingerprinting technologies have
incorporated MSor NMR-based analyticallatforms with multivariate statistical
analysis techniques. New approaches have appeared for metabolic fingerprinting, such as
capillary electrophoresis (CBJS,*! “>and improvements in chromatographic separation
techniques, namely the development ofaufierformance liquid chromatography
(UPLC) **have broadened the scope of metabolome covéraljeough many
technological advancements were made for comprehensive metabolite detection, a draft
of the human metabolome was not made available to ietiic communityuntil
20074 David Wishart, along with numerous other scientists, catalogued more than 2,180
detectable endogenous metabolites using MS and NMR data collected from urine, blood,
and cerebrospinal fluid, in addition to analyzing chenmstaihdards and gathering
metabolite information from books, journal articles, and electronic databases over a span
of multiple years. The resultant database, the Human Metabolome Database (HMDB),
has been updated since 2007, and now houses biologicahation for more than
40,000 metabolites. O6Detected0d metabolites
confirmed) and ¢ ethogedocwhierdbdchemectl pathwdys aree s ( i
known or human intake/exposure is frequent but the compound has yetdtebied in
the bodp ) ar e *®i*Moréoved thainumber of metabolites with biological fluid
and tissue concentration data has greatly increased. The creation of HMDB has had a
significant impact on metabolomics resed@chore than 1000 publishestientific

studies encompassing metabolomics, clinical biochemistry, and systems biology have



utilized the resources provided by the datal&selditional free databases used for
metabolomics research include METL{RIKyoto Encyclopedia of Genes and Geres
(KEGG)/® Lipid Metabolites and Pathways Strategy (LIPID MAPS) Structure

Databasé&? and MetaCyc!

1.3 Primary Analytical Platforms for Metabolic Fingerprinting

Comprehensively fingerprinting the metabolome is difficult due to its complex,
diverse ntured thousands of metabolites belonging to different chemical compound
classes, such as lipids, amino acids, and saccharides, exist. Moreover, these metabolites
have dynamic levels ranging from picomoles to millimdfe¥o singular analytical
method cammeasure the thousands of metabolites estimated to be present in a biological
system, as various analytical tools are successful in detecting different classes of
metabolites. Although other analytical detection techniques are used for metabolomics
researchsuch as ion mobility spectromefidand electrochemical detection (ECD),
MS and NMR (discussed in sections 1.3.1 and 1.3.2, respectively) are the primary

technologies.

1.3.1 Mass Spectrometry

1.3.1.1 Gas Chromatograpiass Spectrometry

The developmearof GGMS was pivotal to the growth of metabolomics, and as
such, is one of the most widely used analytical techniques for metabolomics studies. GC
is typically coupled to MS via electron impact (El) ionization.-&S is advantageous
due to its high pea&apacity, reproducible retention times, and ability to quantify

metabolites: > *6Additionally, metabolite fragmentation patterns acquired byN&s&



can be precisely replicated as El ionization leads to very reproducible fragment ions,
thereby, facilitting accurate metabolite identification by comparison to readily available
compound databases, such as the National Institute of Standards and Technology mass
spectral library. However, G®IS is best suited for the analysis of volatile and thermally
stableanalytes. Polar metabolites must be chemically modified througlateation
reactiongo reduce polarity and increase their volatility. Typically, acidic hydrogens in
COOH,-SH,-OH, andi NH functional groups are modified via alkylation, acylation, or
silylation chemical derivatization reactions; additionally, carbonyl functional groups can
be modified via methoximation derivatization reactions to inhibit enolization which can
further complicate GBS analyses since multiple products would be presergsultant
mass spectrd>’ Methoximation derivatization followed by silylation of metabolites has
been performed to broaden metabolome covetagthevertheless, chemical
derivatization reactions can create undesirable artifacts and also have degiaes of
efficiency as sterically hindered analytes may only be partially derivatiz€d.

Moreover, added sample preparation steps decrease sample throughput for large
metabolomics studies, thus, increasing analysis time.

Technological innovation Isded to the development of tveimensional GEMS
systems (GC x G®1S). Typically, cryogenic modulation is utilized to transfer samples
from a nonpolar column onto a second polar column for rapid separafibim
comparison to GBS, GC x GEGMS has sustantial increases in peak capacity,
chromatographic resolution, and sensitivity, thus, making it more suitable for metabolic
profiling of complex biological samplésHabram et al. demonstrated that GC x-&6

analysis lowered detection limits of smajidnocarbons by a maximum factor of 7.



For a metabolomics study on spleen tissue extracts, Welthagen et al. determined that GC
x GG-MS detected 2.4 times the number of metabolites thatMSE® GC x GGMS has

been used to metabolically profile urine ofants to determine organic acids capable of
diagnosing inborn errors of metabol&and to explore metabolic differences in

fermenting and respiring yeast céfts.

1.3.1.2 Liquid ChromatograpkhMass Spectrometry

Although many of the first metabolomicsidies utilized GEMS, the growth and
availability of high performance (HP) @IS aided in the expansion of this scientific
field of study and is still one of the primary analysis methods used. While H&.6as
lower chromatographic resolution than 4S5, a broad range of metabolite classes
across a wide mass range can be detected with HPE®y choosing optimal stationary
and mobile phasé$.Moreover, there is no need to derivatize metabolites prior to
analysis. The separation of intermediate polar tgootar metabolites can be achieved by
reversed phase @IS with Cig stationary phases being the most common. Hydrophilic
interaction chromatography (HILIC) has been developed for the analysis of polar
metabolites since they are not retained on revgreese LGMS columns and elute with
the solvent fronf® Tolstikov et al. developed a HILK®IS method that separated and
detected highly polar metabolites in phloem exudates from petio@gonfrbita maxima
leaves?’ They obtained the best separation of melitds in the plant samples using an
amide stationary phase. Oligosaccharides, glycosides, amino sugars, amino acids, and
sugar nucleotides were detected. Reveeabe iompairing LGMS is typically used to
detect charged metabolitéhowever, unpairetbn-pair reagents can contaminate mass

spectrometers and reduce the sensitivity and repeatability-MS&@nalyses® Luo et al.
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employed tributylammonium acetate as an ion pair modifier in rev@isase LEMS to

identify intracellular metabolites inwedd in the central carbon metabolism (including
glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle) of
Escherichia colf® Sugar phosphates, nucleotides, and carboxylic acids were separated
and detected.C is primarily coupled toMS via ESI, a soft ionization technique that can

be negatively impacted by matrix effects of complex biological samipl€sor

metabolomics studies, positive and negative ESI modes are used to broaden metabolome

coveragé.
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Figure 1.2 Comparisorof base peak chromatograms from-MS untargeted plasma
metabolite profiling. An increase in resolution was observed with UMISCanalysis
along with a 3fold reduction in analysis time. The three circled peaks represent common
ions detected in both LL&S methods for comparison of separation performance.
Reprinted with permission from ref 73. Copyright 2009 American Chemical Society.

The introduction of UPLEMS in 20042 greatly impacted LeMS-based
metabolomics> "*UPLC-MS utilizes 1.0i 1.7 um poros column particles, and,
subsequently, requires instrumentation that can operate in thé 63000 psi pressure
range®® Typical peak widths arei12 s and result in aB35 fold sensitivity increase
when compared to HPL-®IS using 3 um particle columri Moreover, increased peak
capacity allows for higher chromatographic resolution as spectral overlap is significantly

reduced. Rapid UPLMS analyses can be achieved without resolution losses which
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increases the throughput of metabolomics stutfiééEvans et al. reduced L-®S run

time almost Fold when switching from HPL@/AS to UPLGMS for the analysis of

plasma metabolites, while still experiencing gains in chromatographic resolution (Figure
1.2)3 This advantage allowed for two UPH@S data acquisions (positive and

negative ESI modes) in less time than a single HRISmethod with better precision.
While analyzing the urine of Zucker rats, Wilson and coworkers detected ~1,500 ionic
species during a 10 min HPERS analysis, and over 5,000 ionic sj@s in a 5 min
UPLC-MS analysis* A 1 min UPLGMS analysis detected 1,000 ionic species, thereby,
demonstrating that UPL-®IS can achieve similar results as HRMS, but on a much
shorter time scale. UPL®IS has been used for metabolic profiling of huraad animal

tissues,® determining metabolic markers for hepatitis B deteéfiand hepatotoxicity’

1.3.1.3 Capillary Electrophoresiass Spectrometry

The first reported use of GBS for metabolomics research was in 260QE
separations are rapid arehuire little or no sample pretreatméhioreover, organic
solvent consumption is extremely low or nonexistent and simple-kikea capillaries
are used instead of expensive LC colurffGE is typically interfaced to MS via ESf!
which is not arivial feat owing to the low effluent flow rates from the capillary, the need
to maintain electrical contact for electrophoretic current, and the usage of electrolytes in
the buffer used during analys®<CE-MS has been used to acquire metabolic fingetgri
of human colon cancer cefland for the discovery of metabolic biomarkers for diabetic
nephropathy* Soga et al. employed GHES for serum metabolomics research that
showedb-glutamyl dipeptidesnay be potential biomarkers for liver disea$eBhe o-

glutamyl dipeptidesndicated reduced glutathione productigfthough CEMS is
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capable of detecting a wide range of metabolites, it is best suited for the analysis of water
soluble, charged metabolites. While reverpbdse iorpairing LGMS is capablef
detecting charged metabolites, CE has less of a negative impact on the MS3ystem.
Furthermore, CE has a higher theoretical separation efficiency than #PECE is
capable of analyzing metabolites in individual cells or very small sample volainesp (
to a few pL)’® Nemes et al. used GRS for metabolic profiling of six different neuron
types from theAplysia californicacentral nervous systeffThey detected more than 300
distinct metabolites from a single neuron and were able to detect chemitarities
among some neuron types. The fuséda capillaries used for GEIS analysis can be
coated to reduce electroosmotic flow, and, thus, enhance the separation windows for
specific metabolite types. Ramautar et al. used coated polybestransulfate

polybrene coated CE capillaries to ensure a larger separation window for cationic
metabolites in urine would be achievE&dut, CEMS can suffer from low repeatability
when bare fusedilica capillaries are used as temperature changes causeotesviia
migration time$? To circumvent this disadvantage, a genetic algorithm that aligns CE
MS data using accurate mass information has been de$fydsihg murine urine
samples analyzed by @HS, the algorithm showed a significant reduction in the

migration time drift.

1.3.1.4 Direct Infusion and Ambient lonization Mass Spectrometry

Direct infusion MS (DIMS) is a higthroughput MS analytical approach that
involves infusing/injecting a sample directly into the ionization source of a mass
spectrometewithout employing chromatography. Since typical analysis times are no

longer than a few minutes, DIMS is able to fingerprint a large set of samples Epidly.
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Furthermore, short analysis times ensure that instruments are stable over the duration of
all experiments, and reduced technical variability improves the subsequent multivariate
analysis® Lin et al. compared DIMS and UPLRIS for a kidney cancer serum
biomarker discovery metabolomics stidylwenty-three metabolites were found as
potential biomarkrs by DIMS analysis, while UPL®IS analysis discovered 48. Still,
DIMS had comparable multivariate classification and prediction capabilities as-UPLC
MS, but only consumed ~5% of the analysis time. The authors demonstrated that DIMS
has the potential toeba rapid diagnostic method, while URIMS can be used limitedly
when a comprehensive biomarker screening is needed. Mas et al. compared DIMS to GC
MS for metabolic profiling of yeast mutants and found that the data acquired from both
methods was complemiamy > GC-MS mainly detected amino acids and was salted
for the classification of mutants with altered nitrogen regulation, while DIMS performed
well at classifying mutants involved in the regulation of phospholipid metabolism. DIMS
is used with APbkources, howeveESI is the primary ionization technique usetf.
Although DIMS is advantageous as a rapid analysis technique for metabolomics studies,
it does have disadvantages. Isomeric species cannot be distinguished since they have the
same massd there is a possibility for isource fragmentation to occur as well as the
formation of adduct$ Furthermore, DIMS suffers from ion suppression because all
components of the sample are introduced to the ionization source at the same time.
Although DIMS is a rapid analysis method, sample preparation is still needed
before metabolomics egpments are conducted ensure the metabolites are in a liquid
state With the introduction of desorption electrospray ionization (DE®1)late 2004

and direct arlgsis in real time (DARTY in early 2005, a new subfield ofalytical
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MSd ambientionization M) was establisheddmbient ionization MS analysis is
conducted in openir and entails mini@-to-no sample preparatioAmbient ionization
MS is used to analyzamples in s, liquid, and gaseous statd$e lack of sample
pretreatment gives ambient ionization techniques an advantageousreghggabolomics
researclsince precious samples remain in their original stétéditionally, these
techniquesre hidg-throughput MS analyses, given that there is a lack of
chromatographic separation and the analysis time is mainly influenced by the time
needed to place the sample in the ionization regidheodssembled instrumentation.
Although ambient ionization MS&ia recent subfield of MS, most ambient MS ionization
methods rely on adaptations of ESI and APCI ionization mechardsnisent MS has
been utilized for metabolomics research. Cajka et al. determined the origin of selected
beers using DARTMS metabolomidingerprinting®® Pan et al. analyzed urinary

metabolites by DESMS to identify patients with inborn errors of metaboli¥m.

1.3.2 Nuclear Magnetic Resonance Spectroscopy

The advancements in NMR analysis of biological flidéded in the growth of
metabolomics; consequently, NMR remains one of the primary analytical platforms used
for metabolomics research. NMR analysis is rapid, highly reproducible, and non
destructive, thereby, allowing samples to be analyzed in their crude form. Furthermore,
NMR provides structural information for the detected metabolites. Unlike MS, NMR is
not discriminatory toward certain metabolites. Its sensitivity is not dependent upon the
chemical polarity of metabolites and, as such, can be used for broad metabolome
coverag€’ McClay et al. usedH NMR as a metabolomics screening tool for the

identification of plasma and urinary biomarkers for chronic obstructive pulmonary
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disease in addition to identifying metabolites associated with baseline lung fufiction.
Samuelsson et.aised NMRbased metabolomics to study metabolic responses of
rainbow trout exposed to the synthetic contraceptive estrogen ethinylesttdtshite

the advantages of NMR, it is still a less sensitive detection méthodViS. NMR is able
to detect nangram quantities, while MS has detection limits ranging from femtogtams
pictogramst?®102 Fyrthermore, the complexity of biological samples leads to major
spectral overlap of NMR signals from many metabolites, especially in the aliphatic
region.'H J-resolved NMR spectroscopy and twmensional methods (e.g. correlation
spectroscopy, total correlation spectroscopy, or heteronuclear single quantum conherence
spectroscopy) have been developed to increase the resolution and sensitivity of NMR
analysis.J-resolved NMR separates metabolite chemical shiftsJasaipling into two
dimensions, thereby, reducing spectral congestion and increasing metabolite
specificity19® Viant demonstrated howresolved NMR increases the amount of
extractable metabolic inforrtian from NMR spectra through the investigation of
embryogenesis in an established fish model for developmental toxic8fogy.
Metabolomicsstudies also combine both NMR and MS approaches to broaden
metabolome coverage as these detection platforms carleromg each othetH NMR

and UPLCMS analyses have been used to determine the geographical origins of
differing herbal medicines and to identify the primary and secondary metabolites

responsible for the discriminatidfr
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1.4 Biological Applications ¢ Metabolic Fingerprinting
Metabolomics has been used for a wide variety of biological applicalibose
highlighted in Sections 1.4.1 and 1.4.2 are directly related to the work presented in this

dissertation.

1.4.1 Metabolomics in Oncology (Oncometaboinics)

Cancer is currently theé'2leading cause of death in the United States but is
expected to surpass heart disease as the leading cause within the next f&% Y&éms.
the US alone, 1 in 4 deaths is due to caf®klthough the cancer death edtas been
declining for nearly 2 decades, more than 1.6 million new cancer cases and 589,430
cancer deaths are estimated to occur in 28%Although early diagnosis leads to
improved prognosis, there is a knowledge deficit regarding the biochemicakpesoof
the origin and proliferative molecular mechanisms of many types of cancers which has
also led to a shortage of sensitive and specific cancer biom&tkéPéResearchers have
looked to proteins for biomarker discovery for over a century. ¥ss$, than 10 proteins
have progressed to FB&pproved cancer diagnostic teS¥Recently, mt&abolomics has
become more attractive for cancer research due to the development of technologies that
can discriminate metabolfexgerprints among healthy, precegrous, and cancerous cells
or tissueg1®Modern interest in oncometabolomics stemmed from the late 1980s claim
that cancer could be identified by NMR spectra of blood sampléswever, this study
was found to be falsified and consequently taintediéhe of metabolomic$!? Yet, the
notion that metabolomics could aid in understanding and detecting cancer pétsisted.
Changes in metabolite levels occur after modifications of the genome and proteome

linked to cancemssociated biochemical reactionst gtill before cell morphologic
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changes associated with cantéiTherefore, examining the metabolome is appealing for
early diagnostics of cancer since this analysis should detect the initial stages of
carcinogenesis, as well as the observation of cansesffects and subsequentrdpeutic
intervention>® Moreover, metabolomics could aid in the understanding of the
mechanisms of cancer development and proliferation.

While traditional biomarker discovery studies focused on finding one marker for
diseasebiomarker panels which are typically sought after in metabolomics research have
the potential to give better sensitivity and/or specificity than single biomarkers alone. It
has been shown, for example, that combinatioksoivnbladder cancer biomarkecan
increase diagnostic sensitivity on average td 98%'* For brain cancer, Florian et al.
demonstrated that vitro NMR and HPLC metabolic profiles could distinguish between
three types of human brain and nervous system tumors (meningiomas Jastoroas,
and glioblastomas) using biomarker partétPiscriminant metabolites from NMR
analysis included alanine, glutamate, creatine, phosphorylcholine, and threonine, while
HPLC anal ysi s s haminobuyrictatidadnd derane discrimieated among
the 3 tumor types. These early findings dentated that metabolomics has potential for
the development of brain cancer tumor lineage diagitdidaxwell et al. found thatH
NMR metabolomic profiles had 85% accuracy when used to differentiate meningiomas
from other brain tumor&® This accuracy was increased to 89% when only creatine and
glutamine signals from the spectra were used for classification. Additionally, inositol
levels significantly correlated with glioma grade. For colorectal cancer, Qiu et al. found
that 5 metabolites associated wirturbations of glycolysis, arginine and proline

metabolism, fatty acid metabolism, and oleamide metabolism were linked to colorectal
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cancer morbidity using G®S and UPLGMS serum metabolomic profilés’ Nishiumi
et al. employed G®/S based serum metalomic fingerprinting to create a prediction
model for colorectal cancer based on level2-bfdroxybutyrate, aspartic acid,
kynurenine, and cystamirt#® Validation of the prediction model with test samples
resulted in 83.1%, 81.0%, and 82.0% sensitj\specificity, and accuracy, respectively.
The model also detected eastage colorectal cancer with 82.8% sensitivity.
Metabolomics is actively used to understand the molecular mechanisms by which
chemotherapeutic drugs attack and destroy cancerousncatidition to assessing the
efficacy of treatment. Coromindsaja et al. found that metformireated breast cancer
cells had significant accumulation of&mimino-tetrahydrofolate using UPL®S
metabolic profiles!® 5-formimino-tetrahydrofolate cargsactivated onearbon units
that are essential for tlte novesynthesis of purines and pyrimidin€oncurrentlyde
novosynthesis of glutathione, a folatiependent pathwagvolved inonecarbon
metabolismwas redued in response to metformiActivaton of the DNA repair protein
ATM kinase and the metabolic tumor suppressor AMRI{e not observed after
metformin treatment. The findings suggested for the first traemetformin can
function as an antifolate chemotherapeutic agent that induceSMeAMPK tumor
suppressoafter modifying theflow of carbon througtfiolaterelated onecarbon
metabolic pathwaysCholine phospholipid metabolism is elevated in many cancers, and
the increase of total cholirentaining metabolites may be used as a prigdict
biomarker for monitoring treatment efficacy in targeted therdpfe¥°Employing
combined magnetic resonance imaging and tdmeensional spectroscopic imaging,

Mueller-Lisse et al. studied the metabolic effects of hormdegrivation therapy in
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prostate cancer patieniBhere was a substanttahe-dependent decreasécholine,

credine, citrate, and polyamingshich ultimately resulteth the complete loss dhese
metabolitesn 25% of patients on lontermhormonedeprivationtherapy.Residua
prostate cancer could be detected by el eva
These findings provided both a measure to deesttiualprostatecancer and a time

course of metabolic response following hormalegrivation therapy?! Metalolomics is

also used to determine molecular targets for new chemotherapies, specifically focusing
on perturbed pathways involved in cancer growth, proliferation, and metastésigyer

et al. developed a flux balance analysis model of cancer metaltbscaptured the key
metabolic alterations that occur across many cancerdyibesfirst computational

approach for interpreting the evgrowing body of metabolomics and proteomics d&ta.
The model was used to predict 52 cytostatic chemotherapeggtsaof which 60% are

not currently targeted by known, approved, or experimental anticancer dougstid
selective treatments for specific cancers that depend on cancépggiéc down

regulation of gene exprei®n and somatic mutations were gisesented.

1.4.2 Metabolomics in Chemical Ecology (Ecometabolomics)

Chemical ecology is concerned with the chemical signals that organisms produce
and of which they respond that lead to interactions amongst themselves. These
chemicallymediated interactiahave allowed researchers to become more
knowledgeable of how organisms locate food and habitats, as well as avoid predators and
pathogens, compete with each other, and At&t€*These interactions can dramatically
influence ecosystem structurd: 2> Chemical ecology advancements have correlated to

advancements in the sensitivities of analytical technologies which have allowed for the
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discovery of many compounds utilized for chemical signaftd2*The traditional

analysis technique for the dmeery of compounds used for chemical signaling is
bioassayguided fractionation. While bioassayided fractionation can be powerful,
bioactivity resulting from unstable compounds cannot be traced back to its original
molecular source. Furthermore, compdsithat interact synergistically are not detected
since individual fractions may have no effect on bioassays even though combined
fractions may illicit a biochemical respon€éBioassayguided fractionation is also time
consuming and not higthroughput Although studies using metabolomics to gain
knowledge regarding chemicaligediated interactions are scateesearchers have

begun to exploit the advantages that metabolomics has over the traditional bioassay
guided fractionation. As all metabolites aneasured at once, unstable compounds are
more likely to be detected?*Moreover, metabolomic investigations can evaluate the
different responses a particular species phenotype may have in response to chemically
mediated interactions or environmentahnges in addition to the metabolic pathways
involved in those responsédletabolomics has been used to explore the effect of
drought on the growth o@ryza sativet?® the global responses Afabidopsis thalianao
nutritional stresse¥¥’ and the impaadf pollution exposure on the metabolism\dytilus
galloprovincialis'?® Metabolomics has been used to investigate the impact of biotic
factors on organisms as well. Choietal. fobrda f f e o y | q-lnolenicacida c i d,
analogues, and sesgand ditepenoidswere connected to the systemic acquired
resistance of tobacco to tobacco mosaic virus. Before their metabolomics study, only
genes and proteins involved in the systemic acquired resistance had been char&erized.

Schroeder et al. found that presinol, a plant lignan, is a minor component in the
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defensive secretion produced by the glandular haiPsesfs rapae cabbage butterfly
caterpillarst® The caterpillars obtain pinoresinol, which is a deterrant to ants, from their
food sourcéd cabbagdBrassica oleracer Pinoresinol proved to be more potent than
mayolenel6, a primary component belonging to the mayolene group of lipids previously
reported to be responsible for the action of the defensive secretion. Pieiris et al. used
metabolomics totady the chemicaliymediated interactions of the wood decay
basidiomycete funguStereum hirsuturwith its competitorsCoprinus micaceuand
Coprinusdisseminate$® There were increased levels of 3 metabolites including malic
acid andl,2-dihydroxyanthrguinonewhenS. hirsutunwas overgrown b.
disseminatesWhenS. hirsutumnteracted withC. micaceusdecreased levels of 7
metabolites includin@-methy-2, 3-dihydroxypropionic acid angdyridoxinewere

observed.

1.5 Traditional Mass SpectrometryBasedUntargeted Metabolomics

Workflow
Traditional MSbased metabolomics research is performed using chromatography
coupled to MS and results in complex thokmensional data seta.traditional MS
based untargeted metabolomics workflow is shown in Figurél'he3steps involved are

further described in Sections 1.5.1.5.5

1.5.1 Experimental Design
Untamgeted metabolomids an impartial, alinclusive approach for detecting as
many metabolites as possible withaypriori knowledge of their identityTheseanalyses

are thefirst stefs toward designing targeted assays to study specific metabolic pathways,

23



detect clinical disease, or monitor environmental phenonbuas,the experimental

design is of the utmost important® Experimental details that shoute established

early include predetermined sample classes (e.g., cancer wvsamogr or exposed Vs.

control) in addition to the types of biological samples needed and the number of samples

to be included in the study. Instrumentation needed for anaisedd also be

determined since its analytical sensitivity can influence sample preparation methods. An

assessment of analytical sensitivity and repeatability during metabolomics studies is

obtained through the utilization of quality control (QC) sampigs.
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Figure 1.3 A typical untargeted metabolomics workflow.
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While QCs can vary, it has been recommended that a pooling of all samples to be
analyzed serve as the QC for metabolomics stdéi€sirthermore, experimental details
must consider possibt®nfounding factors such as age, gender, and ethnicity, to ensure
that resultant multivariate analysis is not influenced by such varitBié¥Analysis

methods should have limited technical variation; if technical variation exceeds the
biological varation of the system under investigation, results from the ensuing study may
be invalid as multivariate analysis methods could solely interpret technical variation and
not useful biological information. Steps taken to ensure this include conductingteeplica
analyses, cleaning instrumentation between sample batches, and optimizing instrumental

parameters before beginning any metabolomics sttidy.

1.5.2 Biological Sample Preparation

Many types of biological samples are used for metabolomics sfudasim?® ’’
plasméi® ®urine % %% 8cerebrospinal fluid? exhaled breath condensatéand
tissue®® "> As these sample matrices also contain proteins, the primary sample
preparation method involved in metabolomics research is extraction of metabolites.
Metabolite extraction is challenging due to the chemical diversity of the metabffome.
Typically, organicsolvents are used to precipitate proteins by disrupting hydrogen
bonding to water and, subsequently, extract soluble metabolites. However, these
extraction methods may deplete certain metabolite levels, i.e. pitmbdeimd metabolites,
and suffer from matrix interferené¢® *8The solvent system used for metabolite
extraction greatly impacts the type of metabolites detected during metabolomic
analyse® polar solvents will extract polar metabolites and a nonpolar solvent system

will be biased towards extracting nonpolar metabolites. Moreover, the solvent system
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used should be able to reproducibly extract metabolites to ensure minimum technical
variation in the resultant data. Testing 14 different metabolite extraction methods for
reversegphase LEMS serum metabolomics, Want et al. found that utilizing methanol as
the extraction solvent was the most effective, reproducible metabolite extraction
method** The resultant serum extracts contained over 2,000 detected metabolic features
and less than 2% residual protein. Furthermore, methanol extracted metabolites with
varying degrees of hydrophobicity. Interestingly, combining all of the metabolite
extracton methods resulted in the detection of over 10,000 unique metabolic features,
thereby demonstrating that metabolite extraction procedures can bias the types of
detected metaboliteblsing 12 protocols to extract intracellular metabolites from Chinese
hamger ovary cells, Dietmair et al. found that the concentration of extracted intracellular
metabolites was highest with a cold 50:50 (v/v) mixture of acetonitrile and ¥ter.
Additionally, this method was able to fully extract/recover all analytes of perexental
chemical standard metabolite mixture. Metabolites can also be fractionated after proteins
are eliminated; liquidiquid extraction can be performed to further separate extracted
metabolites into polar aqueous and lipophilic organic fractidnasson et al.

demonstrated that UPLIS metabolic profiling of polar and nonpolar liver tissue
metabolite extracts benefitted fraqueous extraction with methanol/water followed by
an organic extraction with dichloromethane/methaalbhoughdried extrats had to be
resuspededin methanol/water before UPLRIS analysis“! The median coefficients of
variation for metabolic feature intensities of aqueous extracts2@% while it was
<30%for organic extracts. As the primary aim of untargeted metabafoimiodetect as

many metabolites as possible withaypriori knowledge of their identitymetabolite
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extraction protocols should be optimized before beginning a study to ensure broad

metabolome coverage.

1.5.3 Data Analysis and Metabolic Feature Extradbn

Resultant untargeted metabolomics data files contain three dimensions: (1)
chromatographic retention time, (2) masscharge ratiorf/z), and (3) abundance. The
acquired data sets are mined to extract metabolic features (unique retention/zime,
pairs) across all analyzed samples. Metabolic feature lists can contain hundreds to
thousands of featuré$? The most commonly used opsaurce software tools to
accomplish this are MZmid& and XCMS***but vendor supplied software also exists
for this pupose. These software tools support many MS data file types. Furthermore,
they can be utilized for data visualization. Data mining procedures generally include
chromatogram alignment to eliminate retention time variation across analyses that may
result fran sample carryover or column degradation when conducting large studies. After
chromatograms are aligned, peaks are detected and integrated so that peak areas can be
extracted for all metabolic features that pass chromatographic and spectral noise
thresholé and chromatographic peak width constraiff¥he resultant metabolic
feature list is deisotoped and adduct ions may be removed to ensure that metabolic
features are not represented more than once. Feature lists are aligned to match metabolic
featuresar oss al | data filesfiMZni nlee apéadkvs! ust
that none of the algorithms used for the above process disregard metabolic features that
are actually present in the raw d&t&Typically, metabolic feature lists are curated
eliminate any features that appear in blank samples and those that are not present in a

userspecified percentage of the real samples so that the metabolic features are
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representative of the samples included in the study. Lastly, the peak list idinedma

Sample data is commonly normalized to the sum of its feature abundénces.

1.5.4 Pattern Recognition by Multivariate Analysis

From a statistical point of view, analysis of metabolomic data sets represents a
significant challenge, and robust approas are necessary to handle, extract and classify
the relevant information from the vast amount of data genet4tBdta sets can be
explored through principal components analysis (PCA). PCA interprets and transforms
the metabolic features into a smalimber of principal components that capture maximal
variance in the datd? Visualization of this variance assists in the discernment of data
trends? As such, PCA allows the user to determine if technical variance, such as
instrumental drift which leads tbatch effects or sample carryover, will affect the
analysis of biological variance, in addition to pointing out sample outliers. Metabolite
concentration differences in metabolomics data sets can be as high dsl8060
Multivariate analysis technigs are sensitive to large metabolite abundances and
concentration differences even if they are not biologically relevant. As such,
metabolomics data is transformed or scaled to reduce large abundances so that low
abundances are not dwarfed and multivaissatistical analysis is more prone to identify
pertinent biological changé® Different scaling or transformation methods used include
meancentering, autoscaling, Pareto scaling, and general logarithm transforfi&tion.
Supervised classification teclguoies such as partial least squares discriminant analysis
(PLS-DA), softindependent method of class analogy (SIMEREnd support vector
machines (SVMs¥! are generally used to discriminate sample classes and assist in the

interpretation of the biologat information gained from metabolomics studi#sThese
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supervised techniques incorporate sample class membership into their analysis, so that
biological patterns in feature abundances that discriminate sample classes can be known.
As this modeling is dee with metabolic feature lists that may contain thousands of
features, it is important to couple the statistical modeling with variable selection methods
that extract the most important metabolic features needed for classification. Examples of
variable skection methods are variable importance in projection (VIP) séétes,

recursive feature elimination (RFE} genetic algorithms32 sensitivity ratios>* and S
plots®®Variable selection also allows metabolite identification to become more
manageabland eliminates noisy metabolic features that do not contribute to the

biological variation that aids in classification. Oftentintesintargeted metabolomics

studies, a more global assessment of perturbed metabolism is sought after, and metabolic
featuresare analyzed for statistically significant differences between sample groupings.
This can be accomplished by nonparametric statistical methods, analysis of variance

( ANOVA), andTest!Student 6s

1.5.5 Metabolite Identification and Pathway Mapping

Metabolites responsible for class differentiation/discrimination are identified so
that hypotheses regarding pathway perturbations can be made or identities of potential
biomarkers can be known. Many Mfased metabolomics studies employ higholution
instrumentation capable of providing accurate masses for metaboléasr&ed
elemental formulae based on the exact mass and isotopic patternsetabelites can
besearched againstetabolite databasé® such a-HMDB,*¢ METLIN ,*® and the LIPID
MAPS datdase>° Despite the growth of metabolite databases over the years, a

substantial number of metabolic features are still not matched to metabvlites.
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Metabolites are more confidently annotated when their fragmentation patterns and
chromatographic retentictimes are matched to chemical stand&ttislowever,

depending on the MS instrumentaticamdem M3ragmentation spectr@ay be difficult

to obtainfor low concentration metaboliteghose precursor ion abundansenot high
enough for sensitive quadrupcelection andubsequent collision induced dissociation
due to ion transmission loss&8If a chemical standard is not available, metabolite
fragmentation patterns can be searched ag&ie®d$/MS METLIN databas® and
MassBank!>° literature searchscan also be conducteflithough tedioussometimes
fragmentation pattermaust be manually analyzed for metabolite identity @nd
discriminate between different isobaric specdi&sce metabolite identities are validated,
databases such as KEG@nd MeaCyc! are utilized to determine the metabolic
pathways in which the metabolites play a role and the upstream biological molecules to
which they are linked. Hypotheses regarding the metabolic state of the sample classes can

then be developed.

1.6 Conclusiom

Metabolomics has ach history in clinical chemistry but is continuing to add
girth to many additional biological fields. As metabolite distributions are representative
of phenotypeMS-based untargeted metabolomics analigsapable of providingew
insight into disease detection and progression as well as imgeas knowledge of
ecological interactions particularenvironmental systesStill, shortcomings in
metabolomics have been realized and advances in systems biology data integration and
high-throughput analytical technologies are neededtii®y metabolomianformation

withthatagqui r ed fr om ot h eives amare aindugivedriapsiootop | | ne s
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perturbations to metabolic pathways since it is difficult to determine causabmslaips
within metabolic networks with only metabolomic daaditionally, chromatographic
separation methods coupled to MS are very powerful for metabolome analysey
are not without challenges for large metabolomics stédieagthy analysis tinsd so

there is still a need for developing higher throughput MS approaches.
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CHAPTER 2. ULTRA PERFORMANCE LIQUID
CHROMATOGRAPHY BREEATRROMETRY SERUM
METABOLOMICS DETECTI ON OF PROSTATE CANCER

Reprined with permission from
Zang, XY; JonesC. MY; Long, T. Q.;Monge, M. E.Zhou, M.; Walker, L. D.;
MezenceVvR.; Gray,A.; McDonald,J. F.;Ferrandez F. M., Feasibility of Detecting
Prostate Canceyb Ul t ra Per formance Liquid Chromato
Serum Metabolomicsl. Proteome Re&014 13(17), 34443454, Copyright © 2014
American Chemical Society.
Yequal contributing author

Thischapter describes research conducted by multiple persons. C. M. Jones and M. Zhou
optimized the sample preparation and URMS analysis methods in addition to

acquiring the UPLGMS data. C. M. Jones processed the URIE data. C. M. Jones, X.
Zang, and ME. Monge tentatively identified metabolites and conducted URSIMS
experiments. X. Zang confirmed all metabolite identifications, conducted chemical
standard validation experiments with assistance from M. E. Monge, and determined the
biological functiors of the identified metabolites with assistance from R. Mezencev. T. Q.
Long performed all multivariate analgs

2.1 Abstract

Prostate cancer (PCa) is the second leading cause of-calated mortality in
men. The prevalent diagnosis method is basethe serum Prostagpecific Antigen
(PSA) screening test, which suffers from low specificity, ediagnosis and over
treatment. In this work, untargeted metabolofimgerprintingof agematched serum
samples from prostate cancer patients and helthividuals was performed using ultra
performance liquid chromatography coupled to high resolution tandem mass
spectrometry (UPLEMS/MS) and machine learning methods. A metabdlasedn
vitro diagnostic multivariate index assay (IVDMIA) was developepgrealict the
presence of PCa in serum samples with high

accuracy. A panel of 40 metabolic spectral features was found to be differential with
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92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The perfaeraithe

IVDMIA was higher than the prevalent PSA test. Within the discriminant panel, 31
metabolites were identified by MS and MS/MS, with 10 further confirmed
chromatographically by standards. Numerous discriminant metabolites were mapped in
the steroichormone biosynthesis pathway. The identification of fatty acids, amino acids,
lysophospholipids, and bile acids provided further insights into the metabolic alterations
associated with the disease. With additional work, the results presentethdvere

potential towards implementation in clinical settings.

2.2 Prostate Cancer Detection

2.2.1 Current Diagnostic Methodology

Prostate cancer (PCa) is th& 2ading cause of caneeglated mortality in men
worldwide, with 30,000 deaths per year in th&.lalore! The prevalent diagnosis
method is based on the triad of digital rectal examination, blood Pr&giatafic
Antigen (PSA) measurement, and ultrasogndied prostate biopsy. Although the
introduction of PSA screening decreased mortality by 4% betw@®hdnd 2006 the
use of PSA as a diagnostic serum marker still presents several drawbacks. The
concentration of this protein in the blood stream increases during the development of
cancer, but also can be secreted as a result of benign prostatic Isypepptastatitis, or
other traumas to prostate cellEherefore, this method suffers from low specificity and
consequent ovetiagnosis and ovareatment:’ Moreover, approximately 15% of
patients with PCa have PSA values lower than the commonly us#tpmint of 4.0 ng

mL, leaving many cases undetected.
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2.2.2 Overview of Metabolic Prostate Cancer Detection

Theshortcomings of PSA as a diagnostic PCa serum biomhakerled to an
increased interest in using untargeted metahal fingerprintingprofiling to discover
new differential metabolic biomarkers that could improve the specificity of PCa
diagnosis’ Metabolic biomarkers are used as a routine tool in screening newborns for the
presence of inborn errors of metabolism by means of tandem nezsospetry*® 11
however, global metabolite profiling of PCa patients still remains at an early stage, and
there is no biomarker panel currently in use for clinical testi@grrent research has
shown some evidence of metabolic alterations associated@i. Tissue sarcosine
levels have been suggested as a potential biomarker for the aggressive form of the disease
in a metabolomic profiling study using both liquid and gas chromatography coupled to
mass spectrometry (@S and GGMS).*? Its concentratioln prostatecancesrelated
tissue specimens was highly increased during PCa progression to metastasis, but
differences in urine were much less marke@ihese results have been very prominent
but somewhat controversial as other targeted studies faitbd mttempt of
differentiating healthy individuals from cancer patients based on sarcosine concentration
in biological fluids and cancerous tiss3€$:*® The analysis of cancerous tissues by
proton highresolution magic angle spinning nuclear magnetsonance (NMR)
spectroscopy has shown a decrease in the concentrations of citrate and polyamines, and
increases in cholines, glycerophospholipids, and lactate concentrations during PCa
proliferation® 7 Increased levels of cholesterol as well as alnatin amino acid
metabolism were detected in metastatic bone samples BM&t However, all of these

studies included too few patients to offer strong leads on the metabolic alterations
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associated with PCa. A panel of plasma lipids that included pabdplethanolamines,
etherlinked phosphatidylethanolamines, and etineked phosphatidylcholines was

proposed to discriminate PCa patients from healthy groups through direct infusion
electrospray ionization tandem M%The authors demonstrated that anbination of

multiple biomarkers with multivariate analysis and various classification algorithms

yielded better predictive power for the diagnosis of PCa than univariate analysis of single
lipid species. However, the predictive power was not comparedhvatiof PSA, as this
information was not available at the time of cohort de$idviore robust metabolic

models still need to be developed for improved understanding of disease progression, and

more reliable PCa detection.

2.3 Experimental Details

2.3.1 themicals
Healthy human blood serum (S76230 mL) and acetic acid (
purchased from Sigmaldrich Corp. (St. Louis, MO, USA). Omnisolv @IS grade
acetonitrile, Omnisolv high purity dichloromethane and HPLC grade acetone were
purchased from EMD (Billerer, MA, USA). LGMS grade methanol and@opanol

were purchased from J.T. Baker Avantor Performance Materials, Inc. (Center Valley, PA,

USA) . Ultrapure water with 18.2 Mq cm resi
water system, USA) was usedto preparmo bi | e phases. Uric acid
(98%), undecanedioic acid (97%), heptadeca

were purchased from Signagddrich Corp. (St. Louis, MO, USA). Hexadecanedioic acid

(98%) was purchased from Ark Pharm, Ifidbertyville, IL, USA). Phenylalanyl
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phenylalanine was purchased from MP Biomedicals (Solon, OH, USA). Phenylacetyl
glutamine was purchased from Bachem (Hauptstrasse, Bubendorf, Sitzerland). Indoxyl
sulfate potassium was purchased from Alfa Aesar (WaltdMii\, USA). 1-stearoyi2-
hydroxy-snglycera3-phosphocholine/ lysoPC (18:0/0:0) was purchased from Avanti

Polar Lipids, Inc. (Alabaster, AL, USA).

2.3.2 Patient Cohort Description

Age-matched blood serum samples were obtained from 64 PCa patients (age
range 4965, mean age 59 * 4 years) and 50 healthy individuals (age rangé; dtean
age 57 = 7 years). At the 0.05 level, the population means were not significantly different
with the twesamplet-test. The cohort ethnicity was as follows: 28 African Aican
(24.6%); 76 Caucasian (66.7%); 5 Hispanic (4.4%); 2 Asian (1.8%); 2 Jewish ancestry
(1.8%); and 1 unknown (0.9%). After approval by the Institutional Review Board (IRB),
blood samples were collected at Saint Joseph’s Hospital of Atlanta (GA, USA) by
venipuncture from each donor into evacuated blood collection tubes that contained no
anticoagulant. Serum was obtained by centrifugation at 5000 rpm for 5 min at 4 °C.
Immediately after centrifugation, 200 uL aliquots of serum were frozen and steffll at
°C for further use. The sample collection and storage procedures for PCa patients and
healthy individuals were identical. Gleason scdr@sed on the microscopic glandular

patterns of biopsy specimewgre obtained for 61 PCa patients.
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2.3.3 Sample Prepration and Ultra Performance Liquid Chromatography-

Mass Spectrometry Protocols

A stock sample of healthy human blood serum was used to develop the serum
sample preparation protocahdultra performance liquid chromatograpmass
spectrometryUPLC-MS) method. Serum samples were thawed on ice, and protein
precipitation was performed by the addition of a mixture of acetone, acetonitrile and
methanol (1:1:1 v/v) to 100 pL of serum in a 3:1 volume ratio. Samples were-vortex
mixed for 20 s, and centrifuged B8000 xg for 5 min. After centrifugation, 800 pL of
dichloromethane were added to 350 puL of supernatant, and vakex. Following the
addition of 250 pL of deionized water, samples were vem@ed again to extract the
nonpolar lipid fraction. The ageous phase was used for metabolite analysis by UPLC
MS. Samples were randomly separated into 7 batches and consecutively analyzed. The
instrument was calibrated before analysis and solvent and sample preparation blanks
were jointly analyzed with the sangslin a random order.

UPLC-MS analysis was performed using a Waters ACQUITY Ultra Performance
LC (Waters Corporation, Manchester, UK) system, fitted with a Waters ACQUITY
UPLC BEH Ggcolumn (2.1 x 50 mm, 1.7 um patacsize), and coupled to a high
resoldion accurate mass (HRAM) Synapt G2 High Definition Mass Spectrometry
(HDMS) system (Waters Corporation, Manchester, UK). The Synapt G2 HDMS is a
hybrid quadrupoleon mobility-orthogonal acceleration tira-flight instrument with
typical resolving poweof 20,000 FWHMM/ rseand mass accuracy of 9 pprmalz
554.2615. The instrument was operated in negative ion mode with a probe capillary

voltage of 2.3 kV, and a sampling cone voltage of 45 V. The source and desolvation
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temperatures were 120 °C and 350 r&3pectively; and the nitrogen desolvation flow

rate was 650 Lh The mass spectrometer was calibrated across the ramge5F1800
using a 0.5 mM sodium formate solution prepared in 90:pfbpanol:water v/v. Data

were mass corrected during acquusitusing a leucine enkephalin reference spray
(LockSpray) infused at 2 uL mih Data were acquired in the 8F50m/z range and the
scan time was set to 1 s. Data acquisition and processing was carried out using MassLynx
v4.1. The chromatographic methfmat sample analysis involved elution with acetonitrile
(mohkile phase A) and water with @4 acetic acid (mobile phase B) using the following
gradient program:-Q min G10% A; 1:2.5 min 1015% A; 2.54 min 1522% A; 46 min
22-38% A; 6-9 min 3865% A; 912 min 6580% A; 1216 min 80100% A; 1618 min

100% A. The flow rate was constant at 0.25 mL tiior 12 min. It was increased to 0.30
mL mintbetween 12 and 16 min, and from 0.30 to 0.45 mLrbietween 16 and 18

min. The gradient was returned to itgial conditions over a period of 8 minutes after
each sample injection. The column temperature was set to 35 °C, the autosampler tray
temperature was set to 5 °C, and the injection volume was 10 pL. \M3/@1S
experiments were performed by acquiring megssctra with applied voltages between 5

and 50 V in the trap cell, wusing ultra pur

2.3.4 Data Analysis

After UPLC-MS analysis, metabolic features (retention timg, (R/z pairs) were
extracted from chromatograrasing MarkerLynx XS software. This procedure involved
chromatogram alignment, peak picking and integration, peak area extraction, and
normalization. The matrix containing sample peak areas for each feaiuréZ|Rvas

utilized to build a model for sampt#assification and to find the minimum set of
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discriminant features by means of linear support vector machines (S¥Wsk

supervised classification technique is effective at handling high dimensionality data as
those produced in the present work. &dminary classification problem, linearly

separable samples represented as a row vediad membership of two classeé&= H

or D), where H stands for healthy and D for PCa disease with lkabels for class H,

and +1 for class D.d build the classi€ation model, 70% of the samples were randomly
selected as a training set, and 30% as a test set. Within the training set, 10% of samples
were used for validation and to find the minimum set of discriminant features that
maximized accuracy in the classdtion through a recursive feature elimination (RFE)

method?! The decision function thaeparated the two classes, defined here as the

| VDMI A APCa metabolic scoreo, was as f ol
06 M®QO M MiE AEQAMR 0w p
Qe i Qe @ [ MO O6DdQO DNEDEADQ ¢

wherew andb are the weight and bias parameters that were determined from the training
set and J is the total number oafieres. The sign of the PCa metabolic score determined
which class a sample was assigned to: class H if negative and class D if positive. In this
classification function, the two classes were divided in the dataspace by a
hyperplane: ¢ @ Tthat maxinized the margins between samples of different
classes. The margin between the two classes was defined such that:

ce @ ph @ p o

~

ce @ ph @ p T
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To estimate the classification and feature selection performance, ten iterative validations
were performed to randomly select the training and test sets. The statistical significance
of the model was further assessed through hypothesiggtestipermutation tests. No
assumptions were made in this fearametric approach to hypothesis testing regarding
the data distribution, and tlpevalue was computed as the cumulative sum using the
empirical distribution. Two permutation tests were perfamsing 100 permutation
samples with the following null hypothesis:

) Null hypothesis 1: feature and labels (positive/negative) are independent (

indifference when class labels are permutated).

i) Null hypothesis 2: features are independent within eadsle. indifference

when value of each features are permutated within each class).

Ifthep-v a | u e =&.05)Jthe(nlll hypothesldo was rejected; otherwise the observed
result was not statistically significant.

Additionally, Principal Componemtnalysis (PCA) was used to evaluate the
performance of all extracted metabolic features or subsets of them in an unsupervised
manner with MATLAB R2011b (Version 7.13.0, The MathWorks, Inc., Natick, MA,
USA) and the PLS Toolbox (v.6.71, Eigenvector Resednch, Wenatchee, WA, USA).

Data were preprocessed by autoscaling.

2.3.5 Discriminant Metabolite Identification Procedure
Compound identification was attempted for the 40 discriminant features
remaining after the feature selection processes. Due todlogiiioal complexity of serum

samples, adduct ion analysis was fipetformed to ensure the unambiguous assignment
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of the signal of interest in each mass spectrum. Adductmmsesponding to SVM

selected variables that warerestigated in the mass specincluded [M- H], [M + CI]

J[M + Br], [M + CHCOOY, [M + HCOOJ, [M + CFCOOF [M + Na- 2H], [M + K -

2H], [M - H20 - H], [M + H20 - H] species, which are tigally observed in negative
electrospray ionizatiomode The expected/z values for coomon adduct speciegere
calculated and compared with the experimental values from peaks within the spectra. For
spectra in whicmo confirmatory adducts were present, the accurate mass of the
candidate neutral molecule was calculated based on the assuthpti the peak of

interest corresponded to [MH]". Elemental formulae were generated based on the mass
accuracy of the peak of interestd isotopic patternsith a mass error of 8 mDa, using
MassLynx 4.1. The list of elements included in the search@yad, N, O, P, S, CI, and

Br. The list of generated elemental formueere searched against the METLIN
databasé? HMDB, 22 and MassBari to determine the possible endogenous metabolite
candidates. ThBIETLIN MS/MS databasanda literature survey wergibsequently

used to confirm the identity of putative candidates. Fragmentation patterns were also

manually analyzed to discriminate between different isobaric species.

2.4 Prostate Cancer Detection Performance of tha Vitro Diagnostic
Multivariate Assay
UPLC-MS analysis in negative ion mode allowed the interrogation of highly
complex serum samples from PCa patients and healthy individuals, revealing a total of
480 features (Rm/z pairs). The extracted features were used to build a discriminant

SVM modée for sample classification. An optimum set of 51 discriminant features were
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found to maximize classification accuracy thro@gRFEmethod?! as illustrated in

Figure2.1.

100
= ;
> 904 chow @

- o

© .L:%ml.'q} -
o 809 e ” .
& Ji yuimA
c 70-
O 1
<
= 60 =
T
> 50

" 1 " 1 " 1 " 1 " 1
0 100 200 300 400 500
Feature set size

Figure 2.1: Evolution of classification accuracy for a validation sample dutzsgsisting
of 10% of the training samples as a function of the number of features retained. The
minimum discriminant feature set that maximizes classification accuracy is highlighted
with a dashed line.

Out of the 51 selected features, 7 were fourtabtonly present in less than 2% of the
samples; 2 features were identified as acetaminophen and its sulfite adduct, and 2
additional features were identified as adducts or fragments of other features in the subset,
and were thus removed from further coesation. The optimum panel that best
discriminated PCa patients from healthy individuals was thus reduced to 40 features,
demonstrating that the feature selection process accomplished a high reduction in

problem dimensionality.
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Figure 2.2: Visualizationof the PCa metabolic scores obtained by SVMs in one out of 10
iterative model validations based on 40 discriminant features. Green circles correspond to
PCa patients in the training set, black triangles correspond to controls in the training set,
red cirdes correspond to PCa patients in the test set built for the iteration shown, and blue
triangles correspond to healthy individuals in the test set. The dotted line shows the

projection of the separating hyperplanes

Figure2.2 illustrates h e
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of randomly selected samples that were used to construct and evaluate the classification

model, respectively. The separation of the two sample classes (H or D) was determined in

the da& space by the optimal separating hyperplane for which the margin between the

most similar samples in each group was largest, illustrated with a dotted line in the figure.
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Figure 2.3 Visualization of the PCa metabolic scores obtained by SVMs in 9 di@ of
model validation iterations. Green circles correspond to PCa patients in the training set,
black triangles correspond to controls in the training set, red circles correspond to PCa
patients in the test set, and blue triangles correspond to healthiglirad$ in the test set.
The dotted line shows the projection of the separating hyperplase: & TU

The samples with scores equal to XJoare the support vectors of the model. For the
particular crossalidation iteration illustrated in FigureZonly one sample was

misclassified as a false negative. The remaining 9 iterative vahdawith their

respective training and test sets are illustrated in F@@®dased on these 40

discriminant features, serum samples were successfully classified as cancerous or healthy

with 93.0% accuracy, 92.1% sensitivity, and 94.3% specificity. § kakies were
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calculated as the averages from 10 distinct test sets, illustrated in Rdglieesl 2.3In
addition, the statistical significance of the model was further evaluated through
hypothesis testing and, at 0.05 significance level, the null hgpist was rejected for all
permutations generatepg-¢alue = 0.0099). Unambiguously, the classifier did not yield a
better leaveoneout crossvalidation (LOOCV) accuracy rate than the original data.
These results suggest a promising approach that caunhdtiie basis for a PCa IVDMIA.
In particular, of the 40 differential features, 24 were found to increase in sera from PCa
patients, and 16 were found to decrease in PCa, as illustnefggure 2.4 1t is important
to underline, however, that the strengttthis IVDMIA resides in the combination of
multiple metabolic features using an interpretation function to yield a single, patient
specific result to be used in the disease diagnosis, and not on the average fold change of
each differential feature.

To evaluate the possible risk of data overfitting by S\VAla,simple
unsupervised approach was also used to examine the dataset. PCA score plots were
generated for both the 40 discriminant features set obtained by SVMs and the starting set

of 480 features. lgure2.5shows the results for each case.
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Figure 2.4: Fold change of average peak areas of each discriminant feature. Positive fold
changes are calculated as the ratio of average peak areas between PCa patients and
healthy individuals, and negative fatlanges are calculated as the negative ratio of
average peak areas between healthy individuals and PCa patients. Features are labeled
with their codes.

Using the best 40 features, three principal components containing 33.6% of the total
variance providd a good degree of separation between claaselfustrated in Figure

2.5a. Sample separation in the PCA score plot was mainly achieved by the contribution of
PC3. Loadings for PC3 are displayad-igure 2.B. InterestinglyFigure 2.5 shows that
PCAdoes not provide any distinguishable clustering when applied to the initial set of 480
features, further supporting the use of RFE and SVMs when handling high

dimensionality data volumes as those in the present work. Given the clustering observed
in PCA when using the 40 discriminant feature subset, the risk of the high classification

accuracy of SVM models being a product of overfitting is greatly diminished.
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Figure 2.5 Principal Component Analysis (PCA). A: PCA score plot using only the 40 discrinfestares obtained by RFEVMSs.
B: Loadings plot obtained for PC3 using the 40 discriminant features, each labeled with their code. C: PCA score plbiabEtie
of 480 features. Samples from PCa patients are illustrated with red circles andsdaonpleealthy individuals are illustrated with
blue circles.
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2.51In Vitro Diagnostic Multivariate Assay VersusProstate Specific Antigen
Diagnosis
The Gleason scores for the PCa patiesusymarized in Table 2.indicate that the
most common tumor pattes presented by the patients derived from moderate to

aggressive cancers.

Table 2.1: Gleason scores for PCa patients.

Gl eason Su # of pat(i%g

3+36 = 13203)
3+47 = 27, 2Q)4
3+36, =tert = 6; (9.4)
4 +37 = 3, 4.7
3+4=7 tert=5 2; (3.1
4+3=7; ter 2; 3.1
(R) F+4(1=)7 4- 1, 1.6
4+5=9 1, 1.6
5+49 = 1; (1.6)
(R)3+4=7; tert= 5(L) 3+3=6 1; (1.6)
(R)3+4=7; (L) 4+3 = Ttert=5 1; (1.6)
3+5=8; tert=4 1; (1.6)
(R) ®+3(1=)9 4- 1; (1.6)
(R)3+3=6; (LB+3=6 tert=4 1,16
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However, the PSA test performed at surgery did not follow this histological evidence for
the entire PCa cohort, as 33% of patients with PGa2®) had PSA values lower than

the commonly used cutoff point of 4.0 ng tiFigure2.6 compares PSA and IVDMIA
results in terms of true positive and false negative outputs, highlighted in red and black,
respectively. The IVDMIA outputs provided by the randorsdjected 10 test sets are
visualized as box plots in the figure, and show thatlVDMIA was able to correctly

predict 100% of the true positives that were incorrectly diagnosed as negatives by the
PSA test. The false negative results provided by the IVDMIA derived from one sample
that was misclassified in all test sets and 4 sasblat were misclassified in at least one
test set. The classification performance obtained with this cohort shows promise towards
prostate cancers that would go undetected by the PSA method. The use of multiple
discriminant features by this metabolic IWDA yields higher predictive power for PCa

diagnosis than the univariate analysis of a single marker such as with the PSA method.
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Figure 2.6: Comparison of IVDMIA vs. PSA diagnosis performance for 62 PCa patients.
True positive and false negative outipare highlighted in red and black, respectively.
The cutoff point of 4.0 ng mtused in PSAbased diagnosis is indicated with a dotted
line. The IVDMIA score output is presented as box plots in the figure, each of which is
generated by results obtainted each of the 10 test sets where each sample was selected
for validation. No comparison is shown for 2 of the 64 PCa samples as they were not
randomly selected in any of the 10 cresdidation iterations.

2.61In Vitro Diagnostic Multivariate Assay Potential in Clinical Applications

To determine the fraction of samples in which the discriminant features were
present, and to evaluate the feasibility of implementing the PCa IVDMIA in clinical
laboratory settings through targeted trigléadrupole masgectrometrybased assays,
smaller subgroups of the optimum 40 discriminant features, subsequently referred to as

ipanel A0, w@abe22 nvestigated
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Table 2.2: Discriminant feature (sub)panels for PCa detection.
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These subpanels were chosen to provide the minimum number of features that
collectively captured metabolic PCa patterns with a high level of accuracy, specificity

and sensitivity. The selection of these additional subpareddased on the fraction of
features that were present in 50, 70 or 90% of the entire sample cohort, in either PCa
patients or healthy controls. Tal#e2 summarizes the different panels constructed

following these criteria, with their corresponding sulzgetiscriminant features. These
panels were used to build new SVM models, and eraldated to provide average

values of accuracy, specificity and sensitivity fromid@ependent randomiselected

training and testing sets. Thirty eight out of 40 disanaint featues were present in more
than 5046 of healthy controls (Panel B) and 35 ou#iBfwere present in more than%0

of PCa samples (Panel C), providing similar accuracy, specificity, and sensitivity as panel
A. When the criterion for feature presengas made more stringent, from panel A to

panel G; the accuracy, specificity and sensitivity decreased by only ~10%, suggesting the
robust biological role that the detected features might hawaher words, the different
feature subpanels were not Higkensitive to a reduction in the number of discriminant
features, suggesting that the smaller number of metabolites contained in subpanel G
could still be potentially used to build a more focused, simpler IVDMIA for PCa

detection in a clinical setting.olfurther test this finding, another SVM model was

created with only those 13 features that could be confidently assigned to metabolites in
subpanel G by HRAM MS and MS/M34dble 2.3. It was found that this model still
provided high c¢classiycation sensitivity (8
(85.0%). The mss spectrometric assay fommdelof this typewould be much simpler to

implement in a targeted fashion due to the cedimumber of transitions that aRILC-
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MS/MS triple quadrupole method would require, allowing higher analysis throughput and
minimizing cost.

The set of 40 SVM weights obtained for panel A from the optimal classification
model are shown in Figu&7. The fgure shows the individual contribution of each of
the 40 discriminant metabolic features in the computed PCa metaboliciseotiee

weight of each discriminant nadgolite in the classification.
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Table 2.3 IVDMIA performance for identified metabités.

Accur Speci Sensi Discrin . ) i

Feature Su ( %) ( %) ( %) I:eaturEDlscrlmlnant
l denti fi ed 60368 47 11 5T 7,65
HRAM MS, an ©8°-0 80.3 88.3 13 3482984098673
6036847 1157 7.65
ldeniinf Pade S8 58 09 58 1S
HRAM Mg oS 91.1 91.3 90.9 31 2283337850110,
’ 2126444742898 3

153621242

Il denti fied
HRAM MS, an

and confi 76.3 70.6 79.09 10 6 0367138432116

17,42853
chomat ogr apl
standard
P 60, 36, 84, 7
Laent)lied 343, 429, 384
Wit h xénobi 90. 2 90. 7 89. 7 28 22,8337,850110,7
mar B&rxcl ud 21,2064447,4280983
152342
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Weights for Panel A

Discriminant metabolic features

Figure 2.7: Weights for the 40 discriminant metabolic features in panel A. Metabolic
features are labeled with their codes.

It is interesting to note that some features witthiwigights in the SVM model, such as
feature 60, 444, 409, or 429, also have large absolute values in the PC3 loadings plot
(Figure 2.%B). Figure2.8shows a comparison of the different sets of weights for the

different panels described in Tal@, sortedrom the largest to lowest value in panel A

and expanded to panels@ The figure shows that the sign of the weights generally
remained the same across the panels, in agreement with the fact that accuracy, specificity
and sensitivity were highly consereven after restricting the presence of discriminant
features to those present in a majority of the patients within the cohort. It was seen that
for the most restrictive panels, those features with weights equal ta.eetbose that

do not contributéo the panels, are those with lower weights in panel A.
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Figure 2.8: Weights for the discriminant metabolic features froamels AG (indicated
in Table 2.2 obtained by the classification model using the total cohort.

2.7 Identification of MetabolitesUsed in theln Vitro Diagnostic Multivariate
Assay

Once the robustness of the model was established, chemical identification of the 40
discriminant metabolic features was attempkgure 2.9exemplifies the procedure
utilized for identification of featte 60. Figure2.9aand 2.% show the different base
peak intensity (BPI) chromatograms obtained for serum samples of a typical PCa patient
and healthy individual. As differences between metabolomes, and the corresponding
features in the BPI chromatograarsse both from the presence of the disease and also
from differences in diet, lifestyle, and the numerous other fa¢tatsemical
identification of endogenous metabolites was attempted only for the 40 discriminant

metabolic features.
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Figure 2.9: Bas peak intensity chromatograms obtained for typical serum samples from a patient with PCa (A) and a healthy
individual (B). (C): Extracted ion chromatogram fofz 187.0968 + 0.0050 generated from a PCa patient sample (red line) and a
healthy individual (kack line). These were generated from the data shown in A and B, respectively. (D): Adduct ion analysis for
discriminant feature ah/z 187.0968. Mass errors are calculated with respect to the theoretical values for azelaigHaeh).C

Tandem MS speaim for them/z 187.0968 precursor ion using a collision cell voltage of 15 V. The matching of tandem MS

fragmentation patterns between the experimental spectrum and the metabolite candidate is illustrated by the masdaedrascalcu
differences withhe values in the METLIN database.
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The high resolving power of the tinaé-flight analyzer used allowed generating highly
selective extracted ion chromatograms for each discriminant feature, as illustrated in
Figure2.9c. Adduct ion analysi@Figure 2.9l) was used to ensure the unambiguous
assignment of the signal of interest in the electrospray ionization mass spectrum, and the
isotopic pattern and accurate masses were used to generate a list of possible candidate
elemental formulae that were searchedrgjalatabases. Moreover, UPIMS/MS
experiments were performed to confirm the identities of these candidate metabolites
responsible for classification. Tandem MS spectra were compared to those in databases
or literature, and fragmentation patterns were uialiy analyzed as well (Figu29e).

Finally, standards of all commercialfwailable metabolites were subject to UPMS

and MS/MS to verify the identity of the candidates by retention time and mass spectral
matching. Of the 40 spectral features founganel A, 31 were identified by HRAM MS

and MS/MS, with 10 further confirmed chromatographically by standards. Thé3kt
metabolites provided 90.9% sensitivity, 91.3% specificity, and®®hdcuracy; whereas

the 10 differential metabolites confirmed $tandards, wheoonsidered alone, provided
79.9% sensitivity, 70% specificity,and 76.86 accuracyTable 2.3) It should be noted

that among the 31 identified metabolited }aAmino-1H-pyrrole-1-hexanoic acid (feature
code 63) had the highest mass error (11.4 mDa), and its identity should be viewed as
tentative. However, a classification model built using the@s80 metabolites excluding

feature 63 still provided 9298 sensitivity, 89.2% specificity and 9¥2accuracy.
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2.8 Biological Relevance of thén Vitro Diagnostic Multivariate Assay
Metabolites
Table 24 summarizes the results from the chemical ides@tfon workflow
described above for the 40 discriminant features. Those metabolites with
chromatographic identity confirmation by retention time matching with standards are
shown in bold, and can be therefore viewed as the ones with the higher confidnece i
panel. Several discriminant metabolites were identified as fatty acids, amino acids,
lysophospholipids, and bile acids, suggesting alterations in their respective metabolism.
Previous findings have shown abnormality in fatty &Bigind amino acitf2" 28
metabolism in PCa patients. Alterati-ons
oxidation pathway have been suggested to provide bioenergy for abnormal cell
proliferation?® Among the different lysophospholipids identified that may play a role in
cell signaling?® lysoPC(18:2) and lysoPC(18:0) have been reported as biomarkers for
PCa detection within a panel of plasma lipigislric acid has also been suggested to be a
disease risk marker due to its pnflammatory propertie¥) 3tand a prospeate
epidemiological study demonstrated positive association between serum uric acid levels
and risk of PCa developmetitin addition, elevated concentrations of serum uric acid
are often found due to tumor lysis syndrome observed as a result of caraeyther
Interestingly, indoxyl sulfate, a toxic product of dietary tryptophan metabolism that
accumulates in the blood of patients with impaired renal funétiaas also identified

among the 40 discriminant features.
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Table 2.4: Results for the chemad identification workflow for various discriminant features. Metabolites confirmed by retention time
matching with commercialhavailable standards are highlighted in bold font.

Feature Ret_entlon Elemental Theoretical am Tentative Metabolite
time m/z lon type P Ref. Panel
Code (min) Formula m/z (mDa) Identification
60 510 187.0970  [M-H] CoH1gOs  187.0970 0.0 nonanedioic acid B G
(azelaic acid)
36 0.63 167.0206 [M-H] CsHaN4O3 167.0205 0.1 uric acid 30-32 G
71 1.95 203.0817 [M-H] CutH12N202  203.0821 04 tryptophan 2136 G
384 11.70 508.3403 [M-CHg] C26HsaNO7P  508.3403 0.0 lysoPC(18:0/0:Q 19,37 G
- 13-0x0-9,11- 38
84 8.41 223.1331 [M-H] C13H2003 223.1334 0.3 tridecadienoic acid G
3-
157 7.06  273.1703 [M-H] C14H260s 273.1702 0.1  hydroxytetradecanedio 3%%° G
acid
6-
176 7.61 287.1854 [M-H] C15H280s 287.1858 0.4  hydroxypentadecanedioi G
acid

5-(2-methylpropyl}2-
oxooxolane3-carboxylic
55 5.21 185.0812 [M-H] CoH1404 185.0814 0.2 acid 41 G
5-butyl-2-oxooxolane3-
carboxylic acid

lysoPE(0:0/18:2) 42

343 9.77 476272 [M-H]" CosHaNOP  476.2777 05 ySOPE(18:2/0:0) G
429 9.80 578.3450 [M+CH3sCOO] CaeHsoNOP  578.3458 0.8 lysoPC(18:2/0:0) 19 G
409 546  541.2639 [M-H] CoHa011 541.2649 1.0  cortolone3-glucuronide 4% G
386 6.92 511.2900 [M-H] C27H4400 511.2907 0.7 pregnanetriol glucuronidt G
173 8.19  285.1920 [M-H] CioH2602 285.1855 6.5 androstenedione 45 G
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Table 2.4(continued).

393 8.12 517.3015 - - - - G
438 7.04  600.2572 - - - - G
147 055  266.8028 - - - - G
82 8.12  215.1281 3 - - 3 G
43 9.56 1711383  [M-H] CioH2002 1711385 0.2 decano'gc?g)'d (capric F
223 6.77 3311753  [M-H] CiHosO; 3311757 0.4  menthol glucuronide — 4e0
citronellol glucuronide
63 719 1951020 [M-H]  CiHisN:0, 195.1134 11.4 "Uarr‘]“”c’lH.' pyrrole-1- F
exanoic acid
376 9.63 5043081 [M-CHsj  CaeHsoNOP  504.309 0.9 lysoPC(0:0/18:2) 22 F
412 8.86  545.3323 - - - - F
211 406 3111387 [M-H]"  CieHaN2Os 311.1396 0.9 phenylalanyl 8 E
phenylalanine
3b,-16U
250 5.70 383.1521 [M-H] CioH2806S  383.1528 0.7 dihydroxyandrostenone E
sulfate
107 540 2450480  [M-HJ CiHuOsS 2450484 0.4 o sntzeétn*;‘étlfl ﬁ ’J‘l’ S I -
76 2.64 212.0016 [M-H] CsH/NO4S  212.0018 0.2 indoxy! sulfuric acid 12,51 D
9,10dihydroxy-12Z,15%
octadecadienoic acid
(9,10DIHODE)
12,13dihydroxy-97,157%
214 9.87 311.2211 [M-H] Ci18H3204 311.2222 1.1 octadecadienoic acid °*% D

(12,13DiHODE)
15,16dihydroxy-927,127
octadecadienoic acid

(15,16 DIHODE)
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Table 2.4(continued).

27-nor-5 kcholestane

444 6.82  613.3583 [M-H] CsHs4011  613.3588 05 3U, 70, 1-gedkgl 2 5% D
glucuronide
174 9.35  285.2059 [M-H]- C16H3004 285.2066 0.7 hexadecanedioic acid ¢ C
128 2.69 263.1023 [M-H]- CiH1eN204  263.1032 0.9 phenylacetylglutamine 5758 C
153 14.80 269.2475 [M-H]- Ci17H3402 269.2481 0.6 heptadecanoic acid 37 C
n{ ( 3 U, -BHydrokyp
24-0x0-3-
(sulfooxy)cholar24-yl] -
glycine 3
398 706 5282630  [M-H]  CaxHaNOsS 5282631 01 M (3U.-SHydokd s
24-0xo-7-
(sulfooxy)cholar24-yl] -
glycine
glycochenodeoxycholate
3-sulfate
5-isopropylt2-
93 6.36  229.0534  [M-H] CioH1404sS  229.0535 0.1 methylphenol 60 C
sulfate (@rvacrolsulfate)
360 8.16 489.2692 - - - - C
448 8.51 621.3273 - - - - C
364 557 4952228  [M-H]" CosHaO1o 495229 02  °-carboxyUchromanol o g
glucuronide
21 516  144.0471 [M-H] CoH/NO 144.0449 2.2  indole-3-carboxaldehyde ©2% B
404 7.28 537.2501 - - - - B
androsterone sulfate
242 7.66  369.1740  [M-HJ CiH:0sS  369.1736 0.4  ° dlihydrotestosterone gues 5

sulfate
etiocholanolone sulfate




Table 2.4(continued).

237 11.34 365.2680 - - -

Abbreviations: lysoPC: lysophosphatidylcholine; lysoPE: lysophosphatidylethanolamine
*not in HMDB

78



The reason bend elevated indoxyl sulfate serum of PCa patients is not yet fully
understood; nevertheless,gmephrotoxic metabolite likely contributes to the disease or
its complicationszia multiple mechanisms, including enhanced oxidative stress due to
decreased levels of glutathiotte.

Perhaps the most salient finding resulting from the chemical idetibfica
workflow is that many differentiating metabolites belong to the steroid hormone
biosynthesis pathwayhe pathway supplies androgéffSss uch as test ostero
dihydrotestosterone, to support the growth of andratpgendent PCH.An average
increase of pregnanetriol and androstenedione concentrations in PCa serum suggests that
there is a metabolic alteration of the steroid pathway that mimics congenital adrenal
hyperplasia (CAH), a metabolic disease that is accompanied by androgen excess due to
the diversion of 1-hydroxyprogesterone into the pathway for androgen biosynttfe&is.
In addition, the average decrease of azelaic acid concentration in serum of PCa patients,
an i nhi bddiceasé®saifg g3t s t he -edustdse) dnierzymiethatn o f
catalyzes the synt he s-ddibydrotdstosteromel®mipgortBGat i ve a
growth. Indeed, azelaic acid, which has a large contribution in the models, has been
postulated to be a potential antitumoral agent.

Table 24 also shows the identification of several xenobiotics that can be grouped
into two classes accordjrto their origin. Menthol, citronellol, carvacrol, and t
butylhydroquinone are most likely related to food components. Assuming that both PCa
patients and healthy individuals were equally exposed, on average, to food

components/additives, their differenetabolism could explain the different levels of
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these xenometabolites in serum. For example, the terpenoids menthol, carvacrol and
citronellol are metabolized by CYP2A6,”2which is also involved in steroid

metabolism. As a result, average lower cotreions of these terpenoids relative to
healthy individuals may be suggestive of higher activity of CYP2A6 in PCa patients,
supporting inclusion of these xenometabolites in the models. The second group of
xenobiotics comprises indeR:carboxaldehyde arfi-carboxyU-chromanol

glucuronide, which could possibly result from the consumption of dietary supplements
used by cancer patients. Seiedicating with an ovethe-counter indole3-carbinol (I13C)
supplement may explain the increased average concentwéiiminle 3-carboxaldehyde

in PCa serun¥ Indeed, indole3-carboxaldehyde demonstrated activity against prostate
cancer in botlin vitro andin vivomodels®®* Si mi | -tocophgrol, a tbrm of vitamin E
and a precursor of-8arboxyU-chromanol glucumside, have been suggested to influence
the development of PCa due to their antioxidant act¥iys humans do not normally
produce indoles-carbaldehyde or &arboxyU-chromanol, and their consideration in the
models may reflect dietary supplementatitffierences rather than endogenous
metabolic differences, PCa detection was attempted using 28 of the 31 identified
metabolites, excluding from the SVM classification model two metabolites which might
result from dietary supplementation and one metabwiite highest mass error
aminc1H-pyrrole-1-hexanoic acid). This modified dsification model provided 89.7%
sensitivity, 90.7% specificity, and 90@&accuracyTable 2.3) indicating the three
excluded metabolites had little effect on the overabhagerformance, as supported by

their low weights in panel A (Figuz7 and Figure2.8).
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2.9 Conclusion
Thestudy presented heshiows the combined application of UPMS/MS and

machine learning methods to develop a metabbhised IVDMIA that predictthe

presence of PCa in serum samples with high

accuracyA panel of 40 metabolic spectral features was found to be differential with
92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. Of further signigicéne
detection performance of the IVDMIA was proven to be higher than the prevalent PSA
test; highlighting that a combination of multiple discriminant features yields higher
predictive power for PCa detection than the univariate analysis of a singlermafithin

the discriminant panel, 31 metabolites were identified by HRAM MS and MS/MS, with
10 further confirmed chromatographically by standards. Fatty acids, amino acids,
lysophospholipids, and bile acids have been identified among the discriminant
metaolites, suggesting alterations in their metabolism. Additionally, several metabolites
were mapped to the steroid hormone biosynthesis pathway. These observations
demonstrate some of the plausible metabolic alterations in PCa, and provide further
insight nto the biological pathway changes associated with the disease. The combination
of multiple metabolites that yield a single, patigpecific result for disease detection is

the strength of the IVDMIAresented her&Vhen the assay is based on the 28 ifiedt
diseaseelated metabolites, PCa can still be detected with 89.7% sensitivity, 90.7%
specificity, and 90.2% accuracy. If higher throughput analysis, and lower analysis cost
and complexity are desired, 13 metabolites that were found to be prese#i of the

entire sample cohort would stild]l provi de
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(80.3%), and accuracy (85.0%) for cancerous and healthy samples. Therefore, this assay
shows promise towards its implementation in the clinical laboratetting once it is

fully validated by the examination of a larger patient cohort through targeted assays.
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CHAPTER 3. ULTRA PERFORMANCE LIQUID
CHROMATOGRAPHY -MASS SPECTROMETRY SERUM
METABOLOMICS DETECTION OF EARLY -STAGE OVARIAN
CANCER

Adapted with permission from

Jones, CM.; Monge, M. E.; Kim, J.; Matzuk, M. M.; Fernandez, F. M., Metabolomic
Serum Profiling Detects Eari$tage HighGrade Serous Ovarian Cancer in a Mouse
Model.J. Proteome Re2015 14 (2), 917927. Copyright © 2015 American Chemical
Society.

Jones, CM.; Gaul, D.; Long, T. Q.; Monge, M. E.; Walker, L. D.; McDonald, J. F.;
Fernandez, F. M., Ultra Performance Liquid Chromatograyhgs Spectrometry

Characterization of Serum Metabolic Phenotypes of an £ddge Ovarian Cancer Pilot
Patient Cohort. In Prepation

This chapter describes research conducted by multiple perdoiksn collected blood
serum samples from DKO and control mi€e M. Jones and M. E. Monge optimized all
sample preparation protocols and UPLMS analysis methods and processed tReC
MS data for the mouse model study. D. Gaul processed the- W _data for the human
cohort study. T. Q. Long performed the support vector machine multivariate analysis for
the human cohort study. C. M. Jones performed all PCA anelAL Biwultivariate
analyses, conducted all UPL-RIS/MS and chemical standard validation experiments,
and determined metabolite identities and biological functions.
3.1 Abstract

Ovarian cancer (OC) is thd'feading cause of caneeglated deaths for U.S.
women, yet it has thieighest mortality rate amongst gynecological cand¢os:-specific
symptoms, combined with a lack of early detection metlaodsighly specific
biomarkers contribut to late diagnosis and lowy®gar survival rateghus,an effective
screening stratedgyr early diagnosis would be particularly advantageous sinyaab

survival rates can be as high as 90%o approaches were takeninvestigate metabolic

patterns for earlyetection of this deadly disease. FiBicer-Ptendouble knockout
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(DKO) mice hat phenocopy many of the features of metasagic-grade serous
carcinoma iGSQ observed in women were studi¢tiGSC is the most common and
deadliest subtype that results in 90% of OC de&thmg ultra performance liquid
chromatographynass spectronigy (UPLC-MS), serum samples from 14 eadtage

tumor (ET) DKO mice and 11 controls were analyzed in depth to screen for metabolic
signatures capable of differentiating eastpge HGSC from controls. Iterative
multivariate classification selected 18 nimihtes that, when considered as a panel,
yielded 100% accuracy, sensitivity, and specificity for classification. Altered metabolic
pathways reflected in that panel included those of fatty acids, bile acids,
glycerophospholipids, peptides, and some digtagtochemicals. These alterations
revealed impacts to cellular energy storage and membrane stability, as well as changes in
defenses against oxidative stress, shedding new light on the metabolic alterations
associated with earl®C stages.

In the secon@pproach, serum metabolic phenotypes of an-astalye OC pilot
patient cohort were characterized. Sesamples were collected fropd early-stage OC
patientsand40 healthy women, and subsequerghalyzed usingy PLC-MS.

Multivariate statistical analysesmploying support vector machine (SVM) learning
methods and recursive feature elimination (RFE) selected a panel of metabolites that
differentiated between ageatched samples with 100% cressdidated accuracy,
sensitivity, and specificity. This smalllpi study demonstrated that metabolic
phenotypes may be useful for detecting eathge OC and, thus, supports conducting

larger, more comprehensive studies.
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3.2 Ovarian Cancer

3.2.1 Overview

Ovarian cancefOC)is the5" leading cause of caneeslateddeaths for U.S.
women! In particular, highgrade serous carcinoma (HGSC), the subtype with the
highest occurrence and mortality, is responsible for 90% of all ovarian cancer deaths, yet
its origin and early progression are poorly understdodue to theunavailability of
reliable screening tests in clinical practice and the asymptomatic course through early
stages of the disease, the majority of ovarian cancer cases (68%), including most HGSCs
(>95%), are diagnosed as advanced, metastatic disease witBuwival> ® The5-year
OC survival ratefor all cases diagnosed during 262309was 4%.” When the cancer is
confined to the ovary at diagnosis, however, thye&r survival is over 3.2 Early

detection is thus crucial in reducing ovarian cancertaity.

3.2.2 Current Diagnostic Methodology

The conventional evaluation of OC patients includes physical examination,
transvaginal ultrasonography, and measurement of levels of the serum tumor biomarker
CA125. However, this marker is of limited utilitynsie it can also be elevated by
conditions unrelated to ovarian cancer, especially in premenopausal W&eeent
dat& °have suggested that the OVfAlest, the first proteirasedn Vitro Diagnostic
Multivariate Index Assay (IVDMIA) approved by théR, may improve, along with
physician clinical assessment, detection rates of malignancies among women with pelvic

masses planning to undergo surgery. Still, OVAL is not yet an OC screening or definitive
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diagnostic test. Furthermore, whetligis assay cadetect @ at an early time point still
remains unclear® and a more effective screening strategy for early diagnosis weuld b

particularly advantageous fpatients.

3.2.3Dicer-PtenDouble-Knockout Mouse Model

Traditionally,OC has been thought to origite in the ovary. The fallopian tube,
however, has recently been proposed as an alternate site of origin, especially in women
carrying hereditarBRCAmutations:>'> A mouse model of HGSC where disease
originates through this alternative route was theeetieveloped by conditionally
disabling two critical geneficer andPten(Dicer 1o¥fox ptenfloxfiox Amnpr2¢re) jn the
fallopian tubes? In theseDicer-Ptendoubleknockout (DKO) mice, HGSCs originate
and progressively develop in the fallopiabalbefore spreading to the ovary, and then
metastasize throughout the abdominal cavity, causing ascites, and eventually killing the
mice. Besides replicating the clinical biology of human HGSC in that tumors are
characterized by complex papillae and irlagglands forming slitike spaces in
addition to solid sheets of tumor cells with pleomorphic nuclei, prominent nucleoli, and
elevated mitotic activitydisease in thseDKO mice also shows closrolecular
similarities with human HGSCs, such as upregadblate receptor F6Irl), CA125
(Mucl6), secreted phosphoprotein3pfp2, and chemokine gengtherefore providing a
simpler, betteccontrolled,model to study eartgtageOC which could potentially be later

translated to humans.
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3.2.4 Metabolic Ovaiian Cancer Detection

During the last decade, metabolomics has emerged as a promising discipline
providing tools to investigate characteristic metabolic patterns of disease, with one of its
goals being the discovery of biomarker panels for early diagridass spectrometry
(MS) and'H nuclear magnetic resonance (NMR) spectroscopy in combination with
multivariate statistical analysis have been utilized to investigate ovarian -Gadiceed
metabolome alterations in urif€?° plasma?, serum??¢, and tissas2’?° Li and
collaborators, for example, identifiedttyptophan, lysoPC(18:3), lysoPC(14:0), and 2
piperidinone as plasma metabolites discriminating between epithelial ovarian cancer
(EOC) patients and women with benign ovarian tumbBisruption tonucleotide,
histidine, tryptophan, and mucin metabolism pathwagsand changes in amino acids
involved inde novapurine nucleotide synthesis, have also been rep&tédwever, and
despite these advances, no widatgepted strategy for metaboloimasedOC screening
has yet emergetd: **Moreover, only a very small number of studies have focused on
earlystage OC detection. Odunsi and collabor&fpfer example, used NMR
spectroscopy to investigate metabolome changes ingtady patients; indepdent
validation of their reported predictive statistical model resulted in 95% specificity, 68%
sensitivity, and an area under the Receiver Operator Characteristic Curve (AUC) of
0.949. Additionally, Xu and collaborators suggested the serum metadboli-5 b
cholestanes,7,12,24,2%entolglucuronideas a potential biomarker for stage | OC
(specificity: 77%; sensitivity: 70%; AUC: 0.758) A hindrance plaguing this field has

been the poannderstanding odarly tumor development mechanisnmsadditionto the
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practical difficulty in obtaining access to biological fluids from sufficieitdsge, welt
matched earhgtage patientohorts.

Previous work reported by our group explored the feasibility of usindpdt®d
metabolomics to detect ovarian cantef® While successful, these studies mainly
involved latestage (lII/IV) OC patients in which metastasis had occurred, which are
easily detectable because the disease is systemically widespread. The current work aims
to build upon the previous studies byping the metabolome to determine phenotypic

fingerprints associated with eardyage OC.

3.3 Experimental Details

3.3.1 Chemicals

Healthy human blood serum (S7023 mL) was purchased from Sigrmddrich
Corp. (St. Louis, MO, USA). FMOC-Proline was pragared from Chemrimpex
International, Inc. (Wood Dale, IL, USA). Leucine enkephalin was obtained from ERA
(Golden, CO, USA). Arginyblycyl-aspartic acid, {Fucose, ERhamnose, 1;5
Anhydrosorbitol, BFucose, ERhamnulose, -Deoxy-D-glucose, and-Deoxy-D-
galactose were acquired from Sigrldrich Corp. Bilirubin and suberic acid were
obtained from Alfa Aesar (Ward Hill, MA, USA). Ricinoleic acid was purchased from
MP Biomedicals (Santa Ana, CA, USA). Docosahexaenoic acid -axd 3tearic acid
were acquiredrbm Cayman Chemical Company (Ann Arbor, MI, USA). LysoPE(16:0)
was obtained from Avanti Polar Lipids, Inc. (Alabaster, AL, USA):MGS grade

methanol was purchased from J.T. Baker Avantor Performance Materials, Inc. (Center
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Valley, PA, USA). Ultrapurewate wi t h 18. 2 Mg c¢cm resistivit)

Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to prepare

chromatographic mobile phases.

3.3.2Dicer-PtenDouble-Knockout Mice

Dicer-PtenDKO (Dicer'o¥fox pterflodfiox amhrZre™*) mice weregenerated by
mating malesDicer’®/ox pterfo/iox AmhrZ'®™) with females Dicer®/1ox pterfloxfioxy,
FemaleDicer'®¢flox pterflodflox (3 genotype not carryilymhrZ™™) mice were used as
controls.Mice were housed in a vivarium with a ¢miled temperature of 21 °C. They
were fed 5053 Irradiated PicoLab® Rodent Diet 20 and had access to drinking water
supplied in bottlesDicer!®¥ox ptefloXiox AmhrZe*DKO mice were sacrificed for this
study in accordance to the animal protoqupraved by thénstitutional Animal Care and
Use Committee (IACUCat Baylor College of Medicine.

Blood samples were collected from @&rly-stage tumorKT) and 10 latestage
tumor (LT) Dicer-PtenDKO mice Qicer'¥ox ptefloXfiox amhr2e™ in addtion to 21
control mice Dicer’™™/ox pterfo/iox) “Murine blood samples were collected into serum
separator tubes. Serum was obtained by centrifugation at 14,000 rpm for 5 min at room
temperature. Immediately after centrifugation, 200 pL serum abguete frozen and
stored at80 °C untilultra performance liquid chromatographmass spectrometry

(UPLC-MS) analysis.
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3.3.3 Human Cohort Description

Age-matched blood serum samples from 24 eathge ovarian cancer patients
(age range 484, mean age&®b+ 11 years) and 40 healthy women (age rang&440
mean age 57 + 12 years) were acquired from the Ovarian Cancer Institute laboratory at
the Georgia Institutef Technology The healthy women population consisted of patients
with histology considered wiin normal limits (WNL) despite the fact some had
documented cystll donors were required to fast and to avoid medicine and alcohol for
12 hours prior to sampling, except for certain allowable medications (e.g., diabetics were
allowed insulin). The man ages of the 2 respective group populations were not
significantly different (unpairetitest, n = 64p = 0.67). Blood samples were collected at
Northside Hospital (Atlanta, GA) by venipuncture from each donor into evacuated blood
collection tubes thatontained no anticoagulant after approval by the Institutional
Review Board (IRB). Serum was obtained by centrifugation at 5000 rpm for 5 min at 4
°C. Immediately after centrifugation, 200 pL aliquots of serum were frozen and stored at

-80 °C for further ge.

3.3.4 Serum Sample Preparation and Experimental Design

Commercially available healthy human blood serum was used to optimize the
serum sample metabolite extraction protocol and URISEmethod. Serum samples
were thawed on ice prior to sample preparatMethanol was added to 100 pL of each
serum sample in a 3:1 ratio to precipitate proteins. Samples were-uured for 10 s
and centrifuged at 13,000 rpm for 7 min. After centrifugation, 350 pL of supernatant

were transferred to new microcentrifugedatand, after the addition of 400 L of
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ultrapure water, frozen a80 °C for 2 h. Subsequently, samples were lyophilized for 24 h
at-50 °C and 25 mTorr using a VirTis bench top fredrger (SP Industries, Stone

Ridge, NY, USA). Sample residues weremest i t ut ed in 100 €L of
(80:20 vlv, initial UPLC gradient conditions), and analyzed by UHRLE: Blank

samples, consisting of ultrapure water, umdgt the same processsesum samplegll
samples were randomized prior to URMS analysisSolvent and sample preparation

blanks were jointly analyzed with serum samples. Quality control (QC) samples (15 uM
FMOC-L-Proline and leucine enkephalin solution in ultrapure water) were analyzed

every 5 hours to verify that retention time, peak shaperdedsity were stable for the

duration of the analysis. The relative standard deviation of the retention times, peak areas,
and intensities of the monoisotopic ions obtained from extracted ion chromatograms were

less than 15% over the duration of the expents.

3.3.5 Metabolic Profiling via Ultra Performance Liquid Chromatography -

Mass Spectrometry

UPLC-MS analysis was performed using a Waters ACQUITY UPLC H Class
system fitted with a Waters ACQUITY UPLC BEHR €olumn (2.1 x 100 mm, 1.7 pm
particle sizefor Dicer-PtenDKO mice experiments orWaters ACQUITY UPLC BEH
Cigcolumn (2.1 x 50nm, 1.7 um particle size) for the human cohort experiments
coupled to a Xevo G2 QTOF mass spectrometer (Waters Corporation, Manchester, UK)
with a typical resolvingg o we r o f m@FEAVHBI Gnd mads agruracy of 1.8 ppm at
m/z554.2615. The instrument was operated in negative ion mode with a probe capillary

voltage of 2.5 kV, and a sampling cone voltage of 45 V. The ion source and desolvation
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temperatures were 120 dDd 350 °C, respectively; the nitrogen desolvation flow rate
was 800 L i, and the cone desolvation flow rate was 501 The mass spectrometer

was calibrated across the-3200 mz range using a 0.5 mM sodium formate solution
prepared in 90:10-groparl:water v/v. Data were mass corrected during acquisition
using a leucine enkephalin reference spray (LockSpray) infused at 2 fiL Diita were
acquired in the 52200 mzrange and the scan time was set to 1 s. Data acquisition and
processing was cardeout using MassLynx v4.1. The chromatographic method for
sample analysis involved elution with water (mobile phase A) and methanol (mobile
phase B) at a flow rate of 0.40 mL rirfThe following gradient programvas used for
analysis oDicer-PtenDKO sanples 0-15 min 2090% B; 1519 min 90% BThe

following gradient progranwas used for the analysis of human cohort sampi&és min
20-90% B; 1523 min 90% B.Both gradiens werereturned tdheirinitial conditions

over a period of 11 min &#r each same injection. @lumn temperatusawereset to 60

°C, the autosampler tray temperature was set to 5 °C, and the injection volume was 2 pL.
Technical duplicates were acquired. URMS/MS experiments were performed by
acquiring product ion mass spectra wigipked voltages of 10, 20, and 30 V in the

collision cell, wusing ultra high purity ar

3.3.6 Data Analysis for DicerPten DKO Mouse Model Study

Following UPLCGMS, spectral features (retention time)(Rn/z pairs) were
extracted from the data using MZmine 2.0 softw#r€his procedure involved
chromatogram alignment, peak identification and integration, peak area extraction, and

normalization after curation of the data matrix. The data matrix curation consisted of the
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removal of signals that were present in the blank samples, the solveseonot present

in at least 5% of the serum samples. The curated data matrix was utilized to build a
model for sample class discrimination via oPDRA8 and to dowrselect a smallergmel

of discriminant features through the usage of a genetic algorithm (MATLAB Version
7.13.0, The MathWorks, Inc., Natick, MA, USA with PLS_Toolbox v.6.71, Eigenvector
Research, Inc., Wenatchee, WA, USA). A panel of 18 discriminant features had the
lowestrootmeansquare error of crosslidation (RMSECYV) at the conclusion of the
genetic algorithm variable selection process. The parameters for genetic algorithm
variable selection were as follows: population size: 64, variable window width: 1, %
initial terms (variables): 10, target minimum # of variables: 8, target maximum # of
variables: 15, penalty slope: 0.05, maximum generations: 150, % at convergence: 79.7,
mutation rate: 0.005, crossover: double, regression choice: PLS, # of latent variables: 6,
cross-validation: random, # of splits: 5, # of iterations: 5, replicate runs: 20-0A_S

models were orthogonalized and internally cresfidated using 10 iterations of random
sample subsets with 5 data splits. Data were preprocessed by autoscaling [ptics-to o
DA analysis. Principal component analysis (PCA) was also performed to inspect data
before and after genetic algorithm variable selection ¢ireall of the extracted spectral

features and only the discriminant feature panel).

3.3.7 Data Analysis forHuman Cohort Study
Following UPLGMS, spectral feates R:, m/z pairs) were extracted from the
data using MZmine 2.0 softwateThis procedure involved chromatogram alignment,

peak identification and peak area extraction, in addition tefilizgg and normalization
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after curation of the data matrix. The data matrix curation consisted of the removal of
signals that were present in the blank samples and the solvent. Also, signals that were not
present in at least 50% of the healthy samples or 50% of sainglonging to either
ovarian cancer histological subtype used in this study (i.e., papillary serous or
endometrioid) were eliminated from the data matrix. Linear S¥?Mshouse developed
using LIBLINEAR®*3were utilized to build multivariate sample cldigstion models and
to find the minimum set of discriminant features needed to differentiate thestaghy

OC patient samples from those of the healthy women with the highest accuracy,
specificity, and sensitivity. SVMs are effective at handling highetfisionality data as
those produced in the present work and have been widely applied to metabolomics
studies?? 26 3%¢ Moreover, they are ideal for limitesize datasets since the risk of data
overfitting is reduced’ All data were preprocessed by esttaling before analysis.

For SVM analysis, linearkgeparable samples represented as a row vwedbad
membership of two classgg= H or D), where H stands for healthy women and D for
OC disease with labets=-1 for class H, and +1 for class D. Ml the samples were
used to build a classification model which was internally validated using teseut

crossvalidation. The decision function the¢parated the two classes, defined here as the

NOC detection scoreo, was as foll ows:
0 6Q'Q0 QG 0s@él & 0 ® P
Ve Qe @ i VHEQQO QWOGREEQ ¢
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wherew andb are the weight and bias parameters tee determined from the SVM
classification model and J is the total number of features. The sign of the OC detection
score determined which class a sample was assigned to: class H if negative and class D if
positive. In this classification function, thed classes were divided in the dataspace by a
hyperplane: ¢ @ mthat maximized the margins between samples of different
classes. The margin between the two classes was defined such that:

e @ ph ® p o

ce @ ph & p T
A recursive feature elimination (RFE) methiddstructured in the SVM analysis process
as a nested leaaxane (sampleput design, was used to find the minimum set of
discriminant features that maximized the accuradh®fSVM classification model. The
design consisted of two loops. The outer loop used one randomly selected sample as a
test sample while the remaining samples constituted the inner loop training set. In the
inner loop, one sample was iteratively left ounile the remaining samples were used as
a training set to calculate weights for each metabolic feature and predict -iet left
sample. These weights were averaged over all inner loop iterations, and the resultant
SVM model was used to classify the outawp test sample. Afterwards, a different outer
loop test sample was selected and classified after another set of inner loop iterations were
completed. This process ensued until all samples had been used as outer loop test
samples. Once the averaged weightilting from each inner loop process were

summed, the feature that ranked least important (i.e., had the lowest summed weight) was

discarded from the remaining feature s&t< 0), and the inner/outer loop processes
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began again. The aforementionedogadure was repeated until all metabolic features
were ranked. The performance characteristics for the RA#A method were generated
based on the percentage of test samples accurately classified during each phase of the
feature elimination procedure. Frohid process, a feature panel with high accuracy,
sensitivity, and specificity was chosen and tested again across all samples.

PLS DA was also performed to inspect data before and after discriminant feature
selection via RFE. PL-®A models were orthogonakd (o0PLSDA) and internally
crossvalidated using 5 iterations of random sample subsets with 8 data splits. Data were

preprocessed by autoscaling prior to oHLS analysis.

3.3.8 Discriminant Feature Identification Procedure

Metabolite dentification was tempted fodiscriminant featuresviass spectral
ion adduct analysis was first performed to ensure the unambiguous assignment of the
signal of interest in each mass spectrum. The adduct ions that were investigated in the
mass spectra included [MH], [M + CI], [M + CHCOOJ, [M + HCOOJ, [M + Na-
2H], [M + K - 2H], [M - H20 - H], [M + H20 - H]", and [2Mi H]" species, which are
usually observed in negative electrospray ionization mode. The theoretzoadlu@s for
these species were calculated aachpared with the experimental values from mass
spectral signals. For spectra in which multiple adducts were not present, the accurate
mass of the candidate neutral molecule was calculated based on the assumption that the
m/z value observed correspondediie [M- H] ionic species. For mass spectra in which
multiple adducts were present, the {M] spectral signal was determined and the

accurate mass of the metabolic candidate neutral molecule was calculated based on it.
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Elemental formulae were geneazdtbased on the exact mass (maximum mass error of 10
mDa) and isotopic patterns of the features using MassLynx 4.1. The elements included in
the formulae were constrained to C, H, N, O, P, and S. The lists of generated elemental
formulae were searched agsii the METLIN databasé® the LIPID Metabolites and
Pathways Strategy (LIPID MAPS) databd%and the human metabolome database
(HMDB).*® MetaboSearch was also utilized to search the aforementioned databases
solely using neutral masses with a mass r@ayuof 20 ppm. Tandem MS data could not

be acquired for discriminant features where the precursor ion abundance was not high
enough for sensitive quadrupole selection and MS/MS due to ion transmissiorfiosses.
The MS/MS METLIN database, MassBartkand Iterature searches were used to further
confirm the identity of the candidates for which MS/MS data was successfully acquired.
Additionally, fragmentation patterns were manually analyzed in a few cases to
discriminate between different isobaric specias.the Dicer-PtenDKO mouse model

study, &ailable chemical standards were purchased to validate tentative metabolite
identities by chromatographic retention time matching and/or MS/MS fragmentation
pattern matching. These chemical standards also servpdrese of eliminating

possible metabolite candidates from the tentative identification list.
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3.4 Metabolomic Serum Profiling Detects EarlyStage HighGrade Serous

Ovarian Cancer in a Mouse Model

3.4.1 DKO Mouse Cohort
Typically, between 4 and 7 monti3KO mice develogHGSGs of the fallopian
tubes, which later spread to envelop the ovaries and at a late stage metastasize throughout
the abdominal cavity including peritoneal tissues (Figuig. For the purpose of this
study, earlystage tumors in DKO rae were defined as those confined to the fallopian
tube without any sign of metastasis. Eventually, all DKO mice die from metastatic
HGSCs after developing hemorrhagic ascites, an accumulation of hemorrhagic fluid in

the abdominal cavity. The typical lispan of these mice is 6.5 months®

Figure 3.1: Early- and latestage higkgrade serous carcinomas (HGSCs) in DKO mice
(Dicer floXfflox ptgnfloxflox Ampr2¢re™) " (A): Early fallopian tube tumors (yellow arrows)
formed in a 6.8nonthold DKO mousaused in this study with normal ovaries (white
arrowheads) and uterus (green arrows). (B): Massive fallopian tube tumors that engulfed
the ovaries in a 10-ihonthold DKO mouse with latstage HGSCs.
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Figure 3.2 Principal Component Analysis (PCA) scopdst of earlystage tumobicer-
PtenDKO (red circles), latestage tumobicer-PtenDKO mice (green triangles), and
control mice (blue squares). The model consisted of 2 PCs with 30.70% total captured

variance.

Initially, an exploratory experiment wasnducted to determine to what extent
UPLC-MS metabolic profiling could differentiate the blood sera of 9 ET (mean age 319 +
36 days) and 10 LT (mean age 309 *+ 34 days) DKO mice, in addition to 10 control (mean
age 342 + 80 days) mice. For this experimBidO mice were staged based twe t
presence or lack of ascited. T DKO mice had developed ascites while ET DKO mice
had not. Unsupervised PCA of the resultant data showed clear separation of LT DKO
mice from ET DKO mice and control mice along tiptincipal component (unpaires t
ted, n = 29, p = 0.002) (Figure 3.However, both ET DKO mice and control mice were

clustered together. As expected, this result somewhat reflects what is clinically observed

107



for the diagnosis of human ovarian carcinomaslate-stages in which metastasis has
occurred are more easily detectable because the disease is systemically widespread. Yet,
detection of earhstages is challenging since the disease is still localized and
asymptomatic.

At this stage the focus of the syudras shifted to the detection of easltage
HGSC in DKO mice by comparing metabolomic profiles between DKO mice with-early
stage HGSC against control mice, as this is the equivalent of the climel@lant
challenge for human HGSC detection. Therefarset of 1Dicer-PtenDKO mice with
early-stage HGSC (mean age 206 £ 19 days) and 11 control mice (mean age 211 + 30
days) was investigated via an alternative approach involving supervised multivariate
analysis. To ensure complete confidencthanclas membership of each maum the
cohort, ET DKO mice were sacrificed after blood sample collection to confirm the early
tumor status by ensuring that all had primary tumors located on their fallopian tulbes wit
no visible metastasis. Tablel3escribes etailed information of the mice included in

these experiments as well as the tumor status verified for each ET DKO mouse.
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Table 3.1 Early-StageTumorDicer-PtenDouble Knockout Mice an@ontrolMice Characteristics.

Ear$tyage Tumor DKO Mi ce Contromé Mi
I Da_te Age Tumor Statwug I D Da_te Age
Birt (day (mont Birt (day ( mont
31¢(5/8/ 181 6.0 Tumor on each| 10¢€2/16 257 8. 6
31: 5/8/ 181 6.0 Tumor on each| 11582/ 28 245 8. 2
31/5/8/ 181 6.0 Tumor owni eéacth| 11€ 2/ 28 245 8. 2
25:4/16 199 6. 6 Tumor on each| 15€3/ 14 230 7.7
25'4/7 16 199 6. 6 Tumor on one 22z5/ 12 170 5.7
21'4/ 10 204 6. 8 Tumor on one 224/ 10 202 6. 7
21¢t4/ 10 205 6. 8 Tumor on one 21¢ 4/ 3/ 2009 7.0
21°4/10 205 6. 8 Tumor on one 30¢€ 4/3/ 2009 7.0
21¢4/ 10 205 6. 8 Tumor on each| 311 4/ 3/ 209 7.0
20! 4/ 8/ 206 6.9 Precursor tumor | 372 5/8/ 175 5.8
220413/ 211 7.0 Precur slogsitamoan 45 5/8/ 175 5. 8
254/ 16 217 7.2 Tumor on each
14:3/10 235 7.8 r~recursor tumor
oviduct
15:3/ 14 250 8. 3 Tumor on each
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3.4.2 Multivariate Classification Performance

MZmine data processing extracted 934 featuresrtiZ pairs) from the UPLE
MS data from both cortl and ET DKO miceThese extracted features were utilized to
build an oPLSDA model which classified the respective serum samples from each class.
Performance chacteristics of the initial oPL®A analysis of the data matrix that
included all934 metabolic features (Figure 3&ad3.3b) were 76%, 68%, and ®3for
the crossvalidated accuracy, sensitivity, and specificity, respectively. A total of five
murine serunsamples were misclassified. This 3 lateatiable model interpreted
35.35% and 93.64 variance from the X(feature peak areas) and (fnouse class
membership) blocks, respectively. Though the model performance was not entirely poor,
genetic algorithms @re used to attain a smaller, but more robust, metabolic feature set
that could serve to better discriminate between control and ET DKO mice with higher
crossvalidated accuracy, sensitivity, and specificity. A panel of 18 metabolic features
with the lowes RMSECV was selected through the genetic algorithm variable selection
process. oPL®A modeling wth this smaller panel (Figure 3.20d3.3d) resulted in
100% crossvalidated accuracy, sensitivity, and specificity; therefore, no mice were
misclassifiel. This model interpreted 33.12% and 98@6f the Xx and Y-block
variances, respectively, with only 2 latent varialdiesne less than the model using all
934 metabolic features. Furthermore, the capturdadio¥k variance was slightly higher,
thereby, demonsiting that the dowsselected panel of 18 features is more informative

than the initial set.
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Figure 3.3 Orthogonal projection to latent structwgiscriminant analysis (0PLBA)
models of earhstage tumor (ETDicer-PtenDKO (red circles) vs. contrahice (blue
squares). (A): oPLPA calibration scores plot using the total initial set of 934 spectral
features. The model consisted of 3 LVs with3%B6 and 93.64% total captured and
Y-block variances, respectively. The crosdidated accuracy, setigity, and specificity
were 76%, 68%, and 88, respectively. (B): The corresponding ET creabdated
prediction plot for (A). There were 5 misclassified mice. (C): ol&Scalibration scores
plot using the 18 discriminant metabolic feature panel obtdmeugenetic algorithm
variable selection. The model consisted of 2 LVs witi3% and 98302 total captured
X-and Y-block variances, respectively. The accuracy, sensitivity, and specificity were all
100%. (D): The corresponding ET cresdidated predition plot for (C). There were no
misclassified mice.
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Of the 18 selected features, the concentration levels of 9 metabolites were found to
increase and 9 metabolites were found to decrease in ET DKO mice. While only 11 of
these concentration changes ganivariately significant (MankVhitney U test, n = 25,

p O 0.05; Figure 34), the cevarying concentrations of all 18 metabolic features allowed

us to distinguish the detected metabolomes of control and ET DKO mice in multivariate
space; accordingly, they all display discriminatory power when collectivelydedlas

part of a joint panel. The concentration levels of those features that were not statistically
different between ET DKO and control mice in a univariate fashion could also be a result
of the relatively modest sample size used in this study.

To furthe investigate these results, PCA was utilized to evaluate the performance
of the 18feature discriminant panel in an unsupervised manner. Scores plots were
generated for both the initial set of 934 metabolic features and the lighchsert feature
panel Figure 3.9. Using the initial set, 3 principal components interpreting 46.43 % of
the data matrix variance showed no distinct groupfrithesample classes (Figure 3.5a
However, better clustering was observed with théeb8ure 3principal component CA
model which interpreted 589% of the variance (Figure 3)6l@he PCA class separation
was statistically significant and occurred along tHi@rincipal component (unpaireel
test, n = 25p = 0.0055), providing further evidence of the robustnesseol &feature

discriminant panel.
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Figure 3.4: Discriminatory spectral features having statistically significant univariate
changes between eaidyage tumor (ETDicer-PtenDKO mice (n = 14) and control (C)
mice (n = 11)P-values were calculated usirtgetMannWhitney U test. Box plots with
mean (square), median, upper and lower quartile, outliers, and minimum and maximum

(whiskers) data values are displayed. Feature ID numbers are indicated on top of each
case.
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Figure 3.5 Principal Component AnalysiPCA) of earlystage tumobDicer-PtenDKO
(red circles) and control mice (blue squares). (A): PCA scores plot using the initial set of
934 spectral features. The modensisted of 3 PCs with 46.%3total captured variance.
(B): PCA scores plot using tHs8 discriminant feature panel obtained from genetic
algorithm variable selection. The model consisted of 3 PCs58i#®% total captured
variance.
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