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élife for none of us has been a crystal stair, but we must keep moving. We must keep 

going. And so, if you canôt fly, run. If you canôt run, walk. If you canôt walk, crawl. But 

by all means, keep moving. 

 

ð Martin Luther King, Jr. 
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values are represented by the blue traces, and specificity values are represented by 

the black traces. 

Figure 3.9 133 

Visualization of ovarian cancer (OC) detection scores obtained by SVMs using 

the 22-feature discriminant panel. Black squares correspond to the healthy women 

and red triangles correspond to the early-stage OC patients. The dotted line shows 

the projection of the separating hyperplane: ◌● ὦ π. 
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Figure 3.10 135 

Orthogonal projection to latent structures-discriminant analysis (oPLS-DA) cross-

validated (CV) prediction plots of early-stage ovarian cancer (OC) patients (red 

triangles) and healthy women (black squares). (A): OC CV prediction plot for the 

oPLS-DA model using the initial set of 371 spectral features. The cross-validated 

accuracy, sensitivity, and specificity of the model were 49%, 64%, and 34%, 

respectively. There were 32 misclassified samples. (B) OC CV prediction plot for 

the oPLS-DA model using the 22 discriminant feature panel. The cross-validated 

accuracy, sensitivity, and specificity of the model were 94%, 97%, and 91%, 

respectively. There were 4 misclassified samples. 

Figure 3.11 137 

Fold change of average peak areas of each discriminant feature. Fold changes are 

calculated as the base 2 logarithm of the average peak area ratios for early-stage 

ovarian cancer samples and healthy women samples. Features are labeled with 

their codes. Features with statistically significant (p Ò 0.05) fold changes 

(calculated using Mann-Whitney U test) are additionally labeled with asterisks. 

Figure 3.12 146 

Discriminatory spectral features having statistically significant univariate changes 

between papillary serous ovarian cancer (S) patients (n = 12) and endometrioid 

ovarian cancer (E) patients (n = 12). P values were calculated using the 

MannīWhitney U test. Box plots with mean (square), median, upper and lower 

quartile, outliers, and minimum and maximum (whiskers) data values are 

displayed. Feature ID numbers are indicated on top of each case. Fold change was 

calculated as the base 2 logarithm of the average peak area ratios for early-stage 

papillary serous ovarian cancer samples and early-stage endometrioid ovarian 

cancer samples. 

Figure 4.1 170 

Effects of exposure to exudates of live Karenia brevis on the growth of 

Asterionellopsis glacialis and Thalassiosira pseudonana. (A) A. glacialis (red) in 

vivo and T. pseudonana (blue) in vivo fluorescence (arrow indicates day of 

harvest for metabolomics and proteomics). The solid lines indicate fluorescence 

of diatom-only controls, and the dashed lines indicate fluorescence of diatoms 

exposed to K. brevis. Initial K. brevis (red open circles for A. glacialis 

experiment; blue open circles for T. pseudonana experiment) concentrations from 

cultures used to fill dialysis tubes (n = 1), final concentrations from experimental 

flasks at time of harvest (n = 15). (B) Calculated percent growth of competitors A. 

glacialis (red) and T. pseudonana (blue) relative to their own controls after 8 and 

6 days exposure to K. brevis, respectively. The dotted line indicates growth 

equivalent to control. n = 15. P < 0.0001 indicated by asterisk (*), unpaired t-test. 

Error bars represent ±1 S.E.M. 
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Figure 4.2 171 

Orthogonal projection to latent structures-discriminant analysis (oPLS-DA) shows 

effects of Karenia brevis allelopathy on the metabolomes of competitor diatoms. 

oPLS-DA calibration scores plot of (A) UPLC-MS metabolic features and (B) 1H 

NMR spectral data for Thalassiosira pseudonana exposed to K. brevis (filled 

squares) or dilute media control (empty squares) with cross-validated accuracies 

of 87% and 100%, respectively. oPLS-DA calibration scores plot of (C) UPLC-

MS metabolic features and (D) 1H NMR spectral data for Asterionellopsis 

glacialis exposed to live K. brevis (filled circles) or dilute media controls (empty 

circles) with cross-validated accuracies of 57% and 63%, respectively. 

Figure 4.3 172 

Principal component analysis (PCA) shows effects of Karenia brevis allelopathy 

on the metabolomes of competitor diatoms. PCA scores plot of (A) UPLC-MS 

metabolic features and (B) 1H NMR spectral data for Thalassiosira pseudonana 

exposed to K. brevis (filled squares) or dilute media control (empty squares) 

showing significant separation along the 2nd and 1st principal components, 

respectively (MS: unpaired t-test, n = 30, p = 0.002; NMR: unpaired t-test, n = 9-

14, p < 0.0001). PCA scores plot of (C) UPLC-MS metabolic features and (D) 1H 

NMR spectral data for Asterionellopsis glacialis exposed to live K. brevis (filled 

circles) or dilute media controls (empty circles) with only the 1H NMR spectral 

data showing significant separation (5th principal component, unpaired t-test, n = 

9-11, p = 0.033). 

Figure 4.4 181 

Network of cellular pathways, enzymes, and metabolites in the diatom 

Thalassiosira pseudonana impacted by exposure to Karenia brevis allelopathy, 

derived from NMR and MS metabolomics and proteomics. Pathways and 

metabolites enhanced by allelopathy are indicated by red arrows and compound 

names, respectively. Blue arrows and compound names denote pathways and 

metabolites that were suppressed by allelopathy. 

Figure 5.1 203 

TWIMS schematic. A traveling voltage wave (T-wave) applied to a series of 

electrically connected ring electrodes (stacked ring ion guide: SRIG) pushes ions 

through the device. For a given wave speed and magnitude, ions carried forward 

by the T-wave have short drift times (red), while ions that roll over the T-wave 

take longer to exit the device (blue). RF, radiofrequency. 

Figure 5.2 206 

Photograph of the automated PM-DART MS system. 

Figure 5.3 207 

Photograph of the automated TM-DART system. The top panel displays the 

module used to hold the stainless steel mesh strip or discs, as well as a stainless 

steel mesh strip. The bottom panel shows the automated TM system during an 

analysis placed between the DART ion source and the GIST inlet. 
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Figure 5.4 213 

Microscopic image of a dried, derivatized human serum sample (a) before and (b) 

after TM-DART analysis with the (c) corresponding background-corrected 

positive ion mode mass spectrum in the 50 ï 850 m/z range. The inset details the 

signals observed upon zooming into the baseline. 

Figure 5.5 218 

Total ion chronogram observed during TM-DART analyses of a derivatized 

serum sample showing an increase in the abundance of detected ions for each 

successive analysis prior to sample introduction method modification. 

Figure 5.6 218 

Thermal IR images of the TM-DART ion source and sampling module assembly 

during the analysis of a derivatized serum samples. The DART cap (1) in the IR 

images rests in close proximity of the module (2) where the sample is spotted for 

analysis. Two previously-analyzed mesh holder samples positions (3) are shown 

on the left, and two mesh positions in the queue (4), waiting to be analyzed, on 

the right. The color scale displays the measure temperature in Celsius. The set 

DART temperature was 250 °C. 

Figure 5.7 221 

Extracted ion chronograms for selected reagent water cluster ions present in the 

DART ionization regions for a period of ~50 minutes after application of high 

voltage to the discharge electrode. No signals for reagent ions with m/z lower than 

~75 were observed. 

Figure 5.8 223 

Effect of serum sample deposition strategy (A: liquid sample; B: sample dried 

with heated N2 from DART source; C: self-dried sample) on sensitivity and 

reproducibility of successive TM-DART analyses for mass spectrometric signals 

at m/z = 315.1042, C13H23O5Si2, m/z = 416.2246, C19H38NO5Si2, (top panel) and 

signals at m/z = 640.3391, C33H54N3O4Si3, m/z = 714.3601, C29H60N7O6Si4, 

(bottom panel). 

Figure 5.9 224 

The sensitivity of TM-DART MS analysis is influenced by the position of the SS 

mesh substrate in the ionization region. Two parameters (a) determine this 

position: the distance from the GIST to the SS mesh (i) and the distance from the 

mesh to the DART cap (ii). The effect of varying distance ñiò on the sensitivity 

for untargeted metabolic profiling of derivatized serum is displayed in (b). 

Figure 5.10 225 

Effect of helium gas temperature on TM-DART MS sensitivity for untargeted 

metabolic profiling of derivatized serum: (a) absolute intensities of monitored 

signals in the low mass range and (b) absolute intensities of monitored signals at 

higher masses. Intensities were monitored at DART set temperatures of 100, 150, 

200, 250, 300, 350, and 400 °C. 
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Figure 5.11 227 

Effect of ramping the set helium gas temperature on intensities of monitored mass 

spectrometric signals in the low (top panel) and high (bottom panel) mass ranges. 

The set helium gas temperature was ramped from 150 °C to 450 °C over 3 

minutes. 

Figure 5.12 228 

Effect of helium gas flow rate on TM-DART MS sensitivity for untargeted 

metabolic profiling of derivatized serum: (a) absolute intensities for selected ions 

below m/z = 600, (b) absolute intensities for selected ions above m/z = 600. 

Intensities were monitored at flow rates of 0.50, 0.75, 1.00, 1.25, and 1.50 L min-

1. 

Figure 5.13 230 

Signal linearity for TM-DART (left) and PM-DART (right). The absolute 

intensity of the [M+H]+ quinine ion was monitored (n = 3) for 1 (PM), 10, 15, 25, 

75 (TM), 100 (TM), and 150 (TM) µM solutions. The experimental data was 

linearly fitted to a ώ άὼ ὦ model.  The regression parameters for each DART 

operational mode are displayed within each panel. 

Figure 5.14 231 

Extracted ion chronograms of the [M+H]+ (m/z 325.1920) ion observed during 

TM-DART (top panel) and PM-DART (bottom panel) analysis of a 15 µM 

quinine solution. 

Figure 5.15 232 

TM-DART full scan MS (a) and 30 eV product ion spectrum (b) for D-erythro-

sphingosine. The quadrupole-selected precursor ion was m/z 300.2919. 

Figure 5.16 237 

Orthogonal projection to latent structures-discriminant analysis (oPLS-DA) 

models for the discrimination of CF patients (orange circles) from healthy 

controls (black squares).  (a): oPLS-DA calibration scores plot using the total 

initial set of 66 spectral features.  The model consisted of 2 LVs with 46.43% and 

93.79% total captured X- and Y-block variances, respectively. The cross-

validated accuracy, sensitivity, and specificity were 88%, 100%, and 75%, 

respectively.  (b): The corresponding CF cross-validated prediction plot for (a).  

There was 1 misclassified CF EBC sample.  (c): oPLS-DA calibration scores plot 

using the 9 discriminant metabolic feature panel obtained from genetic algorithm 

variable selection.  The model consisted of 2 LVs with 84.24% and 94.29% total 

captured X- and Y-block variances, respectively.  The accuracy, sensitivity, and 

specificity were all 100%.  (d): The corresponding CF cross-validated prediction 

plot for (c).  There were no misclassified samples. 
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Figure 5.17 238 

Principal Component Analysis (PCA) of cystic fibrosis (CF) patients (orange 

circles) and healthy controls (black squares).  (a): PCA scores plot using the initial 

set of 66 spectral features.  The model consisted of 2 PCs with 72.89% total 

captured variance.  (b): PCA scores plot using the 9 discriminant feature panel 

obtained from genetic algorithm variable selection.  The model consisted of 2 PCs 

with 84.49% total captured variance. 
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SUMMARY  

 

Metabolomics is the methodical scientific study of biochemical processes 

associated with the metabolomeðwhich comprises the entire collection of metabolites in 

any biological entity. Metabolome changes occur as a result of modifications in the 

genome and proteome, and are, therefore, directly related to cellular phenotype. Thus, 

metabolomic analysis is capable of providing a snapshot of cellular physiology. 

Untargeted metabolomics is an impartial, all-inclusive approach for detecting as many 

metabolites as possible without a priori knowledge of their identity. Hence, it is a 

valuable exploratory tool capable of providing extensive chemical information for 

discovery and hypothesis-generation regarding biochemical processes. Untargeted 

metabolomic analysis is the first step toward designing targeted assays to study specific 

metabolic pathways, detect clinical disease, or monitor environmental phenomena. A 

history of metabolomics and advances in the field corresponding to improved analytical 

technologies are described in Chapter 1 of this dissertation. Additionally, Chapter 1 

introduces the analytical workflows involved in untargeted metabolomics research to 

provide a foundation for Chapters 2 ï 5. 

Part I of this dissertation which encompasses Chapters 2 ï 3 describes the 

utilization of mass spectrometry (MS)-based untargeted metabolomic analysis to acquire 

new insight into cancer detection. There is a knowledge deficit regarding the biochemical 

processes of the origin and proliferative molecular mechanisms of many types of cancer 

which has also led to a shortage of sensitive and specific biomarkers. Prostate cancer 

(PCa) is the 2nd leading cause of cancer-related mortality in men worldwide. Although the 
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introduction of prostate-specific antigen (PSA) screening has slightly decreased 

mortality, it is still a non-specific diagnostic serum marker as elevated concentrations are 

also indicative of benign prostatic hyperplasia and prostatitis. Chapter 2 describes the 

development of an in vitro diagnostic multivariate index assay (IVDMIA) for PCa 

prediction based on ultra performance liquid chromatography-mass spectrometry (UPLC-

MS) metabolic profiling of blood serum samples from 64 PCa patients and 50 healthy 

individuals. A panel of 40 metabolic spectral features was found to be differential with 

92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the 

IVDMIA was higher than the prevalent PSA test, thus, highlighting that a combination of 

multiple discriminant features yields higher predictive power for PCa detection than the 

univariate analysis of a single marker. Numerous discriminant metabolites were mapped 

in the steroid hormone biosynthesis pathway. The identification of fatty acids, amino 

acids, lysophospholipids, and bile acids provided further insights into the metabolic 

alterations associated with the disease.  

Chapter 3 describes two approaches that were taken to investigate metabolic 

patterns for early detection of ovarian cancer (OC). OC is the 5th leading cause of cancer-

related deaths for U.S. women. Due to the unavailability of reliable screening tests in 

clinical practice and the asymptomatic course through early stages of the disease, the 

majority of ovarian cancer cases are diagnosed as advanced, metastatic disease with poor 

survival. Early detection is thus crucial in reducing ovarian cancer mortality. First, Dicer-

Pten double knockout (DKO) mice that phenocopy many of the features of metastatic 

high-grade serous carcinoma (HGSC) observed in women were studied. HGSC is the 

most common and deadliest subtype that results in 90% of OC deaths. Using UPLC-MS, 
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serum samples from 14 early-stage tumor DKO mice and 11 controls were analyzed in 

depth to screen for metabolic signatures capable of differentiating early-stage HGSC 

from controls. Iterative multivariate classification selected 18 metabolites that, when 

considered as a panel, yielded 100% accuracy, sensitivity, and specificity for 

classification. Altered metabolic pathways reflected in that panel included those of fatty 

acids, bile acids, glycerophospholipids, peptides, and some dietary phytochemicals. 

These alterations revealed impacts to cellular energy storage and membrane stability, as 

well as changes in defenses against oxidative stress, shedding new light on the metabolic 

alterations associated with early OC stages. In the second approach, serum metabolic 

phenotypes of an early-stage OC pilot patient cohort were characterized. Serum samples 

were collected from 24 early-stage OC patients and 40 healthy women, and subsequently 

analyzed using UPLC-MS. Multivariate statistical analysis employing support vector 

machine learning methods and recursive feature elimination selected a panel of 

metabolites that differentiated between age-matched samples with 100% cross-validated 

accuracy, sensitivity, and specificity. This small pilot study demonstrated that metabolic 

phenotypes may be useful for detecting early-stage OC and, thus, supports conducting 

larger, more comprehensive studies. 

Many challenges exist in the field of untargeted metabolomics. Part II of this 

dissertation which encompasses Chapters 4 ï 5 focuses on two specific challenges. While 

metabolomic data may be used to generate hypothesis concerning biological processes, 

determining causal relationships within metabolic networks with only metabolomic data 

is impractical. Proteins play major roles in these networks; therefore, pairing 

metabolomic information with that acquired from proteomics gives a more 
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comprehensive snapshot of perturbations to metabolic pathways. Chapter 4 describes the 

integration of MS- and NMR-based metabolomics with proteomics analyses to 

investigate the role of chemically mediated ecological interactions between Karenia 

brevis and two diatom competitors, Asterionellopsis glacialis and Thalassiosira 

pseudonana. Karenia brevis is a toxic dinoflagellate known to exude allelopathic 

compounds that directly inhibit the growth of species with whom it competes for 

resources. This integrated systems biology approach showed that K. brevis allelopathy 

distinctively perturbed the metabolisms of these two competitors. A. glacialis had a more 

robust metabolic response to K. brevis allelopathy which may be a result of its repeated 

exposure to K. brevis blooms in the Gulf of Mexico. However, K. brevis allelopathy 

disrupted energy metabolism and obstructed cellular protection mechanisms including 

altering cell membrane components, inhibiting osmoregulation, and increasing oxidative 

stress in T. pseudonana. This work represents the first instance of metabolites and 

proteins measured simultaneously to understand the effects of allelopathy or in fact any 

form of competition and highlights the ability of systems biology to shed light onto the 

nature of complex ecological interactions.  

Chromatography is traditionally coupled to MS for untargeted metabolomics 

studies. While coupling chromatography to MS greatly enhances metabolome analysis 

due to the orthogonality of the techniques, the lengthy analysis times pose challenges for 

large metabolomics studies. Consequently, there is still a need for developing higher 

throughput MS approaches. A rapid metabolic fingerprinting method that utilizes a new 

transmission mode direct analysis in real time (TM-DART) ambient sampling technique 

is presented in Chapter 5. In this approach, the sample is deposited directly on a stainless 
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steel mesh that is held in the ionization region by a custom-built module. As a result, the 

DART plasma gas stream interacts with the sample in a flow-through fashion, which 

maximizes the sample-ionizing species interaction and minimizes variance in sample 

positioning. The optimization of TM-DART parameters directly affecting metabolite 

desorption and ionization, such as sample position and ionizing gas desorption 

temperature, was critical in achieving high sensitivity and detecting a broad mass range 

of metabolites. Ramping the ionizing gas desorption temperature further enhanced 

analysis by adding a simple separation dimension to this ambient approach. In terms of 

reproducibility, TM-DART compared favorably with traditional probe mode DART 

analysis, with coefficients of variation as low as 16%. The longer-lasting TM-DART 

signals enabled the acquisition of full scan and product ion accurate mass spectra in a 

single experiment, resulting in greater confidence in metabolite identification. TM-DART 

MS proved to be a powerful analytical technique for rapid metabolome analysis of human 

blood sera and was adapted for exhaled breath condensate (EBC) analysis. To determine 

the feasibility of utilizing TM-DART for metabolomics investigations, TM-DART was 

interfaced with traveling wave ion mobility spectrometry (TWIMS) time-of-flight (TOF) 

MS for the analysis of EBC samples from cystic fibrosis patients and healthy controls. 

TM-DART-TWIMS-TOF MS was able to successfully detect cystic fibrosis in this small 

sample cohort, thereby, demonstrating it can be employed for probing metabolome 

changes. 

Finally, in Chapter 6, a perspective on the presented work is provided along with 

goals on which future studies may focus. 

 



 

1 

CHAPTER 1. UNTARGETED METABOLIC  FINGERPRINTING: AN 

OVERVIEW  

 

 

1.1 Abstract 

Untargeted metabolomics is an impartial, all-inclusive approach for detecting as 

many metabolites as possible without a priori  knowledge of their identity. This chapter 

presents an overview of untargeted mass spectrometry (MS)-based metabolomics which 

has become a valuable exploratory tool capable of providing extensive chemical 

information for discovery and hypothesis-generation studies regarding biochemical 

processes. Metabolomics is a recently emerging systems biology ñomicsò field that uses a 

holistic approach to comprehensively characterize the small molecule metabolites (< 

1500 Da) in biological systems. A history of metabolomics and advances in the field 

corresponding to improved analytical technologies are described. The metabolome is 

estimated to be comprised of thousands to tens of thousands of chemically diverse 

metabolites at varying concentrations. These investigations can be challenging, and the 

main analytical platforms employed for contemporary untargeted metabolomics are 

reviewed; primary focus is placed on MS-based methods as they are utilized for analyses 

throughout the subsequent chapters. Untargeted metabolomics requires unique 

methodologies for sample preparation and mass spectrometric analysis in addition to 

chemometric data analysis tools; thus, a MS-based untargeted metabolomics workflow is 

introduced. 
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1.2 An Origin Tale of Metabolomics 

Metabolomics is the methodical scientific study of biochemical processes 

associated with the metabolome which comprises the entire collection of metabolites in 

any biological entity.  These metabolites are intermediates and end products of cellular 

metabolism.  Thus, metabolomics is critical for probing changes in metabolite levels and 

collecting pertinent metabolic pathway information in an effort to investigate the 

biochemical fingerprints specific to particular cellular processes. The total number of 

human metabolites is currently unknown, but 4,000 ï 20,000 are estimated.1 Metabolome 

changes occur as a result of modifications in the genome and proteome, and are, 

therefore, directly related to cellular phenotype. Thus, metabolomic analysis is capable of 

providing a snapshot of cellular physiology (Figure 1.1). Metabolomic studies can be 

conducted in both targeted and untargeted manners.  Targeted metabolomics detects and 

measures known metabolites or metabolite classes. Conversely, untargeted 

metabolomicsðfingerprinting (often interchanged with profiling)ðis an impartial, all-

inclusive approach that detects as many metabolites as possible without a priori 

knowledge of their identity.2, 3 Although fingerprinting and profiling are used 

interchangeably, profiling classically refers to the quantitative analysis of a particular 

class of metabolites or a set of metabolites involved in a specific biochemical pathway.4 

Untargeted metabolomic (or metabolic) fingerprinting is a valuable exploratory tool 

capable of providing extensive chemical information for discovery and hypothesis-

generation studies concerning biochemical processes. Additionally, information acquired 

from metabolomics studies can be used to characterize disease states of organisms and 

monitor their responses to external stimuli. 
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Figure 1.1: Omics Cascade. Metabolomics is the last level of the omics cascade and is 

more directly related to cellular phenotype. 

 

 

Although metabolomics is still considered to be an emerging systems biology 

field, its origins can be traced back to traditional Chinese medicine. During 1500 ï 2000 

BC, traditional Chinese doctors employed ants to determine if urine glucose levels were 

too high in patientsðan indicator of the metabolic disease diabetes mellitus.5 These 

medical practitioners also detected diabetes by tasting urine for the sweetness associated 

with high glucose levels. While Chinese doctors did not have a name for this metabolic 

disease at that time, they recognized that characteristics of urine, a biological fluid 

containing many end and by-products of cellular metabolism, could be used to assess the 

state of health of any individual. During this same time period, Hindu practitioners of 
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Ayurvedic medicine also noted that sweet-tasting urine was associated with certain 

diseases.5 Later in history (Middle Ages: 401 ï 1500), ancient Greeks used óurine chartsô 

to link the tastes, smells, and colors of urine to medical illnesses.6 Although 

contemporary metabolomics involves more sophisticated technologies, these ancient 

doctors correlated chemical patterns to biological processesða fundamental notion upon 

which metabolomics was founded. 

 The growth of chromatography aided in the advent of contemporary 

metabolomics. This family of analytical separation techniques allow for simultaneous 

detection of many metabolites. C. E. Dialgliesh developed a two-dimensional paper 

chromatography method to profile urinary indolic compounds; indolic compounds may 

have been associated with bladder cancer and could provide information regarding 

vitamin nutrition.7 From the late 1940s to early 1950s, Roger Williams and his research 

team utilized paper chromatography to acquire urinary and salivary metabolic 

fingerprints of many people.8, 9 Subsequently, Williams found that similar groups of 

people, such as alcoholics or individuals suffering from mental disorders, may have 

characteristic metabolic fingerprints.  Williamsô work was a tremendous effortðmore 

than 200,000 paper chromatograms were analyzed.9 The availability of liquid 

chromatography (LC) and gas chromatography (GC) analytical separation techniques 

reduced the effort needed for such studies and, consequently, further expanded the field 

of metabolomics throughout the 1960s and 1970s.10-14 Linus Pauling and collaborators 

believed that ñinformation about the genetic nature of an individual human being, as 

reflected in the rates of various chemical reactions that take place in his body, usually 

catalyzed by enzymes, could be obtained by the thorough quantitative analysis of body 



5 

 

fluidsò.14 Pauling developed a GC method to investigate biological variability by 

quantifying metabolites in urine and breath vapor based on the idea that ñthorough 

quantitative analysis of body fluids might permit differential diagnosis of many diseases 

in a more effective wayò.14 Additionally, Malcolm et al. demonstrated that metabolic 

profiles acquired from cerebrospinal fluid may be useful for the diagnosis of neurological 

disorders/infections in infants after profiles showed qualitative and quantitative 

differences between infant sufferers and controls.12 Although GC and LC are very 

powerful separation techniques, neither has the ability to directly identify molecules in 

complex biological samples. LC was generally coupled to UV/UV-vis detectors and GC 

to flame ionization detectors, so analysis of chemical standards was required for 

metabolite identification. But, this changed when GC and LC techniques began to be 

coupled to mass spectrometry (MS) in the 1970s and 1980s. MS has undergone many 

technical advancements since the first modern-day mass spectrometers were created.15, 16 

These advancements greatly supported the expansion of contemporary metabolomics 

since numerous metabolites could be simultaneously detected and identified. E. C. and 

M. G. Horning developed GC-MS analysis methods to acquire urinary metabolic profiles 

of steroids, acids, and drug metabolites.17, 18 In fact, the Hornings coined the term 

ómetabolic profileô. It was their belief that metabolic profiles ñmay prove to be useful for 

characterizing both normal and pathologic states, for studies of drug metabolism and the 

effects of drugs on human metabolism, and for human developmental studiesò.17 The 

development and commercialization of atmospheric pressure ionization (API) techniques, 

chiefly electrospray ionization (ESI)19 (for which Fenn shared the chemistry Nobel Prize 

in 2002) and atmospheric pressure chemical ionization (APCI),20 allowed for the mass 
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spectrometric analysis of a broad range of analytes with varying chemical moieties and 

masses, in addition to the coupling of LC to mass spectrometers. As a result, the usage of 

LC-MS for metabolomics studies began to be on par with GC-MS.21 In 1978, Henion 

presented research on the coupling of LC to MS to study drugs and their metabolites in 

biological matrices.22-24 Games et al. utilized a newly developed interface which coupled 

LC to MS to metabolically profile plants.25 In time, more and more clinical chemists 

began to realize the utility of chromatographic separation techniques coupled to MS for 

metabolic fingerprinting of biological samples and how impactful they could be for 

detection of inherited metabolic diseases and other diseases of interest.12, 26 Additionally, 

clinical chemists and other researchers began to use multivariate pattern recognition 

methods to analyze and assist in the interpretation of their metabolomic data sets.27-32 The 

importance of dimensionality reduction of the immense data sets and the need for sample 

class discrimination functions were recognized.  

 Concurrently with the development of GC-MS and LC-MS, advancements in 

nuclear magnetic resonance (NMR) spectroscopy instrumentation, first introduced in 

1946,33, 34 allowed for metabolite profiling of biological fluids.35, 36 During the 1980s, 1H-

NMR analysis of urine proved to be successful in detecting several inherited metabolic 

disorders, including maple syrup urine disease,37 methylmalonic academia,37, 38 and 

phenylketonuria.39 Nicholson et al. demonstrated that 1H-NMR blood plasma 

fingerprinting could be used to monitor diabetes patients when they were no longer 

undergoing insulin therapy.40 Similarly to hyphenated MS analysis techniques, 

contemporary metabolomics underwent tremendous growth once NMR spectroscopists 
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also began to use multivariate analysis techniques to interpret their substantial data sets.6, 

35 

 From the 1990s to present time, metabolic fingerprinting technologies have 

incorporated MS- or NMR-based analytical platforms with multivariate statistical 

analysis techniques. New approaches have appeared for metabolic fingerprinting, such as 

capillary electrophoresis (CE)-MS,41, 42 and improvements in chromatographic separation 

techniques, namely the development of ultra performance liquid chromatography 

(UPLC),43, 44 have broadened the scope of metabolome coverage.5 Although many 

technological advancements were made for comprehensive metabolite detection, a draft 

of the human metabolome was not made available to the scientific community until 

2007.45 David Wishart, along with numerous other scientists, catalogued more than 2,180 

detectable endogenous metabolites using MS and NMR data collected from urine, blood, 

and cerebrospinal fluid, in addition to analyzing chemical standards and gathering 

metabolite information from books, journal articles, and electronic databases over a span 

of multiple years. The resultant database, the Human Metabolome Database (HMDB), 

has been updated since 2007, and now houses biological information for more than 

40,000 metabolites. óDetectedô metabolites (those which have been experimentally 

confirmed) and óexpectedô metabolites (ñthose for which biochemical pathways are 

known or human intake/exposure is frequent but the compound has yet to be detected in 

the bodyò) are included.46, 47 Moreover, the number of metabolites with biological fluid 

and tissue concentration data has greatly increased. The creation of HMDB has had a 

significant impact on metabolomics researchð more than 1000 published scientific 

studies encompassing metabolomics, clinical biochemistry, and systems biology have 
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utilized the resources provided by the database.46 Additional free databases used for 

metabolomics research include METLIN,48 Kyoto Encyclopedia of Genes and Genomes 

(KEGG),49 Lipid Metabolites and Pathways Strategy (LIPID MAPS) Structure 

Database,50 and MetaCyc.51 

1.3 Primary Analytical Platforms for Metabolic Fingerprinting  

 Comprehensively fingerprinting the metabolome is difficult due to its complex, 

diverse natureð thousands of metabolites belonging to different chemical compound 

classes, such as lipids, amino acids, and saccharides, exist. Moreover, these metabolites 

have dynamic levels ranging from picomoles to millimoles.52 No singular analytical 

method can measure the thousands of metabolites estimated to be present in a biological 

system, as various analytical tools are successful in detecting different classes of 

metabolites. Although other analytical detection techniques are used for metabolomics 

research, such as ion mobility spectrometry,53 and electrochemical detection (ECD),54 

MS and NMR (discussed in sections 1.3.1 and 1.3.2, respectively) are the primary 

technologies. 

1.3.1 Mass Spectrometry 

1.3.1.1 Gas Chromatography-Mass Spectrometry 

The development of GC-MS was pivotal to the growth of metabolomics, and as 

such, is one of the most widely used analytical techniques for metabolomics studies. GC 

is typically coupled to MS via electron impact (EI) ionization. GC-MS is advantageous 

due to its high peak capacity, reproducible retention times, and ability to quantify 

metabolites.4, 55, 56 Additionally, metabolite fragmentation patterns acquired by GC-MS 
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can be precisely replicated as EI ionization leads to very reproducible fragment ions, 

thereby, facilitating accurate metabolite identification by comparison to readily available 

compound databases, such as the National Institute of Standards and Technology mass 

spectral library. However, GC-MS is best suited for the analysis of volatile and thermally 

stable analytes. Polar metabolites must be chemically modified through derivatization 

reactions to reduce polarity and increase their volatility. Typically, acidic hydrogens in ï

COOH, -SH, -OH, and ïNH functional groups are modified via alkylation, acylation, or 

silylation chemical derivatization reactions; additionally, carbonyl functional groups can 

be modified via methoximation derivatization reactions to inhibit enolization which can 

further complicate GC-MS analyses since multiple products would be present in resultant 

mass spectra.4, 57 Methoximation derivatization followed by silylation of metabolites has 

been performed to broaden metabolome coverage.58, 59 Nevertheless, chemical 

derivatization reactions can create undesirable artifacts and also have varying degrees of 

efficiency as sterically hindered analytes may only be partially derivatized.57, 60 

Moreover, added sample preparation steps decrease sample throughput for large 

metabolomics studies, thus, increasing analysis time. 

Technological innovation has led to the development of two-dimensional GC-MS 

systems (GC x GC-MS). Typically, cryogenic modulation is utilized to transfer samples 

from a non-polar column onto a second polar column for rapid separation.4, 61 In 

comparison to GC-MS, GC x GC-MS has substantial increases in peak capacity, 

chromatographic resolution, and sensitivity, thus, making it more suitable for metabolic 

profiling of complex biological samples.61 Habram et al. demonstrated that GC x GC-MS 

analysis lowered detection limits of small hydrocarbons by a maximum factor of 27.62 
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For a metabolomics study on spleen tissue extracts, Welthagen et al. determined that GC 

x GC-MS detected 2.4 times the number of metabolites than GC-MS.63 GC x GC-MS has 

been used to metabolically profile urine of infants to determine organic acids capable of 

diagnosing inborn errors of metabolism64 and to explore metabolic differences in 

fermenting and respiring yeast cells.65 

1.3.1.2 Liquid Chromatography-Mass Spectrometry 

Although many of the first metabolomics studies utilized GC-MS, the growth and 

availability of high performance (HP) LC-MS aided in the expansion of this scientific 

field of study and is still one of the primary analysis methods used. While HPLC-MS has 

lower chromatographic resolution than GC-MS, a broad range of metabolite classes 

across a wide mass range can be detected with HPLC-MS by choosing optimal stationary 

and mobile phases.56 Moreover, there is no need to derivatize metabolites prior to 

analysis. The separation of intermediate polar to nonpolar metabolites can be achieved by 

reversed phase LC-MS with C18 stationary phases being the most common. Hydrophilic 

interaction chromatography (HILIC) has been developed for the analysis of polar 

metabolites since they are not retained on reversed-phase LC-MS columns and elute with 

the solvent front.66 Tolstikov et al. developed a HILIC-MS method that separated and 

detected highly polar metabolites in phloem exudates from petioles of Cucurbita maxima 

leaves.67 They obtained the best separation of metabolites in the plant samples using an 

amide stationary phase. Oligosaccharides, glycosides, amino sugars, amino acids, and 

sugar nucleotides were detected. Reversed-phase ion-pairing LC-MS is typically used to 

detect charged metabolites;68 however, unpaired ion-pair reagents can contaminate mass 

spectrometers and reduce the sensitivity and repeatability of LC-MS analyses.55 Luo et al. 
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employed tributylammonium acetate as an ion pair modifier in reversed-phase LC-MS to 

identify intracellular metabolites involved in the central carbon metabolism (including 

glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle) of 

Escherichia coli.68 Sugar phosphates, nucleotides, and carboxylic acids were separated 

and detected. LC is primarily coupled to MS via ESI, a soft ionization technique that can 

be negatively impacted by matrix effects of complex biological samples.69, 70 For 

metabolomics studies, positive and negative ESI modes are used to broaden metabolome 

coverage.4 
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Figure 1.2: Comparison of base peak chromatograms from LC-MS untargeted plasma 

metabolite profiling. An increase in resolution was observed with UPLC-MS analysis 

along with a 3-fold reduction in analysis time. The three circled peaks represent common 

ions detected in both LC-MS methods for comparison of separation performance.  

Reprinted with permission from ref 73. Copyright 2009 American Chemical Society. 

 

 

The introduction of UPLC-MS in 200443 greatly impacted LC-MS-based 

metabolomics.55, 71 UPLC-MS utilizes 1.0 ï 1.7 µm porous column particles, and, 

subsequently, requires instrumentation that can operate in the 6000 ï 15000 psi pressure 

range.43 Typical peak widths are 1 ï 2 s and result in a 3 ï 5 fold sensitivity increase 

when compared to HPLC-MS using 3 µm particle columns.43 Moreover, increased peak 

capacity allows for higher chromatographic resolution as spectral overlap is significantly 

reduced. Rapid UPLC-MS analyses can be achieved without resolution losses which 
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increases the throughput of metabolomics studies.43, 72 Evans et al. reduced LC-MS run 

time almost 3-fold when switching from HPLC-MS to UPLC-MS for the analysis of 

plasma metabolites, while still experiencing gains in chromatographic resolution (Figure 

1.2).73 This advantage allowed for two UPLC-MS data acquisitions (positive and 

negative ESI modes) in less time than a single HPLC-MS method with better precision. 

While analyzing the urine of Zucker rats, Wilson and coworkers detected ~1,500 ionic 

species during a 10 min HPLC-MS analysis, and over 5,000 ionic species in a 5 min 

UPLC-MS analysis.74 A 1 min UPLC-MS analysis detected 1,000 ionic species, thereby, 

demonstrating that UPLC-MS can achieve similar results as HPLC-MS, but on a much 

shorter time scale. UPLC-MS has been used for metabolic profiling of human and animal 

tissues,75 determining metabolic markers for hepatitis B detection76 and hepatotoxicity.77 

1.3.1.3 Capillary Electrophoresis-Mass Spectrometry 

The first reported use of CE-MS for metabolomics research was in 2000.41 CE 

separations are rapid and require little or no sample pretreatment.78 Moreover, organic 

solvent consumption is extremely low or nonexistent and simple fused-silica capillaries 

are used instead of expensive LC columns.78 CE is typically interfaced to MS via ESI79-81 

which is not a trivial feat owing to the low effluent flow rates from the capillary, the need 

to maintain electrical contact for electrophoretic current, and the usage of electrolytes in 

the buffer used during analyses.82 CE-MS has been used to acquire metabolic fingerprints 

of human colon cancer cells,83 and for the discovery of metabolic biomarkers for diabetic 

nephropathy.84 Soga et al. employed CE-MS for serum metabolomics research that 

showed ɔ-glutamyl dipeptides may be potential biomarkers for liver diseases.85 The ɔ-

glutamyl dipeptides indicated reduced glutathione production. Although CE-MS is 
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capable of detecting a wide range of metabolites, it is best suited for the analysis of water 

soluble, charged metabolites. While reversed-phase ion-pairing LC-MS is capable of 

detecting charged metabolites, CE has less of a negative impact on the MS system.55 

Furthermore, CE has a higher theoretical separation efficiency than HPLC.55, 56 CE is 

capable of analyzing metabolites in individual cells or very small sample volumes (nL up 

to a few µL).78 Nemes et al. used CE-MS for metabolic profiling of six different neuron 

types from the Aplysia californica central nervous system.86 They detected more than 300 

distinct metabolites from a single neuron and were able to detect chemical similarities 

among some neuron types. The fused-silica capillaries used for CE-MS analysis can be 

coated to reduce electroosmotic flow, and, thus, enhance the separation windows for 

specific metabolite types. Ramautar et al. used coated polybrene-dextran sulfate-

polybrene coated CE capillaries to ensure a larger separation window for cationic 

metabolites in urine would be achieved.87 But, CE-MS can suffer from low repeatability 

when bare fused-silica capillaries are used as temperature changes cause deviations in 

migration times.82 To circumvent this disadvantage, a genetic algorithm that aligns CE-

MS data using accurate mass information has been designed.88 Using murine urine 

samples analyzed by CE-MS, the algorithm showed a significant reduction in the 

migration time drift.  

1.3.1.4 Direct Infusion and Ambient Ionization Mass Spectrometry 

Direct infusion MS (DIMS) is a high-throughput MS analytical approach that 

involves infusing/injecting a sample directly into the ionization source of a mass 

spectrometer without employing chromatography. Since typical analysis times are no 

longer than a few minutes, DIMS is able to fingerprint a large set of samples rapidly.89 
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Furthermore, short analysis times ensure that instruments are stable over the duration of 

all experiments, and reduced technical variability improves the subsequent multivariate 

analysis.90 Lin et al. compared DIMS and UPLC-MS for a kidney cancer serum 

biomarker discovery metabolomics study.91 Twenty-three metabolites were found as 

potential biomarkers by DIMS analysis, while UPLC-MS analysis discovered 48. Still, 

DIMS had comparable multivariate classification and prediction capabilities as UPLC-

MS, but only consumed ~5% of the analysis time. The authors demonstrated that DIMS 

has the potential to be a rapid diagnostic method, while UPLC-MS can be used limitedly 

when a comprehensive biomarker screening is needed. Mas et al. compared DIMS to GC-

MS for metabolic profiling of yeast mutants and found that the data acquired from both 

methods was complementary.92 GC-MS mainly detected amino acids and was well-suited 

for the classification of mutants with altered nitrogen regulation, while DIMS performed 

well at classifying mutants involved in the regulation of phospholipid metabolism. DIMS 

is used with API sources, however, ESI is the primary ionization technique used.4, 89 

Although DIMS is advantageous as a rapid analysis technique for metabolomics studies, 

it does have disadvantages. Isomeric species cannot be distinguished since they have the 

same mass, and there is a possibility for in-source fragmentation to occur as well as the 

formation of adducts.4 Furthermore, DIMS suffers from ion suppression because all 

components of the sample are introduced to the ionization source at the same time.  

Although DIMS is a rapid analysis method, sample preparation is still needed 

before metabolomics experiments are conducted to ensure the metabolites are in a liquid 

state. With the introduction of desorption electrospray ionization (DESI)93 in late 2004 

and direct analysis in real time (DART)94 in early 2005, a new subfield of analytical 
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MSðambient ionization MSðwas established. Ambient ionization MS analysis is 

conducted in open-air and entails minimal-to-no sample preparation. Ambient ionization 

MS is used to analyze samples in solid, liquid, and gaseous states. The lack of sample 

pretreatment gives ambient ionization techniques an advantageous edge for metabolomics 

research since precious samples remain in their original states. Additionally, these 

techniques are high-throughput MS analyses, given that there is a lack of 

chromatographic separation and the analysis time is mainly influenced by the time 

needed to place the sample in the ionization region of the assembled instrumentation. 

Although ambient ionization MS is a recent subfield of MS, most ambient MS ionization 

methods rely on adaptations of ESI and APCI ionization mechanisms. Ambient MS has 

been utilized for metabolomics research. Cajka et al. determined the origin of selected 

beers using DART-MS metabolomic fingerprinting.95 Pan et al. analyzed urinary 

metabolites by DESI-MS to identify patients with inborn errors of metabolism.96   

1.3.2 Nuclear Magnetic Resonance Spectroscopy 

The advancements in NMR analysis of biological fluids35 aided in the growth of 

metabolomics; consequently, NMR remains one of the primary analytical platforms used 

for metabolomics research. NMR analysis is rapid, highly reproducible, and non-

destructive, thereby, allowing samples to be analyzed in their crude form. Furthermore, 

NMR provides structural information for the detected metabolites. Unlike MS, NMR is 

not discriminatory toward certain metabolites. Its sensitivity is not dependent upon the 

chemical polarity of metabolites and, as such, can be used for broad metabolome 

coverage.97 McClay et al. used 1H NMR as a metabolomics screening tool for the 

identification of plasma and urinary biomarkers for chronic obstructive pulmonary 
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disease in addition to identifying metabolites associated with baseline lung function.98 

Samuelsson et al. used NMR-based metabolomics to study metabolic responses of 

rainbow trout exposed to the synthetic contraceptive estrogen ethinylestradiol.99 Despite 

the advantages of NMR, it is still a less sensitive detection method than MS. NMR is able 

to detect nanogram quantities, while MS has detection limits ranging from femtograms to 

pictograms.100-102 Furthermore, the complexity of biological samples leads to major 

spectral overlap of NMR signals from many metabolites, especially in the aliphatic 

region. 1H J-resolved NMR spectroscopy and two-dimensional methods (e.g. correlation 

spectroscopy, total correlation spectroscopy, or heteronuclear single quantum conherence 

spectroscopy) have been developed to increase the resolution and sensitivity of NMR 

analysis. J-resolved NMR separates metabolite chemical shifts and J-coupling into two 

dimensions, thereby, reducing spectral congestion and increasing metabolite 

specificity.103 Viant demonstrated how J-resolved NMR increases the amount of 

extractable metabolic information from NMR spectra through the investigation of 

embryogenesis in an established fish model for developmental toxicology.104 

Metabolomics studies also combine both NMR and MS approaches to broaden 

metabolome coverage as these detection platforms can complement each other. 1H NMR 

and UPLC-MS analyses have been used to determine the geographical origins of 

differing herbal medicines and to identify the primary and secondary metabolites 

responsible for the discrimination.105  
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1.4 Biological Applications of Metabolic Fingerprinting  

Metabolomics has been used for a wide variety of biological applications. Those 

highlighted in Sections 1.4.1 and 1.4.2 are directly related to the work presented in this 

dissertation. 

1.4.1 Metabolomics in Oncology (Oncometabolomics) 

Cancer is currently the 2nd leading cause of death in the United States but is 

expected to surpass heart disease as the leading cause within the next few years.106, 107 In 

the US alone, 1 in 4 deaths is due to cancer.106 Although the cancer death rate has been 

declining for nearly 2 decades, more than 1.6 million new cancer cases and 589,430 

cancer deaths are estimated to occur in 2015.107 Although early diagnosis leads to 

improved prognosis, there is a knowledge deficit regarding the biochemical processes of 

the origin and proliferative molecular mechanisms of many types of cancers which has 

also led to a shortage of sensitive and specific cancer biomarkers.108, 109 Researchers have 

looked to proteins for biomarker discovery for over a century. Yet, less than 10 proteins 

have progressed to FDA-approved cancer diagnostic tests.109 Recently, metabolomics has 

become more attractive for cancer research due to the development of technologies that 

can discriminate metabolic fingerprints among healthy, precancerous, and cancerous cells 

or tissues.110 Modern interest in oncometabolomics stemmed from the late 1980s claim 

that cancer could be identified by NMR spectra of blood samples;111 however, this study 

was found to be falsified and consequently tainted the field of metabolomics.112 Yet, the 

notion that metabolomics could aid in understanding and detecting cancer persisted.112 

Changes in metabolite levels occur after modifications of the genome and proteome 

linked to cancer-associated biochemical reactions, yet still before cell morphologic 
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changes associated with cancer.113 Therefore, examining the metabolome is appealing for 

early diagnostics of cancer since this analysis should detect the initial stages of 

carcinogenesis, as well as the observation of cancerous effects and subsequent therapeutic 

intervention.55 Moreover, metabolomics could aid in the understanding of the 

mechanisms of cancer development and proliferation. 

While traditional biomarker discovery studies focused on finding one marker for 

disease, biomarker panels which are typically sought after in metabolomics research have 

the potential to give better sensitivity and/or specificity than single biomarkers alone. It 

has been shown, for example, that combinations of known bladder cancer biomarkers can 

increase diagnostic sensitivity on average to 91 ï 98%.114 For brain cancer,  Florian et al. 

demonstrated that in vitro NMR and HPLC metabolic profiles could distinguish between 

three types of human brain and nervous system tumors (meningiomas, neuroblastomas, 

and glioblastomas) using biomarker panels.115 Discriminant metabolites from NMR 

analysis included alanine, glutamate, creatine, phosphorylcholine, and threonine, while 

HPLC analysis showed that taurine, ɔ-aminobutyric acid, and serine discriminated among 

the 3 tumor types. These early findings demonstrated that metabolomics has potential for 

the development of brain cancer tumor lineage diagnosis.115 Maxwell et al. found that 1H 

NMR metabolomic profiles had 85% accuracy when used to differentiate meningiomas 

from other brain tumors.116 This accuracy was increased to 89% when only creatine and 

glutamine signals from the spectra were used for classification. Additionally, inositol 

levels significantly correlated with glioma grade. For colorectal cancer, Qiu et al. found 

that 5 metabolites associated with perturbations of glycolysis, arginine and proline 

metabolism, fatty acid metabolism, and oleamide metabolism were linked to colorectal 
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cancer morbidity using GC-MS and UPLC-MS serum metabolomic profiles.117 Nishiumi 

et al. employed GC-MS based serum metabolomic fingerprinting to create a prediction 

model for colorectal cancer based on levels of 2-hydroxybutyrate, aspartic acid, 

kynurenine, and cystamine.118 Validation of the prediction model with test samples 

resulted in 83.1%, 81.0%, and 82.0% sensitivity, specificity, and accuracy, respectively. 

The model also detected early-stage colorectal cancer with 82.8% sensitivity. 

Metabolomics is actively used to understand the molecular mechanisms by which 

chemotherapeutic drugs attack and destroy cancerous cells in addition to assessing the 

efficacy of treatment. Corominas-Faja et al. found that metformin-treated breast cancer 

cells had significant accumulation of 5-formimino-tetrahydrofolate using UPLC-MS 

metabolic profiles.119 5-formimino-tetrahydrofolate carries activated one-carbon units 

that are essential for the de novo synthesis of purines and pyrimidines. Concurrently, de 

novo synthesis of glutathione, a folate-dependent pathway involved in one-carbon 

metabolism, was reduced in response to metformin. Activation of the DNA repair protein 

ATM kinase and the metabolic tumor suppressor AMPK were not observed after 

metformin treatment. The findings suggested for the first time that metformin can 

function as an antifolate chemotherapeutic agent that induces the ATM/AMPK tumor 

suppressor after modifying the flow of carbon through folate-related one-carbon 

metabolic pathways. Choline phospholipid metabolism is elevated in many cancers, and 

the increase of total choline-containing metabolites may be used as a predictive 

biomarker for monitoring treatment efficacy in targeted therapies.112, 120 Employing 

combined magnetic resonance imaging and three-dimensional spectroscopic imaging, 

Mueller-Lisse et al. studied the metabolic effects of hormone-deprivation therapy in 
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prostate cancer patients. There was a substantial time-dependent decrease of choline, 

creatine, citrate, and polyamines, which ultimately resulted in the complete loss of these 

metabolites in 25% of patients on long-term hormone-deprivation therapy. Residual 

prostate cancer could be detected by elevated choline levels (choline/creatine ratio Ó 1.5). 

These findings provided both a measure to detect residual prostate cancer and a time-

course of metabolic response following hormone-deprivation therapy.121 Metabolomics is 

also used to determine molecular targets for new chemotherapies, specifically focusing 

on perturbed pathways involved in cancer growth, proliferation, and metastasis.112 Folger 

et al. developed a flux balance analysis model of cancer metabolism that captured the key 

metabolic alterations that occur across many cancer typesðthe first computational 

approach for interpreting the ever-growing body of metabolomics and proteomics data.122  

The model was used to predict 52 cytostatic chemotherapeutic targets, of which 60% are 

not currently targeted by known, approved, or experimental anticancer drugs. Potential 

selective treatments for specific cancers that depend on cancer typeȤspecific down-

regulation of gene expression and somatic mutations were also presented. 

1.4.2 Metabolomics in Chemical Ecology (Ecometabolomics) 

Chemical ecology is concerned with the chemical signals that organisms produce 

and of which they respond that lead to interactions amongst themselves. These 

chemically-mediated interactions have allowed researchers to become more 

knowledgeable of how organisms locate food and habitats, as well as avoid predators and 

pathogens, compete with each other, and mate.123, 124 These interactions can dramatically 

influence ecosystem structure.124, 125 Chemical ecology advancements have correlated to 

advancements in the sensitivities of analytical technologies which have allowed for the 
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discovery of many compounds utilized for chemical signaling.123, 124 The traditional 

analysis technique for the discovery of compounds used for chemical signaling is 

bioassay-guided fractionation. While bioassay-guided fractionation can be powerful, 

bioactivity resulting from unstable compounds cannot be traced back to its original 

molecular source. Furthermore, compounds that interact synergistically are not detected 

since individual fractions may have no effect on bioassays even though combined 

fractions may illicit a biochemical response.124 Bioassay-guided fractionation is also time 

consuming and not high-throughput. Although studies using metabolomics to gain 

knowledge regarding chemically-mediated interactions are scarce,1 researchers have 

begun to exploit the advantages that metabolomics has over the traditional bioassay-

guided fractionation. As all metabolites are measured at once, unstable compounds are 

more likely to be detected.1, 124 Moreover, metabolomic investigations can evaluate the 

different responses a particular species phenotype may have in response to chemically-

mediated interactions or environmental changes in addition to the metabolic pathways 

involved in those responses.1 Metabolomics has been used to explore the effect of 

drought on the growth on Oryza sativa,126 the global responses of Arabidopsis thaliana to 

nutritional stresses,127 and the impact of pollution exposure on the metabolism of Mytilus 

galloprovincialis.128 Metabolomics has been used to investigate the impact of biotic 

factors on organisms as well. Choi et al. found 5-caffeoylquinic acid, Ŭ-linolenic acid 

analogues, and sesqui- and diterpenoids were connected to the systemic acquired 

resistance of tobacco to tobacco mosaic virus. Before their metabolomics study, only 

genes and proteins involved in the systemic acquired resistance had been characterized.129 

Schroeder et al. found that pinoresinol, a plant lignan, is a minor component in the 
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defensive secretion produced by the glandular hairs of Pieris rapae, cabbage butterfly 

caterpillars.130 The caterpillars obtain pinoresinol, which is a deterrant to ants, from their 

food sourceðcabbage (Brassica oleracea). Pinoresinol proved to be more potent than 

mayolene-16, a primary component belonging to the mayolene group of lipids previously 

reported to be responsible for the action of the defensive secretion. Pieiris et al. used 

metabolomics to study the chemically-mediated interactions of the wood decay 

basidiomycete fungus Stereum hirsutum with its competitors Coprinus micaceus and 

Coprinus disseminates.131 There were increased levels of 3 metabolites including malic 

acid and 1,2-dihydroxyanthraquinone when S. hirsutum was overgrown by C. 

disseminates. When S. hirsutum interacted with C. micaceus, decreased levels of 7 

metabolites including 2-methyl-2, 3-dihydroxypropionic acid and pyridoxine were 

observed. 

1.5 Traditional Mass Spectrometry-Based Untargeted Metabolomics 

Workflow  

Traditional MS-based metabolomics research is performed using chromatography 

coupled to MS and results in complex three-dimensional data sets. A traditional MS-

based untargeted metabolomics workflow is shown in Figure 1.3. The steps involved are 

further described in Sections 1.5.1 ï 1.5.5. 

1.5.1 Experimental Design 

Untargeted metabolomics is an impartial, all-inclusive approach for detecting as 

many metabolites as possible without a priori knowledge of their identity. These analyses 

are the first steps toward designing targeted assays to study specific metabolic pathways, 
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detect clinical disease, or monitor environmental phenomena; thus, the experimental 

design is of the utmost importance.132 Experimental details that should be established 

early include predetermined sample classes (e.g., cancer vs. non-cancer or exposed vs. 

control) in addition to the types of biological samples needed and the number of samples 

to be included in the study. Instrumentation needed for analyses should also be 

determined since its analytical sensitivity can influence sample preparation methods. An 

assessment of analytical sensitivity and repeatability during metabolomics studies is 

obtained through the utilization of quality control (QC) samples.133 

 

 

 
Figure 1.3: A typical untargeted metabolomics workflow. 
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While QCs can vary, it has been recommended that a pooling of all samples to be 

analyzed serve as the QC for metabolomics studies.134 Furthermore, experimental details 

must consider possible confounding factors such as age, gender, and ethnicity, to ensure 

that resultant multivariate analysis is not influenced by such variables.135, 136 Analysis 

methods should have limited technical variation; if technical variation exceeds the 

biological variation of the system under investigation, results from the ensuing study may 

be invalid as multivariate analysis methods could solely interpret technical variation and 

not useful biological information. Steps taken to ensure this include conducting replicate 

analyses, cleaning instrumentation between sample batches, and optimizing instrumental 

parameters before beginning any metabolomics study.134 

1.5.2 Biological Sample Preparation 

Many types of biological samples are used for metabolomics studiesðserum,40, 77 

plasma,40, 99 urine,40, 64, 87 cerebrospinal fluid,12 exhaled breath condensate,137 and 

tissue.63, 75 As these sample matrices also contain proteins, the primary sample 

preparation method involved in metabolomics research is extraction of metabolites. 

Metabolite extraction is challenging due to the chemical diversity of the metabolome.100 

Typically, organic solvents are used to precipitate proteins by disrupting hydrogen 

bonding to water and, subsequently, extract soluble metabolites. However, these 

extraction methods may deplete certain metabolite levels, i.e. protein-bound metabolites, 

and suffer from matrix interference.100, 138 The solvent system used for metabolite 

extraction greatly impacts the type of metabolites detected during metabolomic 

analysesðpolar solvents will extract polar metabolites and a nonpolar solvent system 

will be biased towards extracting nonpolar metabolites. Moreover, the solvent system 
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used should be able to reproducibly extract metabolites to ensure minimum technical 

variation in the resultant data. Testing 14 different metabolite extraction methods for 

reversed-phase LC-MS serum metabolomics, Want et al. found that utilizing methanol as 

the extraction solvent was the most effective, reproducible metabolite extraction 

method.139 The resultant serum extracts contained over 2,000 detected metabolic features 

and less than 2% residual protein. Furthermore, methanol extracted metabolites with 

varying degrees of hydrophobicity. Interestingly, combining all of the metabolite 

extraction methods resulted in the detection of over 10,000 unique metabolic features, 

thereby demonstrating that metabolite extraction procedures can bias the types of 

detected metabolites. Using 12 protocols to extract intracellular metabolites from Chinese 

hamster ovary cells, Dietmair et al. found that the concentration of extracted intracellular 

metabolites was highest with a cold 50:50 (v/v) mixture of acetonitrile and water.140 

Additionally, this method was able to fully extract/recover all analytes of an experimental 

chemical standard metabolite mixture. Metabolites can also be fractionated after proteins 

are eliminated; liquid-liquid extraction can be performed to further separate extracted 

metabolites into polar aqueous and lipophilic organic fractions.4 Masson et al. 

demonstrated that UPLC-MS metabolic profiling of polar and nonpolar liver tissue 

metabolite extracts benefitted from aqueous extraction with methanol/water followed by 

an organic extraction with dichloromethane/methanol; although, dried extracts had to be 

resuspended in methanol/water before UPLC-MS analysis.141 The median coefficients of 

variation for metabolic feature intensities of aqueous extracts was <20%, while it was 

<30% for organic extracts. As the primary aim of untargeted metabolomics is to detect as 

many metabolites as possible without a priori knowledge of their identity, metabolite 
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extraction protocols should be optimized before beginning a study to ensure broad 

metabolome coverage. 

1.5.3 Data Analysis and Metabolic Feature Extraction 

Resultant untargeted metabolomics data files contain three dimensions: (1) 

chromatographic retention time, (2) mass-to-charge ratio (m/z), and (3) abundance. The 

acquired data sets are mined to extract metabolic features (unique retention time, m/z 

pairs) across all analyzed samples. Metabolic feature lists can contain hundreds to 

thousands of features.142 The most commonly used open-source software tools to 

accomplish this are MZmine143 and XCMS,144 but vendor supplied software also exists 

for this purpose. These software tools support many MS data file types. Furthermore, 

they can be utilized for data visualization.  Data mining procedures generally include 

chromatogram alignment to eliminate retention time variation across analyses that may 

result from sample carryover or column degradation when conducting large studies. After 

chromatograms are aligned, peaks are detected and integrated so that peak areas can be 

extracted for all metabolic features that pass chromatographic and spectral noise 

thresholds and chromatographic peak width constraints.145 The resultant metabolic 

feature list is deisotoped and adduct ions may be removed to ensure that metabolic 

features are not represented more than once. Feature lists are aligned to match metabolic 

features across all data files. MZmine allows users to ñgap-fillò the peak list to ensure 

that none of the algorithms used for the above process disregard metabolic features that 

are actually present in the raw data.146 Typically, metabolic feature lists are curated to 

eliminate any features that appear in blank samples and those that are not present in a 

user-specified percentage of the real samples so that the metabolic features are 
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representative of the samples included in the study. Lastly, the peak list is normalized. 

Sample data is commonly normalized to the sum of its feature abundances.145 

1.5.4 Pattern Recognition by Multivariate Analysis 

From a statistical point of view, analysis of metabolomic data sets represents a 

significant challenge, and robust approaches are necessary to handle, extract and classify 

the relevant information from the vast amount of data generated.147 Data sets can be 

explored through principal components analysis (PCA). PCA interprets and transforms 

the metabolic features into a small number of principal components that capture maximal 

variance in the data.142 Visualization of this variance assists in the discernment of data 

trends.4 As such, PCA allows the user to determine if technical variance, such as 

instrumental drift which leads to batch effects or sample carryover, will affect the 

analysis of biological variance, in addition to pointing out sample outliers. Metabolite 

concentration differences in metabolomics data sets can be as high as 5000-fold.142 

Multivariate analysis techniques are sensitive to large metabolite abundances and 

concentration differences even if they are not biologically relevant. As such, 

metabolomics data is transformed or scaled to reduce large abundances so that low 

abundances are not dwarfed and multivariate statistical analysis is more prone to identify 

pertinent biological changes.148 Different scaling or transformation methods used include 

mean-centering, autoscaling, Pareto scaling, and general logarithm transformation.149 

Supervised classification techniques such as partial least squares discriminant analysis 

(PLS-DA), soft-independent method of class analogy (SIMCA),150 and support vector 

machines (SVMs)151 are generally used to discriminate sample classes and assist in the 

interpretation of the biological information gained from metabolomics studies.152 These 
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supervised techniques incorporate sample class membership into their analysis, so that 

biological patterns in feature abundances that discriminate sample classes can be known. 

As this modeling is done with metabolic feature lists that may contain thousands of 

features, it is important to couple the statistical modeling with variable selection methods 

that extract the most important metabolic features needed for classification. Examples of 

variable selection methods are variable importance in projection (VIP) scores,151 

recursive feature elimination (RFE),153 genetic algorithms,132 sensitivity ratios,154 and S-

plots.155 Variable selection also allows metabolite identification to become more 

manageable and eliminates noisy metabolic features that do not contribute to the 

biological variation that aids in classification. Oftentimes in untargeted metabolomics 

studies, a more global assessment of perturbed metabolism is sought after, and metabolic 

features are analyzed for statistically significant differences between sample groupings. 

This can be accomplished by nonparametric statistical methods, analysis of variance 

(ANOVA), and a Studentôs t Test.142 

1.5.5 Metabolite Identification and Pathway Mapping 

Metabolites responsible for class differentiation/discrimination are identified so 

that hypotheses regarding pathway perturbations can be made or identities of potential 

biomarkers can be known. Many MS-based metabolomics studies employ high-resolution 

instrumentation capable of providing accurate masses for metabolites. Generated 

elemental formulae based on the exact mass and isotopic patterns of the metabolites can 

be searched against metabolite databases,156 such as HMDB,46 METLIN,48 and the LIPID 

MAPS database.50 Despite the growth of metabolite databases over the years, a 

substantial number of metabolic features are still not matched to metabolites.157 



30 

 

Metabolites are more confidently annotated when their fragmentation patterns and 

chromatographic retention times are matched to chemical standards.156 However, 

depending on the MS instrumentation, tandem MS fragmentation spectra may be difficult 

to obtain for low concentration metabolites whose precursor ion abundance is not high 

enough for sensitive quadrupole selection and subsequent collision induced dissociation 

due to ion transmission losses.158 If a chemical standard is not available, metabolite 

fragmentation patterns can be searched against the MS/MS METLIN database48 and 

MassBank;159 literature searches can also be conducted. Although tedious, sometimes 

fragmentation patterns must be manually analyzed for metabolite identity and to 

discriminate between different isobaric species. Once metabolite identities are validated, 

databases such as KEGG49 and MetaCyc51 are utilized to determine the metabolic 

pathways in which the metabolites play a role and the upstream biological molecules to 

which they are linked. Hypotheses regarding the metabolic state of the sample classes can 

then be developed. 

1.6 Conclusion 

Metabolomics has a rich history in clinical chemistry but is continuing to add 

girth to many additional biological fields. As metabolite distributions are representative 

of phenotype, MS-based untargeted metabolomics analysis is capable of providing new 

insight into disease detection and progression as well as increasing our knowledge of 

ecological interactions in particular environmental systems. Still, shortcomings in 

metabolomics have been realized and advances in systems biology data integration and 

high-throughput analytical technologies are needed. Pairing metabolomic information 

with that acquired from other ñomicsò disciplines gives a more all-inclusive snapshot of 
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perturbations to metabolic pathways since it is difficult to determine causal relationships 

within metabolic networks with only metabolomic data. Additionally, chromatographic 

separation methods coupled to MS are very powerful for metabolome analysis, but they 

are not without challenges for large metabolomics studiesðlengthy analysis timesðso 

there is still a need for developing higher throughput MS approaches. 
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CHAPTER 2. ULTRA PERFORMANCE LIQUID 

CHROMATOGRAPHYīMASS SPECTROMETRY SERUM 

METABOLOMICS DETECTI ON OF PROSTATE CANCER 
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Prostate Cancer by Ultra Performance Liquid ChromatographyīMass Spectrometry 

Serum Metabolomics. J. Proteome Res. 2014, 13 (17), 3444-3454. Copyright © 2014 
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This chapter describes research conducted by multiple persons. C. M. Jones and M. Zhou 

optimized the sample preparation and UPLC-MS analysis methods in addition to 

acquiring the UPLC-MS data. C. M. Jones processed the UPLC-MS data. C. M. Jones, X. 

Zang, and M. E. Monge tentatively identified metabolites and conducted UPLC-MS/MS 

experiments. X. Zang confirmed all metabolite identifications, conducted chemical 

standard validation experiments with assistance from M. E. Monge, and determined the 

biological functions of the identified metabolites with assistance from R. Mezencev. T. Q. 

Long performed all multivariate analyses.   

 

 

2.1 Abstract 

Prostate cancer (PCa) is the second leading cause of cancer-related mortality in 

men. The prevalent diagnosis method is based on the serum Prostate-Specific Antigen 

(PSA) screening test, which suffers from low specificity, over-diagnosis and over-

treatment. In this work, untargeted metabolomic fingerprinting of age-matched serum 

samples from prostate cancer patients and healthy individuals was performed using ultra 

performance liquid chromatography coupled to high resolution tandem mass 

spectrometry (UPLC-MS/MS) and machine learning methods. A metabolite-based in 

vitro diagnostic multivariate index assay (IVDMIA) was developed to predict the 

presence of PCa in serum samples with high classiýcation sensitivity, specificity and 

accuracy. A panel of 40 metabolic spectral features was found to be differential with 
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92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the 

IVDMIA was higher than the prevalent PSA test. Within the discriminant panel, 31 

metabolites were identified by MS and MS/MS, with 10 further confirmed 

chromatographically by standards. Numerous discriminant metabolites were mapped in 

the steroid hormone biosynthesis pathway. The identification of fatty acids, amino acids, 

lysophospholipids, and bile acids provided further insights into the metabolic alterations 

associated with the disease. With additional work, the results presented here show 

potential towards implementation in clinical settings. 

2.2 Prostate Cancer Detection 

2.2.1 Current Diagnostic Methodology 

Prostate cancer (PCa) is the 2nd leading cause of cancer-related mortality in men 

worldwide, with 30,000 deaths per year in the U.S. alone.1 The prevalent diagnosis 

method is based on the triad of digital rectal examination, blood Prostate-Specific 

Antigen (PSA) measurement, and ultrasound-guided prostate biopsy. Although the 

introduction of PSA screening decreased mortality by 4% between 1994 and 2006,2 the 

use of PSA as a diagnostic serum marker still presents several drawbacks. The 

concentration of this protein in the blood stream increases during the development of 

cancer, but also can be secreted as a result of benign prostatic hyperplasia, prostatitis, or 

other traumas to prostate cells.3 Therefore, this method suffers from low specificity and 

consequent over-diagnosis and over-treatment.4-7 Moreover, approximately 15% of 

patients with PCa have PSA values lower than the commonly used cutoff point of 4.0 ng 

mL-1, leaving many cases undetected.8 
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2.2.2 Overview of Metabolic Prostate Cancer Detection 

The shortcomings of PSA as a diagnostic PCa serum biomarker have led to an 

increased interest in using untargeted metabolomic fingerprinting/profiling to discover 

new differential metabolic biomarkers that could improve the specificity of PCa 

diagnosis.9 Metabolic biomarkers are used as a routine tool in screening newborns for the 

presence of inborn errors of metabolism by means of tandem mass spectrometry;10, 11 

however, global metabolite profiling of PCa patients still remains at an early stage, and 

there is no biomarker panel currently in use for clinical testing.9 Current research has 

shown some evidence of metabolic alterations associated with PCa. Tissue sarcosine 

levels have been suggested as a potential biomarker for the aggressive form of the disease 

in a metabolomic profiling study using both liquid and gas chromatography coupled to 

mass spectrometry (LC-MS and GC-MS).12 Its concentration in prostate cancer-related 

tissue specimens was highly increased during PCa progression to metastasis, but 

differences in urine were much less marked.12 These results have been very prominent 

but somewhat controversial as other targeted studies failed in the attempt of 

differentiating healthy individuals from cancer patients based on sarcosine concentration 

in biological fluids and cancerous tissues.9, 13-15 The analysis of cancerous tissues by 

proton high-resolution magic angle spinning nuclear magnetic resonance (NMR) 

spectroscopy has shown a decrease in the concentrations of citrate and polyamines, and 

increases in cholines, glycerophospholipids, and lactate concentrations during PCa 

proliferation.16, 17 Increased levels of cholesterol as well as alterations in amino acid 

metabolism were detected in metastatic bone samples by GC-MS.18 However, all of these 

studies included too few patients to offer strong leads on the metabolic alterations 
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associated with PCa. A panel of plasma lipids that included phosphatidylethanolamines, 

ether-linked phosphatidylethanolamines, and ether-linked phosphatidylcholines was 

proposed to discriminate PCa patients from healthy groups through direct infusion 

electrospray ionization tandem MS.19 The authors demonstrated that a combination of 

multiple biomarkers with multivariate analysis and various classification algorithms 

yielded better predictive power for the diagnosis of PCa than univariate analysis of single 

lipid species. However, the predictive power was not compared with that of PSA, as this 

information was not available at the time of cohort design.19 More robust metabolic 

models still need to be developed for improved understanding of disease progression, and 

more reliable PCa detection. 

2.3 Experimental Details 

2.3.1 Chemicals 

Healthy human blood serum (S7023-50 mL) and acetic acid (Ó 99.7%) were 

purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). Omnisolv LC-MS grade 

acetonitrile, Omnisolv high purity dichloromethane and HPLC grade acetone were 

purchased from EMD (Billerica, MA, USA). LC-MS grade methanol and 2-propanol 

were purchased from J.T. Baker Avantor Performance Materials, Inc. (Center Valley, PA, 

USA). Ultrapure water with 18.2 Mɋ cm resistivity (Barnstead Nanopure UV ultrapure 

water system, USA) was used to prepare mobile phases. Uric acid (Ó99%), azelaic acid 

(98%), undecanedioic acid (97%), heptadecanoic acid (Ó98%) and decanoic acid (Ó98%) 

were purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). Hexadecanedioic acid 

(98%) was purchased from Ark Pharm, Inc. (Libertyville, IL, USA). Phenylalanyl 
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phenylalanine was purchased from MP Biomedicals (Solon, OH, USA). Phenylacetyl 

glutamine was purchased from Bachem (Hauptstrasse, Bubendorf, Sitzerland). Indoxyl 

sulfate potassium was purchased from Alfa Aesar (Ward Hill, MA, USA). 1-stearoyl-2-

hydroxy-sn-glycero-3-phosphocholine/ lysoPC (18:0/0:0) was purchased from Avanti 

Polar Lipids, Inc. (Alabaster, AL, USA). 

2.3.2 Patient Cohort Description 

Age-matched blood serum samples were obtained from 64 PCa patients (age 

range 49-65, mean age 59 ± 4 years) and 50 healthy individuals (age range: 45-76, mean 

age 57 ± 7 years). At the 0.05 level, the population means were not significantly different 

with the two-sample t-test. The cohort ethnicity was as follows: 28 African American 

(24.6%); 76 Caucasian (66.7%); 5 Hispanic (4.4%); 2 Asian (1.8%); 2 Jewish ancestry 

(1.8%); and 1 unknown (0.9%). After approval by the Institutional Review Board (IRB), 

blood samples were collected at Saint Joseph´s Hospital of Atlanta (GA, USA) by 

venipuncture from each donor into evacuated blood collection tubes that contained no 

anticoagulant. Serum was obtained by centrifugation at 5000 rpm for 5 min at 4 °C. 

Immediately after centrifugation, 200 µL aliquots of serum were frozen and stored at -80 

°C for further use. The sample collection and storage procedures for PCa patients and 

healthy individuals were identical. Gleason scores based on the microscopic glandular 

patterns of biopsy specimens were obtained for 61 PCa patients. 
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2.3.3 Sample Preparation and Ultra Performance Liquid Chromatography-

Mass Spectrometry Protocols 

A stock sample of healthy human blood serum was used to develop the serum 

sample preparation protocol and ultra performance liquid chromatography-mass 

spectrometry (UPLC-MS) method. Serum samples were thawed on ice, and protein 

precipitation was performed by the addition of a mixture of acetone, acetonitrile and 

methanol (1:1:1 v/v) to 100 µL of serum in a 3:1 volume ratio. Samples were vortex-

mixed for 20 s, and centrifuged at 16000 × g for 5 min. After centrifugation, 800 µL of 

dichloromethane were added to 350 µL of supernatant, and vortex-mixed. Following the 

addition of 250 µL of deionized water, samples were vortex-mixed again to extract the 

non-polar lipid fraction. The aqueous phase was used for metabolite analysis by UPLC-

MS. Samples were randomly separated into 7 batches and consecutively analyzed. The 

instrument was calibrated before analysis and solvent and sample preparation blanks 

were jointly analyzed with the samples in a random order. 

UPLC-MS analysis was performed using a Waters ACQUITY Ultra Performance 

LC (Waters Corporation, Manchester, UK) system, fitted with a Waters ACQUITY 

UPLC BEH C18 column (2.1 × 50 mm, 1.7 µm particle size), and coupled to a high-

resolution accurate mass (HRAM) Synapt G2 High Definition Mass Spectrometry 

(HDMS) system (Waters Corporation, Manchester, UK). The Synapt G2 HDMS is a 

hybrid quadrupole-ion mobility-orthogonal acceleration time-of-flight instrument with 

typical resolving power of 20,000 FWHM M/æm and mass accuracy of 9 ppm at m/z 

554.2615. The instrument was operated in negative ion mode with a probe capillary 

voltage of 2.3 kV, and a sampling cone voltage of 45 V. The source and desolvation 
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temperatures were 120 °C and 350 °C, respectively; and the nitrogen desolvation flow 

rate was 650 L h-1. The mass spectrometer was calibrated across the range of m/z 50-1800 

using a 0.5 mM sodium formate solution prepared in 90:10 2-propanol:water v/v. Data 

were mass corrected during acquisition using a leucine enkephalin reference spray 

(LockSpray) infused at 2 µL min-1. Data were acquired in the 50-1750 m/z range and the 

scan time was set to 1 s. Data acquisition and processing was carried out using MassLynx 

v4.1. The chromatographic method for sample analysis involved elution with acetonitrile 

(mobile phase A) and water with 0.1% acetic acid (mobile phase B) using the following 

gradient program: 0-1 min 0-10% A; 1-2.5 min 10-15% A; 2.5-4 min 15-22% A; 4-6 min 

22-38% A; 6-9 min 38-65% A; 9-12 min 65-80% A; 12-16 min 80-100% A; 16-18 min 

100% A. The flow rate was constant at 0.25 mL min-1 for 12 min. It was increased to 0.30 

mL min-1 between 12 and 16 min, and from 0.30 to 0.45 mL min-1 between 16 and 18 

min. The gradient was returned to its initial conditions over a period of 8 minutes after 

each sample injection. The column temperature was set to 35 °C, the autosampler tray 

temperature was set to 5 °C, and the injection volume was 10 µL. UPLC-MS/MS 

experiments were performed by acquiring mass spectra with applied voltages between 5 

and 50 V in the trap cell, using ultra purity argon (Ó 99.999%) as the collision gas. 

2.3.4 Data Analysis 

After UPLC-MS analysis, metabolic features (retention time (Rt), m/z pairs) were 

extracted from chromatograms using MarkerLynx XS software. This procedure involved 

chromatogram alignment, peak picking and integration, peak area extraction, and 

normalization. The matrix containing sample peak areas for each feature (Rt, m/z) was 

utilized to build a model for sample classification and to find the minimum set of 
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discriminant features by means of linear support vector machines (SVMs).20 This 

supervised classification technique is effective at handling high dimensionality data as 

those produced in the present work. For a binary classification problem, linearly-

separable samples represented as a row vector x, had membership of two classes g (= H 

or D), where H stands for healthy and D for PCa disease with labels c = -1 for class H, 

and +1 for class D. To build the classification model, 70% of the samples were randomly 

selected as a training set, and 30% as a test set. Within the training set, 10% of samples 

were used for validation and to find the minimum set of discriminant features that 

maximized accuracy in the classification through a recursive feature elimination (RFE) 

method.21 The decision function that separated the two classes, defined here as the 

IVDMIA ñPCa metabolic scoreò, was as follows: 

ὖὅὥ άὩὸὥὦέὰὭὧ ίὧέὶὩὦ ύὼ                                     ρ 

Ὣ● ίὫὲ◌● ὦ ίὫὲὖὅὥ άὩὸὥὦέὰὭὧ ίὧέὶὩ               ς 

where w and b are the weight and bias parameters that were determined from the training 

set and J is the total number of features. The sign of the PCa metabolic score determined 

which class a sample was assigned to: class H if negative and class D if positive. In this 

classification function, the two classes were divided in the dataspace by a 

hyperplane ◌● ὦ π that maximized the margins between samples of different 

classes. The margin between the two classes was defined such that:  

◌● ὦ ρȟ ὧ ρ                                                 σ 

◌● ὦ ρȟ        ὧ ρ                                               τ 
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To estimate the classification and feature selection performance, ten iterative validations 

were performed to randomly select the training and test sets. The statistical significance 

of the model was further assessed through hypothesis testing by permutation tests. No 

assumptions were made in this non-parametric approach to hypothesis testing regarding 

the data distribution, and the p-value was computed as the cumulative sum using the 

empirical distribution. Two permutation tests were performed using 100 permutation 

samples with the following null hypothesis:  

i) Null hypothesis 1: feature and labels (positive/negative) are independent (i.e. 

indifference when class labels are permutated).  

ii)  Null hypothesis 2: features are independent within each class (i.e. indifference 

when value of each features are permutated within each class).   

If the p-value < Ŭ (Ŭ = 0.05), the null hypothesis H0 was rejected; otherwise the observed 

result was not statistically significant.  

Additionally, Principal Component Analysis (PCA) was used to evaluate the 

performance of all extracted metabolic features or subsets of them in an unsupervised 

manner with MATLAB R2011b (Version 7.13.0, The MathWorks, Inc., Natick, MA, 

USA) and the PLS Toolbox (v.6.71, Eigenvector Research, Inc., Wenatchee, WA, USA). 

Data were preprocessed by autoscaling. 

2.3.5 Discriminant Metabolite Identification Procedure 

Compound identification was attempted for the 40 discriminant features 

remaining after the feature selection processes. Due to the biological complexity of serum 

samples, adduct ion analysis was first performed to ensure the unambiguous assignment 
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of the signal of interest in each mass spectrum. Adduct ions corresponding to SVM-

selected variables that were investigated in the mass spectra included [M - H]-, [M + Cl]-

,[M + Br] -, [M + CH3COO]-, [M + HCOO]-, [M + CF3COO]- [M + Na - 2H]-, [M + K - 

2H]-, [M - H2O - H], [M + H2O - H]- species, which are typically observed in negative 

electrospray ionization mode. The expected m/z values for common adduct species were 

calculated and compared with the experimental values from peaks within the spectra. For 

spectra in which no confirmatory adducts were present, the accurate mass of the 

candidate neutral molecule was calculated based on the assumption that the peak of 

interest corresponded to [M - H]-. Elemental formulae were generated based on the mass 

accuracy of the peak of interest and isotopic patterns with a mass error of 8 mDa, using 

MassLynx 4.1. The list of elements included in the search was C, H, N, O, P, S, Cl, and 

Br. The list of generated elemental formulae were searched against the METLIN 

database,22 HMDB,23 and MassBank24 to determine the possible endogenous metabolite 

candidates. The METLIN MS/MS database and a literature survey were subsequently 

used to confirm the identity of putative candidates. Fragmentation patterns were also 

manually analyzed to discriminate between different isobaric species. 

2.4 Prostate Cancer Detection Performance of the In Vitro  Diagnostic 

Multivariate Assay 

UPLC-MS analysis in negative ion mode allowed the interrogation of highly 

complex serum samples from PCa patients and healthy individuals, revealing a total of 

480 features (Rt, m/z pairs). The extracted features were used to build a discriminant 

SVM model for sample classification. An optimum set of 51 discriminant features were 
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found to maximize classification accuracy through a RFE method,21 as illustrated in 

Figure 2.1.  

 

 

 
Figure 2.1: Evolution of classification accuracy for a validation sample subset consisting 

of 10% of the training samples as a function of the number of features retained. The 

minimum discriminant feature set that maximizes classification accuracy is highlighted 

with a dashed line. 

 

 

Out of the 51 selected features, 7 were found to be only present in less than 2% of the 

samples; 2 features were identified as acetaminophen and its sulfite adduct, and 2 

additional features were identified as adducts or fragments of other features in the subset, 

and were thus removed from further consideration. The optimum panel that best 

discriminated PCa patients from healthy individuals was thus reduced to 40 features, 

demonstrating that the feature selection process accomplished a high reduction in 

problem dimensionality.  
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Figure 2.2: Visualization of the PCa metabolic scores obtained by SVMs in one out of 10 

iterative model validations based on 40 discriminant features. Green circles correspond to 

PCa patients in the training set, black triangles correspond to controls in the training set, 

red circles correspond to PCa patients in the test set built for the iteration shown, and blue 

triangles correspond to healthy individuals in the test set. The dotted line shows the 

projection of the separating hyperplane: ◌● ὦ π. 
 

 

 

Figure 2.2 illustrates the ñPCa metabolic scoresò obtained for the training and the test sets 

of randomly selected samples that were used to construct and evaluate the classification 

model, respectively. The separation of the two sample classes (H or D) was determined in 

the data space by the optimal separating hyperplane for which the margin between the 

most similar samples in each group was largest, illustrated with a dotted line in the figure. 
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Figure 2.3: Visualization of the PCa metabolic scores obtained by SVMs in 9 out of 10 

model validation iterations. Green circles correspond to PCa patients in the training set, 

black triangles correspond to controls in the training set, red circles correspond to PCa 

patients in the test set, and blue triangles correspond to healthy individuals in the test set. 

The dotted line shows the projection of the separating hyperplane: ◌● ὦ π. 
 

 

 

The samples with scores equal to 1 or -1 are the support vectors of the model. For the 

particular cross-validation iteration illustrated in Figure 2.2 only one sample was 

misclassified as a false negative. The remaining 9 iterative validations with their 

respective training and test sets are illustrated in Figure 2.3. Based on these 40 

discriminant features, serum samples were successfully classified as cancerous or healthy 

with 93.0% accuracy, 92.1% sensitivity, and 94.3% specificity. These values were 
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calculated as the averages from 10 distinct test sets, illustrated in Figures 2.2 and 2.3. In 

addition, the statistical significance of the model was further evaluated through 

hypothesis testing and, at 0.05 significance level, the null hypothesis was rejected for all 

permutations generated (p-value = 0.0099). Unambiguously, the classifier did not yield a 

better leave-one-out cross-validation (LOOCV) accuracy rate than the original data. 

These results suggest a promising approach that could form the basis for a PCa IVDMIA. 

In particular, of the 40 differential features, 24 were found to increase in sera from PCa 

patients, and 16 were found to decrease in PCa, as illustrated in Figure 2.4. It is important 

to underline, however, that the strength of this IVDMIA resides in the combination of 

multiple metabolic features using an interpretation function to yield a single, patient-

specific result to be used in the disease diagnosis, and not on the average fold change of 

each differential feature. 

To evaluate the possible risk of data overfitting by SVMs,20 a simple 

unsupervised approach was also used to examine the dataset. PCA score plots were 

generated for both the 40 discriminant features set obtained by SVMs and the starting set 

of 480 features. Figure 2.5 shows the results for each case. 
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Figure 2.4: Fold change of average peak areas of each discriminant feature. Positive fold 

changes are calculated as the ratio of average peak areas between PCa patients and 

healthy individuals, and negative fold changes are calculated as the negative ratio of 

average peak areas between healthy individuals and PCa patients. Features are labeled 

with their codes. 

 

 

 

Using the best 40 features, three principal components containing 33.6% of the total 

variance provided a good degree of separation between classes, as illustrated in Figure 

2.5a. Sample separation in the PCA score plot was mainly achieved by the contribution of 

PC3. Loadings for PC3 are displayed in Figure 2.5b. Interestingly, Figure 2.5c shows that 

PCA does not provide any distinguishable clustering when applied to the initial set of 480 

features, further supporting the use of RFE and SVMs when handling high 

dimensionality data volumes as those in the present work. Given the clustering observed 

in PCA when using the 40 discriminant feature subset, the risk of the high classification 

accuracy of SVM models being a product of overfitting is greatly diminished. 
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Figure 2.5: Principal Component Analysis (PCA). A: PCA score plot using only the 40 discriminant features obtained by RFE-SVMs. 

B: Loadings plot obtained for PC3 using the 40 discriminant features, each labeled with their code. C: PCA score plot of the initial set 

of 480 features. Samples from PCa patients are illustrated with red circles and samples from healthy individuals are illustrated with 

blue circles. 
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2.5 In Vitro  Diagnostic Multivariate Assay Versus Prostate Specific Antigen 

Diagnosis 

The Gleason scores for the PCa patients, summarized in Table 2.1, indicate that the 

most common tumor patterns presented by the patients derived from moderate to 

aggressive cancers.  

 

 

Table 2.1: Gleason scores for PCa patients. 

 

Gleason Sum # of patients; (%) 

3+3 = 6 13; (20.3) 

3+4 = 7 27; (42.2) 

3+3 = 6; tert=4 6; (9.4) 

4+3 = 7 3; (4.7) 

3+4=7; tert=5 2; (3.1) 

4+3=7; tert= 5 2; (3.1) 

(R) 3+4 = 7; (L) 4+3 = 7 1; (1.6) 

4+5 = 9 1; (1.6) 

5+4 = 9 1; (1.6) 

(R)3+4=7; tert= 5; (L) 3+3=6 1; (1.6) 

(R)3+4=7; (L) 4+3 = 7; tert= 5 1; (1.6) 

3+5=8; tert= 4 1; (1.6) 

(R) 3+3 = 6; (L) 4+5 = 9 1; (1.6) 

(R)3+3=6; (L)3+3=6 tert= 4 1; (1.6) 
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However, the PSA test performed at surgery did not follow this histological evidence for 

the entire PCa cohort, as 33% of patients with PCa (n = 20) had PSA values lower than 

the commonly used cutoff point of 4.0 ng mL-1. Figure 2.6 compares PSA and IVDMIA 

results in terms of true positive and false negative outputs, highlighted in red and black, 

respectively. The IVDMIA outputs provided by the randomly-selected 10 test sets are 

visualized as box plots in the figure, and show that the IVDMIA was able to correctly 

predict 100% of the true positives that were incorrectly diagnosed as negatives by the 

PSA test. The false negative results provided by the IVDMIA derived from one sample 

that was misclassified in all test sets and 4 samples that were misclassified in at least one 

test set. The classification performance obtained with this cohort shows promise towards 

prostate cancers that would go undetected by the PSA method. The use of multiple 

discriminant features by this metabolic IVDMIA yields higher predictive power for PCa 

diagnosis than the univariate analysis of a single marker such as with the PSA method. 
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Figure 2.6: Comparison of IVDMIA vs. PSA diagnosis performance for 62 PCa patients. 

True positive and false negative outputs are highlighted in red and black, respectively. 

The cutoff point of 4.0 ng mL-1 used in PSA-based diagnosis is indicated with a dotted 

line. The IVDMIA score output is presented as box plots in the figure, each of which is 

generated by results obtained for each of the 10 test sets where each sample was selected 

for validation. No comparison is shown for 2 of the 64 PCa samples as they were not 

randomly selected in any of the 10 cross-validation iterations. 

 

 

 

2.6 In Vitro  Diagnostic Multivariate Assay Potential in Clinical Applications 

To determine the fraction of samples in which the discriminant features were 

present, and to evaluate the feasibility of implementing the PCa IVDMIA in clinical 

laboratory settings through targeted triple-quadrupole mass spectrometry-based assays, 

smaller subgroups of the optimum 40 discriminant features, subsequently referred to as 

ñpanel Aò, were investigated (Table 2.2). 
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Table 2.2: Discriminant feature (sub)panels for PCa detection. 

 

Panel Accuracy Specificity Sensitivity 
Discriminant 

features (#) 
Discriminant Feature Codes 

% Healthy samples, 

% PCa samples 

A 93.0 94.3 92.1 40 

147, 36, 71, 211, 60, 55, 107, 409, 250, 

223, 386, 438, 157, 63, 176, 82, 393, 173, 

84, 412, 43, 376, 343, 429, 384, 76, 444, 

214, 128, 93, 398, 360, 448, 174, 153, 21, 

364, 404, 242, 237 

>0%; >0% 

B 91.2 90.6 91. 7 38 

147, 36, 71, 211, 60, 55, 107, 409, 250, 

223, 386, 438, 157, 63, 176, 82, 393, 173, 

84, 412, 43, 376, 343, 429, 384, 76, 444, 

214, 128, 93, 398, 360, 448, 174, 153, 21, 

364, 404 

>50%; >0% 

C 90.2 87.2 91.8 35 

147, 36, 71, 211, 60, 55, 107, 409, 250, 

223, 386, 438, 157, 63, 176, 82, 393, 173, 

84, 412, 43, 376, 343, 429, 384, 76, 444, 

214, 128, 93, 398, 360, 448, 174, 153 

>50%; >50% 

and >0%; >50% 

D 86.1 87.2 85.3 28 

147, 36, 71, 211, 60, 55, 107, 409, 250, 

223, 386, 438, 157, 63, 176, 82, 393, 173, 

84, 412, 43, 376, 343, 429, 384, 76, 444, 

214 

>0%; >70% 

E 84.4 80.0 85.8 25 

147, 36, 71, 211, 60, 55, 107, 409, 250, 

223, 386, 438, 157, 63, 176, 82, 393, 173, 

84, 412, 43, 376, 343, 429, 384 

>70%; >70% 

and >70%; >0% 

F 85.0 80.0 88.8 22 

147, 36, 71, 60, 55, 409, 223, 386, 438, 

157, 63, 176, 82, 393, 173, 84, 412, 43, 

376, 343, 429, 384 

>90%; >0% 

G 80.0 81.0 79.3 17 
147, 36, 71, 60, 55, 409, 386, 438, 157, 

176, 82, 393, 173, 84, 343, 429, 384 

>90%; >90% 

and >0%; >90% 
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These subpanels were chosen to provide the minimum number of features that 

collectively captured metabolic PCa patterns with a high level of accuracy, specificity 

and sensitivity. The selection of these additional subpanels was based on the fraction of 

features that were present in 50, 70 or 90% of the entire sample cohort, in either PCa 

patients or healthy controls. Table 2.2 summarizes the different panels constructed 

following these criteria, with their corresponding subset of discriminant features. These 

panels were used to build new SVM models, and cross-validated to provide average 

values of accuracy, specificity and sensitivity from 10-independent randomly-selected 

training and testing sets. Thirty eight out of 40 discriminant features were present in more 

than 50% of healthy controls (Panel B) and 35 out of 40 were present in more than 50% 

of PCa samples (Panel C), providing similar accuracy, specificity, and sensitivity as panel 

A. When the criterion for feature presence was made more stringent, from panel A to 

panel G; the accuracy, specificity and sensitivity decreased by only ~10%, suggesting the 

robust biological role that the detected features might have. In other words, the different 

feature subpanels were not highly sensitive to a reduction in the number of discriminant 

features, suggesting that the smaller number of metabolites contained in subpanel G 

could still be potentially used to build a more focused, simpler IVDMIA for PCa 

detection in a clinical setting. To further test this finding, another SVM model was 

created with only those 13 features that could be confidently assigned to metabolites in 

subpanel G by HRAM MS and MS/MS (Table 2.3). It was found that this model still 

provided high classiýcation sensitivity (88.3%), specificity (80.3%), and accuracy 

(85.0%). The mass spectrometric assay for a model of this type would be much simpler to 

implement in a targeted fashion due to the reduced number of transitions that a UPLC-
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MS/MS triple quadrupole method would require, allowing higher analysis throughput and 

minimizing cost. 

The set of 40 SVM weights obtained for panel A from the optimal classification 

model are shown in Figure 2.7. The figure shows the individual contribution of each of 

the 40 discriminant metabolic features in the computed PCa metabolic score, i.e., the 

weight of each discriminant metabolite in the classification. 
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Table 2.3: IVDMIA performance for identified metabolites. 

 

Feature Subpanel 
Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

Discriminant 

Features (#) 
Discriminant Feature Codes 

Identified in Panel G by 

HRAM MS, and MS/MS 
85.0 80.3 88.3 13 

60, 36, 84, 71, 157, 176, 55, 

343, 429, 384, 409, 386, 173 

Identified in Panel A by 

HRAM MS, and MS/MS 
91.1 91.3 90.9 31 

60, 36, 84, 71, 157, 176, 55, 

343, 429, 384, 409, 386, 173, 

223, 43, 63, 376, 250, 211, 107, 

214, 76, 444, 174, 128, 398, 93, 

153, 364, 21, 242 

Identified in Panel A by 

HRAM MS, and MS/MS 

and confirmed 

chromatographically with 

standards 

76.3 70.6 79.9 10 
60, 36, 71, 384, 43, 211, 76, 

174, 128, 153 

Identified in Panel A by 

HRAM MS, and MS/MS 

with xenobiotics and 

marker 63 excluded 

90.2 90.7 89.7 28 

60, 36, 84, 71, 157, 176, 55, 

343, 429, 384, 409, 386, 173, 

223, 43, 376, 250, 211, 107, 

214, 76, 444, 174, 128, 398, 93, 

153, 242 
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Figure 2.7: Weights for the 40 discriminant metabolic features in panel A. Metabolic 

features are labeled with their codes. 

 

 

It is interesting to note that some features with high weights in the SVM model, such as 

feature 60, 444, 409, or 429, also have large absolute values in the PC3 loadings plot 

(Figure 2.5b). Figure 2.8 shows a comparison of the different sets of weights for the 

different panels described in Table 2.2, sorted from the largest to lowest value in panel A 

and expanded to panels B-G. The figure shows that the sign of the weights generally 

remained the same across the panels, in agreement with the fact that accuracy, specificity 

and sensitivity were highly conserved even after restricting the presence of discriminant 

features to those present in a majority of the patients within the cohort. It was seen that 

for the most restrictive panels, those features with weights equal to zero, i.e., those that 

do not contribute to the panels, are those with lower weights in panel A. 
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Figure 2.8: Weights for the discriminant metabolic features from panels A-G (indicated 

in Table 2.2) obtained by the classification model using the total cohort. 

 

 

2.7 Identification of Metabolites Used in the In Vitro  Diagnostic Multivariate 

Assay 

Once the robustness of the model was established, chemical identification of the 40 

discriminant metabolic features was attempted. Figure 2.9 exemplifies the procedure 

utilized for identification of feature 60. Figures 2.9a and 2.9b show the different base 

peak intensity (BPI) chromatograms obtained for serum samples of a typical PCa patient 

and healthy individual. As differences between metabolomes, and the corresponding 

features in the BPI chromatograms arise both from the presence of the disease and also 

from differences in diet, lifestyle, and the numerous other factors,25 chemical 

identification of endogenous metabolites was attempted only for the 40 discriminant 

metabolic features.  
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Figure 2.9: Base peak intensity chromatograms obtained for typical serum samples from a patient with PCa (A) and a healthy 

individual (B). (C): Extracted ion chromatogram for m/z 187.0968 ± 0.0050 generated from a PCa patient sample (red line) and a 

healthy individual (black line). These were generated from the data shown in A and B, respectively. (D): Adduct ion analysis for 

discriminant feature at m/z 187.0968. Mass errors are calculated with respect to the theoretical values for azelaic acid (C9H16O4). 

Tandem MS spectrum for the m/z 187.0968 precursor ion using a collision cell voltage of 15 V. The matching of tandem MS 

fragmentation patterns between the experimental spectrum and the metabolite candidate is illustrated by the mass errors calculated as 

differences with the values in the METLIN database. 
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The high resolving power of the time-of-flight analyzer used allowed generating highly-

selective extracted ion chromatograms for each discriminant feature, as illustrated in 

Figure 2.9c. Adduct ion analysis (Figure 2.9d) was used to ensure the unambiguous 

assignment of the signal of interest in the electrospray ionization mass spectrum, and the 

isotopic pattern and accurate masses were used to generate a list of possible candidate 

elemental formulae that were searched against databases. Moreover, UPLC-MS/MS 

experiments were performed to confirm the identities of these candidate metabolites 

responsible for classification. Tandem MS spectra were compared to those in databases 

or literature, and fragmentation patterns were manually analyzed as well (Figure 2.9e). 

Finally, standards of all commercially-available metabolites were subject to UPLC-MS 

and MS/MS to verify the identity of the candidates by retention time and mass spectral 

matching. Of the 40 spectral features found in panel A, 31 were identified by HRAM MS 

and MS/MS, with 10 further confirmed chromatographically by standards. The set of 31 

metabolites provided 90.9% sensitivity, 91.3% specificity, and 91.1% accuracy; whereas 

the 10 differential metabolites confirmed by standards, when considered alone, provided 

79.9% sensitivity, 70.6% specificity, and 76.3% accuracy (Table 2.3). It should be noted 

that among the 31 identified metabolites, 1-Ŭ-amino-1H-pyrrole-1-hexanoic acid (feature 

code 63) had the highest mass error (11.4 mDa), and its identity should be viewed as 

tentative. However, a classification model built using the set of 30 metabolites excluding 

feature 63 still provided 92.8% sensitivity, 89.2% specificity and 91.2% accuracy. 
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2.8 Biological Relevance of the In Vitro  Diagnostic Multivariate Assay 

Metabolites 

Table 2.4 summarizes the results from the chemical identification workflow 

described above for the 40 discriminant features. Those metabolites with 

chromatographic identity confirmation by retention time matching with standards are 

shown in bold, and can be therefore viewed as the ones with the higher confidence in the 

panel. Several discriminant metabolites were identified as fatty acids, amino acids, 

lysophospholipids, and bile acids, suggesting alterations in their respective metabolism. 

Previous findings have shown abnormality in fatty acid,26 and amino acid12, 27, 28 

metabolism in PCa patients. Alterations in fatty acid metabolism through an enhanced ɓ-

oxidation pathway have been suggested to provide bioenergy for abnormal cell 

proliferation.26 Among the different lysophospholipids identified that may play a role in 

cell signaling,29 lysoPC(18:2) and lysoPC(18:0) have been reported as biomarkers for 

PCa detection within a panel of plasma lipids.19 Uric acid has also been suggested to be a 

disease risk marker due to its pro-inflammatory properties,30, 31 and a prospective 

epidemiological study demonstrated positive association between serum uric acid levels 

and risk of PCa development.32 In addition, elevated concentrations of serum uric acid 

are often found due to tumor lysis syndrome observed as a result of cancer therapy.33 

Interestingly, indoxyl sulfate, a toxic product of dietary tryptophan metabolism that 

accumulates in the blood of patients with impaired renal function,34 was also identified 

among the 40 discriminant features.  
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Table 2.4: Results for the chemical identification workflow for various discriminant features. Metabolites confirmed by retention time 

matching with commercially-available standards are highlighted in bold font. 

 

Feature 

Code 

Retention 

time 

(min) 

m/z Ion type 
Elemental 

Formula 

Theoretical 

m/z 

æm 

(mDa) 

Tentative Metabolite 

Identification  
Ref. Panel 

60 5.10 187.0970 [M -H] - C9H16O4 187.0970 0.0 
nonanedioic acid 

(azelaic acid) 
35 G 

36 0.63 167.0206 [M -H] - C5H4N4O3 167.0205 0.1 uric acid 30-32 G 

71 1.95 203.0817 [M -H] - C11H12N2O2 203.0821 0.4 tryptophan 27, 36 G 

384 11.70 508.3403 [M -CH3]- C26H54NO7P 508.3403 0.0 lysoPC(18:0/0:0) 19, 37 G 

84 8.41 223.1331 [M-H]- C13H20O3 223.1334 0.3 
13-oxo-9,11-

tridecadienoic acid 
38 G 

157 7.06 273.1703 [M-H]- C14H26O5 273.1702 0.1 

3-

hydroxytetradecanedioic 

acid 

39, 40 G 

176 7.61 287.1854 [M-H]- C15H28O5 287.1858 0.4 

6-

hydroxypentadecanedioic 

acid 

 G 

55 5.21 185.0812 [M-H]- C9H14O4 185.0814 0.2 

5-(2-methylpropyl)-2-

oxooxolane-3-carboxylic 

acid 

5-butyl-2-oxooxolane-3-

carboxylic acid 

41 G 

343 9.77 476.2772 [M-H]- C23H44NO7P 476.2777 0.5 
lysoPE(0:0/18:2) 

lysoPE(18:2/0:0) 
42 G 

429 9.80 578.3450 [M+CH3COO]- C26H50NO7P 578.3458 0.8 lysoPC(18:2/0:0) 19 G 

409 5.46 541.2639 [M-H]- C27H42O11 541.2649 1.0 cortolone-3-glucuronide 43, 44 G 

386 6.92 511.2900 [M-H]- C27H44O9 511.2907 0.7 pregnanetriol glucuronide  G 

173 8.19 285.1920 [M-H]- C19H26O2 285.1855 6.5 androstenedione 45 G 
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Table 2.4 (continued). 

393 8.12 517.3015  - - - -  G 

438 7.04 600.2572  - - - -  G 

147 0.55 266.8028  - - - -  G 

82 8.12 215.1281  - - - -  G 

43 9.56 171.1383 [M -H] - C10H20 O2 171.1385 0.2 
decanoic acid (capric 

acid) 
 F 

223 6.77 331.1753 [M-H]- C16H28O7 331.1757 0.4 
menthol glucuronide 

citronellol glucuronide 
46-49 F 

63 7.19 195.1020 [M-H]- C10H16 N2O2 195.1134 11.4 
l-Ŭ-amino-1H-pyrrole-1-

hexanoic acid 
 F 

376 9.63 504.3081 [M-CH3]
- C26H50NO7P 504.309 0.9 lysoPC(0:0/18:2)*  42 F 

412 8.86 545.3323  - - - -  F 

211 4.06 311.1387 [M -H] - C18H20N2O3 311.1396 0.9 
phenylalanyl 

phenylalanine 
28 E 

250 5.70 383.1521 [M-H]- C19H28O6S 383.1528 0.7 

3ɓ,16Ŭ-

dihydroxyandrostenone 

sulfate 

 E 

107 5.40 245.0480 [M-H]- C10H14O5S 245.0484 0.4 
2-tert-butyl-1,4-

benzenediol sulfate 
50 E 

76 2.64 212.0016 [M -H] - C8H7NO4S 212.0018 0.2 indoxyl sulfuric acid 12, 51 D 

214 9.87 311.2211 [M-H]- C18H32O4 311.2222 1.1 

9,10-dihydroxy-12Z,15Z-

octadecadienoic acid 

(9,10-DiHODE) 

12,13-dihydroxy-9Z,15Z-

octadecadienoic acid 

(12,13-DiHODE) 

15,16-dihydroxy-9Z,12Z-

octadecadienoic acid 

(15,16-DiHODE) 

52, 53 D 
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Table 2.4 (continued). 

444 6.82 613.3583 [M-H]- C32H54O11 613.3588 0.5 

27-nor-5ɓ-cholestane-

3Ŭ,7Ŭ,12Ŭ,24,25-pentol 

glucuronide 

54, 55 D 

174 9.35 285.2059 [M -H] - C16H30O4 285.2066 0.7 hexadecanedioic acid 56 C 

128 2.69 263.1023 [M -H] - C13H16N2O4 263.1032 0.9 phenylacetylglutamine 57, 58 C 

153 14.80 269.2475 [M -H] - C17H34O2 269.2481 0.6 heptadecanoic acid 37 C 

398 7.06 528.2630 [M-H]- C26H43NO8S 528.2631 0.1 

n-[(3Ŭ,5ɓ,7ɓ)-7-hydroxy-

24-oxo-3-

(sulfooxy)cholan-24-yl] -

glycine 

n-[(3Ŭ,5ɓ,7Ŭ)-3-hydroxy-

24-oxo-7-

(sulfooxy)cholan-24-yl] -

glycine 

glycochenodeoxycholate-

3-sulfate 

59 C 

93 6.36 229.0534 [M-H]- C10H14O4S 229.0535 0.1 

5-isopropyl-2-

methylphenol 

sulfate (carvacrol sulfate) 

60 C 

360 8.16 489.2692  - - - -  C 

448 8.51 621.3273  - - - -  C 

364 5.57 495.2228 [M-H]- C25H36O10 495.2230 0.2 
5'-carboxy-Ŭ-chromanol 

glucuronide 
61 B 

21 5.16 144.0471 [M-H]- C9H7NO 144.0449 2.2 indole-3-carboxaldehyde 62, 63 B 

404 7.28 537.2501  - - - -  B 

242 7.66 369.1740 [M-H]- C19H30O5S 369.1736 0.4 

androsterone sulfate 

5Ŭ-dihydrotestosterone 

sulfate 

etiocholanolone sulfate 

64-66 A 
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Table 2.4 (continued). 

237 11.34 365.2680  - - - -  A 

Abbreviations: lysoPC: lysophosphatidylcholine; lysoPE: lysophosphatidylethanolamine 

*not in HMDB



79 

 

The reason behind elevated indoxyl sulfate in serum of PCa patients is not yet fully 

understood; nevertheless, this nephrotoxic metabolite likely contributes to the disease or 

its complications via multiple mechanisms, including enhanced oxidative stress due to 

decreased levels of glutathione.51  

 Perhaps the most salient finding resulting from the chemical identification 

workflow is that many differentiating metabolites belong to the steroid hormone 

biosynthesis pathway. The pathway supplies androgens64-66 such as testosterone and 5Ŭ-

dihydrotestosterone, to support the growth of androgen-dependent PCa.67 An average 

increase of pregnanetriol and androstenedione concentrations in PCa serum suggests that 

there is a metabolic alteration of the steroid pathway that mimics congenital adrenal 

hyperplasia (CAH), a metabolic disease that is accompanied by androgen excess due to 

the diversion of 17-hydroxyprogesterone into the pathway for androgen biosynthesis.68, 69 

In addition, the average decrease of azelaic acid concentration in serum of PCa patients, 

an inhibitor of 5Ŭ-reductase,70 suggests the disinhibition of 5Ŭ-reductase, an enzyme that 

catalyzes the synthesis of highly active androgen 5Ŭ-dihydrotestosterone to support PCa 

growth. Indeed, azelaic acid, which has a large contribution in the models, has been 

postulated to be a potential antitumoral agent.35 

Table 2.4 also shows the identification of several xenobiotics that can be grouped 

into two classes according to their origin. Menthol, citronellol, carvacrol, and t-

butylhydroquinone are most likely related to food components. Assuming that both PCa 

patients and healthy individuals were equally exposed, on average, to food 

components/additives, their different metabolism could explain the different levels of 
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these xenometabolites in serum. For example, the terpenoids menthol, carvacrol and 

citronellol are metabolized by CYP2A6,71, 72 which is also involved in steroid 

metabolism. As a result, average lower concentrations of these terpenoids relative to 

healthy individuals may be suggestive of higher activity of CYP2A6 in PCa patients, 

supporting inclusion of these xenometabolites in the models. The second group of 

xenobiotics comprises indole-3-carboxaldehyde and 5'-carboxy-Ŭ-chromanol 

glucuronide, which could possibly result from the consumption of dietary supplements 

used by cancer patients. Self-medicating with an over-the-counter indole-3-carbinol (I3C) 

supplement may explain the increased average concentration of indole-3-carboxaldehyde 

in PCa serum.62 Indeed, indole-3-carboxaldehyde demonstrated activity against prostate 

cancer in both in vitro and in vivo models.63  Similarly, Ŭ-tocopherol, a form of vitamin E 

and a precursor of 5'-carboxy-Ŭ-chromanol glucuronide, have been suggested to influence 

the development of PCa due to their antioxidant activity.61 As humans do not normally 

produce indole-3-carbaldehyde or 5'-carboxy-Ŭ-chromanol, and their consideration in the 

models may reflect dietary supplementation differences rather than endogenous 

metabolic differences, PCa detection was attempted using 28 of the 31 identified 

metabolites, excluding from the SVM classification model two metabolites which might 

result from dietary supplementation and one metabolite with highest mass error (1-Ŭ-

amino-1H-pyrrole-1-hexanoic acid). This modified classification model provided 89.7% 

sensitivity, 90.7% specificity, and 90.2% accuracy (Table 2.3), indicating the three 

excluded metabolites had little effect on the overall assay performance, as supported by 

their low weights in panel A (Figure 2.7 and Figure 2.8).  
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2.9 Conclusion 

The study presented here shows the combined application of UPLC-MS/MS and 

machine learning methods to develop a metabolite-based IVDMIA that predicts the 

presence of PCa in serum samples with high classiýcation sensitivity, specificity and 

accuracy. A panel of 40 metabolic spectral features was found to be differential with 

92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. Of further significance, the 

detection performance of the IVDMIA was proven to be higher than the prevalent PSA 

test; highlighting that a combination of multiple discriminant features yields higher 

predictive power for PCa detection than the univariate analysis of a single marker. Within 

the discriminant panel, 31 metabolites were identified by HRAM MS and MS/MS, with 

10 further confirmed chromatographically by standards. Fatty acids, amino acids, 

lysophospholipids, and bile acids have been identified among the discriminant 

metabolites, suggesting alterations in their metabolism. Additionally, several metabolites 

were mapped to the steroid hormone biosynthesis pathway. These observations 

demonstrate some of the plausible metabolic alterations in PCa, and provide further 

insight into the biological pathway changes associated with the disease. The combination 

of multiple metabolites that yield a single, patient-specific result for disease detection is 

the strength of the IVDMIA presented here. When the assay is based on the 28 identified 

disease-related metabolites, PCa can still be detected with 89.7% sensitivity, 90.7% 

specificity, and 90.2% accuracy. If higher throughput analysis, and lower analysis cost 

and complexity are desired, 13 metabolites that were found to be present in 90% of the 

entire sample cohort would still provide high classiýcation sensitivity (88.3%), specificity 
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(80.3%), and accuracy (85.0%) for cancerous and healthy samples. Therefore, this assay 

shows promise towards its implementation in the clinical laboratory setting once it is 

fully validated by the examination of a larger patient cohort through targeted assays. 
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CHAPTER 3. ULTRA PERFORMANCE LIQUID 

CHROMATOGRAPHY -MASS SPECTROMETRY SERUM 

METABOLOMICS DETECTION OF EARLY -STAGE OVARIAN 

CANCER 

 

 
Adapted with permission from 

Jones, C. M.; Monge, M. E.; Kim, J.; Matzuk, M. M.; Fernández, F. M., Metabolomic 

Serum Profiling Detects Early-Stage High-Grade Serous Ovarian Cancer in a Mouse 

Model. J. Proteome Res. 2015, 14 (2), 917-927. Copyright © 2015 American Chemical 

Society. 

 

Jones, C. M.; Gaul, D.; Long, T. Q.; Monge, M. E.; Walker, L. D.; McDonald, J. F.; 

Fernández, F. M., Ultra Performance Liquid Chromatography-Mass Spectrometry 

Characterization of Serum Metabolic Phenotypes of an Early-Stage Ovarian Cancer Pilot 

Patient Cohort. In Preparation. 

 

This chapter describes research conducted by multiple persons. J. Kim collected blood 

serum samples from DKO and control mice. C. M. Jones and M. E. Monge optimized all 

sample preparation protocols and UPLC-MS analysis methods and processed the UPLC-

MS data for the mouse model study. D. Gaul processed the UPLC-MS data for the human 

cohort study. T. Q. Long performed the support vector machine multivariate analysis for 

the human cohort study. C. M. Jones performed all PCA and PLS-DA multivariate 

analyses, conducted all UPLC-MS/MS and chemical standard validation experiments, 

and determined metabolite identities and biological functions. 

 

3.1 Abstract 

Ovarian cancer (OC) is the 5th leading cause of cancer-related deaths for U.S. 

women, yet it has the highest mortality rate amongst gynecological cancers. Non-specific 

symptoms, combined with a lack of early detection methods and highly specific 

biomarkers, contribute to late diagnosis and low 5-year survival rates; thus, an effective 

screening strategy for early diagnosis would be particularly advantageous since 5-year 

survival rates can be as high as 90%. Two approaches were taken to investigate metabolic 

patterns for early detection of this deadly disease. First, Dicer-Pten double knockout 
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(DKO) mice that phenocopy many of the features of metastatic high-grade serous 

carcinoma (HGSC) observed in women were studied. HGSC is the most common and 

deadliest subtype that results in 90% of OC deaths. Using ultra performance liquid 

chromatography-mass spectrometry (UPLC-MS), serum samples from 14 early-stage 

tumor (ET) DKO mice and 11 controls were analyzed in depth to screen for metabolic 

signatures capable of differentiating early-stage HGSC from controls. Iterative 

multivariate classification selected 18 metabolites that, when considered as a panel, 

yielded 100% accuracy, sensitivity, and specificity for classification. Altered metabolic 

pathways reflected in that panel included those of fatty acids, bile acids, 

glycerophospholipids, peptides, and some dietary phytochemicals. These alterations 

revealed impacts to cellular energy storage and membrane stability, as well as changes in 

defenses against oxidative stress, shedding new light on the metabolic alterations 

associated with early OC stages.  

In the second approach, serum metabolic phenotypes of an early-stage OC pilot 

patient cohort were characterized. Serum samples were collected from 24 early-stage OC 

patients and 40 healthy women, and subsequently analyzed using UPLC-MS. 

Multivariate statistical analysis employing support vector machine (SVM) learning 

methods and recursive feature elimination (RFE) selected a panel of metabolites that 

differentiated between age-matched samples with 100% cross-validated accuracy, 

sensitivity, and specificity. This small pilot study demonstrated that metabolic 

phenotypes may be useful for detecting early-stage OC and, thus, supports conducting 

larger, more comprehensive studies. 
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3.2 Ovarian Cancer 

3.2.1 Overview 

Ovarian cancer (OC) is the 5th leading cause of cancer-related deaths for U.S. 

women.1 In particular, high-grade serous carcinoma (HGSC), the subtype with the 

highest occurrence and mortality, is responsible for 90% of all ovarian cancer deaths, yet 

its origin and early progression are poorly understood.2-4 Due to the unavailability of 

reliable screening tests in clinical practice and the asymptomatic course through early 

stages of the disease, the majority of ovarian cancer cases (68%), including most HGSCs 

(>95%), are diagnosed as advanced, metastatic disease with poor survival.5, 6 The 5-year 

OC survival rate for all cases diagnosed during 2003-2009 was 44%.7 When the cancer is 

confined to the ovary at diagnosis, however, the 5-year survival is over 90%.2 Early 

detection is thus crucial in reducing ovarian cancer mortality. 

3.2.2 Current Diagnostic Methodology 

The conventional evaluation of OC patients includes physical examination, 

transvaginal ultrasonography, and measurement of levels of the serum tumor biomarker 

CA125. However, this marker is of limited utility since it can also be elevated by 

conditions unrelated to ovarian cancer, especially in premenopausal women.8 Recent 

data9, 10 have suggested that the OVA111 test, the first protein-based In Vitro Diagnostic 

Multivariate Index Assay (IVDMIA) approved by the FDA, may improve, along with 

physician clinical assessment, detection rates of malignancies among women with pelvic 

masses planning to undergo surgery. Still, OVA1 is not yet an OC screening or definitive 
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diagnostic test. Furthermore, whether this assay can detect OC at an early time point still 

remains unclear,12 and a more effective screening strategy for early diagnosis would be 

particularly advantageous for patients. 

3.2.3 Dicer-Pten Double-Knockout Mouse Model 

Traditionally, OC has been thought to originate in the ovary. The fallopian tube, 

however, has recently been proposed as an alternate site of origin, especially in women 

carrying hereditary BRCA mutations.13-15 A mouse model of HGSC where disease 

originates through this alternative route was therefore developed by conditionally 

disabling two critical genes, Dicer and Pten (Dicer flox/flox Pten flox/flox Amhr2 cre/+) in the 

fallopian tubes.16 In these Dicer-Pten double-knockout (DKO) mice, HGSCs originate 

and progressively develop in the fallopian tube before spreading to the ovary, and then 

metastasize throughout the abdominal cavity, causing ascites, and eventually killing the 

mice. Besides replicating the clinical biology of human HGSC in that tumors are 

characterized by complex papillae and irregular glands forming slit-like spaces in 

addition to solid sheets of tumor cells with pleomorphic nuclei, prominent nucleoli, and 

elevated mitotic activity, disease in these DKO mice also shows close molecular 

similarities with human HGSCs, such as upregulated folate receptor 1 (Folr1), CA125 

(Muc16), secreted phosphoprotein 1 (Spp1), and chemokine genes, therefore providing a 

simpler, better-controlled, model to study early-stage OC which could potentially be later 

translated to humans. 
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3.2.4 Metabolic Ovarian Cancer Detection 

During the last decade, metabolomics has emerged as a promising discipline 

providing tools to investigate characteristic metabolic patterns of disease, with one of its 

goals being the discovery of biomarker panels for early diagnosis. Mass spectrometry 

(MS) and 1H nuclear magnetic resonance (NMR) spectroscopy in combination with 

multivariate statistical analysis have been utilized to investigate ovarian cancer-induced 

metabolome alterations in urine,17-20 plasma21, serum22-26, and tissues.27-29 Li and 

collaborators, for example, identified L-tryptophan, lysoPC(18:3), lysoPC(14:0), and 2-

piperidinone as plasma metabolites discriminating between epithelial ovarian cancer 

(EOC) patients and women with benign ovarian tumors.21 Disruption to nucleotide, 

histidine, tryptophan, and mucin metabolism pathways17, 21 and changes in amino acids 

involved in de novo purine nucleotide synthesis, have also been reported.26 However, and 

despite these advances, no widely-accepted strategy for metabolome-based OC screening 

has yet emerged.12, 30 Moreover, only a very small number of studies have focused on 

early-stage OC detection. Odunsi and collaborators24, for example, used NMR 

spectroscopy to investigate metabolome changes in early-stage patients; independent 

validation of their reported predictive statistical model resulted in 95% specificity, 68% 

sensitivity, and an area under the Receiver Operator Characteristic Curve (AUC) of 

0.949. Additionally, Xu and collaborators suggested the serum metabolite 27-nor-5ɓ-

cholestane-3,7,12,24,25 pentol glucuronide as a potential biomarker for stage I OC 

(specificity: 77%; sensitivity: 70%; AUC: 0.750).25 A hindrance plaguing this field has 

been the poor understanding of early tumor development mechanisms, in addition to the 
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practical difficulty in obtaining access to biological fluids from sufficiently-large, well-

matched early-stage patient cohorts. 

Previous work reported by our group explored the feasibility of using MS-based 

metabolomics to detect ovarian cancer.22, 26 While successful, these studies mainly 

involved late-stage (III/IV) OC patients in which metastasis had occurred, which are 

easily detectable because the disease is systemically widespread. The current work aims 

to build upon the previous studies by probing the metabolome to determine phenotypic 

fingerprints associated with early-stage OC. 

3.3 Experimental Details 

3.3.1 Chemicals 

Healthy human blood serum (S7023-50 mL) was purchased from Sigma-Aldrich 

Corp. (St. Louis, MO, USA). FMOC-L-Proline was procured from Chem-Impex 

International, Inc. (Wood Dale, IL, USA). Leucine enkephalin was obtained from ERA 

(Golden, CO, USA). Arginyl-glycyl-aspartic acid, L-Fucose, L-Rhamnose, 1,5-

Anhydrosorbitol, D-Fucose, L-Rhamnulose, 2-Deoxy-D-glucose, and 2-Deoxy-D-

galactose were acquired from Sigma-Aldrich Corp. Bilirubin and suberic acid were 

obtained from Alfa Aesar (Ward Hill, MA, USA). Ricinoleic acid was purchased from 

MP Biomedicals (Santa Ana, CA, USA). Docosahexaenoic acid and 3-oxo stearic acid 

were acquired from Cayman Chemical Company (Ann Arbor, MI, USA). LysoPE(16:0) 

was obtained from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). LC-MS grade 

methanol was purchased from J.T. Baker Avantor Performance Materials, Inc. (Center 
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Valley, PA, USA). Ultrapure water with 18.2 Mɋ cm resistivity (Barnstead Nanopure, 

Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to prepare 

chromatographic mobile phases. 

3.3.2 Dicer-Pten Double-Knockout Mice 

Dicer-Pten DKO (Dicerflox/flox Ptenflox/flox Amhr2cre/+ ) mice were generated by 

mating males (Dicerflox/flox Ptenflox/flox Amhr2cre/+) with females (Dicerflox/flox Ptenflox/flox). 

Female Dicerflox/flox Ptenflox/flox (a genotype not carrying Amhr2cre/+) mice were used as 

controls. Mice were housed in a vivarium with a controlled temperature of 21 °C. They 

were fed 5053 Irradiated PicoLab® Rodent Diet 20 and had access to drinking water 

supplied in bottles. Dicerflox/flox Ptenflox/flox Amhr2cre/+ DKO mice were sacrificed for this 

study in accordance to the animal protocol approved by the Institutional Animal Care and 

Use Committee (IACUC) at Baylor College of Medicine. 

Blood samples were collected from 23 early-stage tumor (ET) and 10 late-stage 

tumor (LT) Dicer-Pten DKO mice (Dicerflox/flox Ptenflox/flox Amhr2cre/+) in addition to 21 

control mice (Dicerflox/flox Ptenflox/flox). Murine blood samples were collected into serum 

separator tubes. Serum was obtained by centrifugation at 14,000 rpm for 5 min at room 

temperature. Immediately after centrifugation, 200 µL serum aliquots were frozen and 

stored at -80 °C until ultra performance liquid chromatography-mass spectrometry 

(UPLC-MS) analysis. 
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3.3.3 Human Cohort Description 

Age-matched blood serum samples from 24 early-stage ovarian cancer patients 

(age range 40-84, mean age 58 ± 11 years) and 40 healthy women (age range: 40-84, 

mean age 57 ± 12 years) were acquired from the Ovarian Cancer Institute laboratory at 

the Georgia Institute of Technology. The healthy women population consisted of patients 

with histology considered within normal limits (WNL), despite the fact some had 

documented cysts. All donors were required to fast and to avoid medicine and alcohol for 

12 hours prior to sampling, except for certain allowable medications (e.g., diabetics were 

allowed insulin). The mean ages of the 2 respective group populations were not 

significantly different (unpaired t-test, n = 64, p = 0.67). Blood samples were collected at 

Northside Hospital (Atlanta, GA) by venipuncture from each donor into evacuated blood 

collection tubes that contained no anticoagulant after approval by the Institutional 

Review Board (IRB). Serum was obtained by centrifugation at 5000 rpm for 5 min at 4 

°C. Immediately after centrifugation, 200 µL aliquots of serum were frozen and stored at 

-80 °C for further use. 

3.3.4 Serum Sample Preparation and Experimental Design 

Commercially available healthy human blood serum was used to optimize the 

serum sample metabolite extraction protocol and UPLC-MS method. Serum samples 

were thawed on ice prior to sample preparation. Methanol was added to 100 µL of each 

serum sample in a 3:1 ratio to precipitate proteins. Samples were vortex-mixed for 10 s 

and centrifuged at 13,000 rpm for 7 min. After centrifugation, 350 µL of supernatant 

were transferred to new microcentrifuge tubes and, after the addition of 400 µL of 



99 

 

ultrapure water, frozen at -80 °C for 2 h. Subsequently, samples were lyophilized for 24 h 

at -50 °C and 25 mTorr using a VirTis bench top freeze-dryer (SP Industries, Stone 

Ridge, NY, USA). Sample residues were reconstituted in 100 ɛL of water/methanol 

(80:20 v/v, initial UPLC gradient conditions), and analyzed by UPLC-MS. Blank 

samples, consisting of ultrapure water, underwent the same process as serum samples. All 

samples were randomized prior to UPLC-MS analysis. Solvent and sample preparation 

blanks were jointly analyzed with serum samples. Quality control (QC) samples (15 µM 

FMOC-L-Proline and leucine enkephalin solution in ultrapure water) were analyzed 

every 5 hours to verify that retention time, peak shape and intensity were stable for the 

duration of the analysis. The relative standard deviation of the retention times, peak areas, 

and intensities of the monoisotopic ions obtained from extracted ion chromatograms were 

less than 15% over the duration of the experiments. 

3.3.5 Metabolic Profiling via Ultra Performance Liquid Chromatography -

Mass Spectrometry 

UPLC-MS analysis was performed using a Waters ACQUITY UPLC H Class 

system fitted with a Waters ACQUITY UPLC BEH C8 column (2.1 × 100 mm, 1.7 µm 

particle size) for Dicer-Pten DKO mice experiments or a Waters ACQUITY UPLC BEH 

C18 column (2.1 × 50 mm, 1.7 µm particle size) for the human cohort experiments, and 

coupled to a Xevo G2 QTOF mass spectrometer (Waters Corporation, Manchester, UK) 

with a typical resolving power of 25,000 M/ȹm FWHM and mass accuracy of 1.8 ppm at 

m/z 554.2615. The instrument was operated in negative ion mode with a probe capillary 

voltage of 2.5 kV, and a sampling cone voltage of 45 V. The ion source and desolvation 
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temperatures were 120 °C and 350 °C, respectively; the nitrogen desolvation flow rate 

was 800 L h-1, and the cone desolvation flow rate was 50 L h-1. The mass spectrometer 

was calibrated across the 50-1200 m/z range using a 0.5 mM sodium formate solution 

prepared in 90:10 2-propanol:water v/v. Data were mass corrected during acquisition 

using a leucine enkephalin reference spray (LockSpray) infused at 2 µL min-1. Data were 

acquired in the 50-1200 m/z range and the scan time was set to 1 s. Data acquisition and 

processing was carried out using MassLynx v4.1. The chromatographic method for 

sample analysis involved elution with water (mobile phase A) and methanol (mobile 

phase B) at a flow rate of 0.40 mL min-1. The following gradient program was used for 

analysis of Dicer-Pten DKO samples: 0-15 min 20-90% B; 15-19 min 90% B. The 

following gradient program was used for the analysis of human cohort samples: 0-15 min 

20-90% B; 15-23 min 90% B. Both gradients were returned to their initial conditions 

over a period of 11 min after each sample injection. Column temperatures were set to 60 

°C, the autosampler tray temperature was set to 5 °C, and the injection volume was 2 µL. 

Technical duplicates were acquired. UPLC-MS/MS experiments were performed by 

acquiring product ion mass spectra with applied voltages of 10, 20, and 30 V in the 

collision cell, using ultra high purity argon (Ó 99.999%) as the collision gas. 

3.3.6 Data Analysis for Dicer-Pten DKO Mouse Model Study 

Following UPLC-MS, spectral features (retention time (Rt), m/z pairs) were 

extracted from the data using MZmine 2.0 software.31 This procedure involved 

chromatogram alignment, peak identification and integration, peak area extraction, and 

normalization after curation of the data matrix. The data matrix curation consisted of the 
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removal of signals that were present in the blank samples, the solvent, or were not present 

in at least 50% of the serum samples. The curated data matrix was utilized to build a 

model for sample class discrimination via oPLS-DA and to down-select a smaller panel 

of discriminant features through the usage of a genetic algorithm (MATLAB Version 

7.13.0, The MathWorks, Inc., Natick, MA, USA with PLS_Toolbox v.6.71, Eigenvector 

Research, Inc., Wenatchee, WA, USA). A panel of 18 discriminant features had the 

lowest root-mean-square error of cross-validation (RMSECV) at the conclusion of the 

genetic algorithm variable selection process. The parameters for genetic algorithm 

variable selection were as follows: population size: 64, variable window width: 1, % 

initial terms (variables): 10, target minimum # of variables: 8, target maximum # of 

variables: 15, penalty slope: 0.05, maximum generations: 150, % at convergence: 79.7, 

mutation rate: 0.005, crossover: double, regression choice: PLS, # of latent variables: 6, 

cross-validation: random, # of splits: 5, # of iterations: 5, replicate runs: 20. PLS-DA 

models were orthogonalized and internally cross-validated using 10 iterations of random 

sample subsets with 5 data splits. Data were preprocessed by autoscaling prior to oPLS-

DA analysis. Principal component analysis (PCA) was also performed to inspect data 

before and after genetic algorithm variable selection (i.e., on all of the extracted spectral 

features and only the discriminant feature panel). 

3.3.7 Data Analysis for Human Cohort Study 

 Following UPLC-MS, spectral features (Rt, m/z pairs) were extracted from the 

data using MZmine 2.0 software.31 This procedure involved chromatogram alignment, 

peak identification and peak area extraction, in addition to gap-filling and normalization 
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after curation of the data matrix. The data matrix curation consisted of the removal of 

signals that were present in the blank samples and the solvent. Also, signals that were not 

present in at least 50% of the healthy samples or 50% of samples belonging to either 

ovarian cancer histological subtype used in this study (i.e., papillary serous or 

endometrioid) were eliminated from the data matrix. Linear SVMs32 in-house developed 

using LIBLINEAR33 were utilized to build multivariate sample classification models and 

to find the minimum set of discriminant features needed to differentiate the early-stage 

OC patient samples from those of the healthy women with the highest accuracy, 

specificity, and sensitivity. SVMs are effective at handling high dimensionality data as 

those produced in the present work and have been widely applied to metabolomics 

studies.22, 26, 34-36 Moreover, they are ideal for limited-size datasets since the risk of data 

overfitting is reduced.37 All data were preprocessed by autoscaling before analysis. 

For SVM analysis, linearly-separable samples represented as a row vector x, had 

membership of two classes g (= H or D), where H stands for healthy women and D for 

OC disease with labels c = -1 for class H, and +1 for class D. All of the samples were 

used to build a classification model which was internally validated using leave-one-out 

cross-validation. The decision function that separated the two classes, defined here as the 

ñOC detection scoreò, was as follows: 

ὕὅ ὨὩὸὩὧὸὭέὲ ίὧέὶὩὦ ύὼ                                     ρ 

Ὣ● ίὫὲ◌● ὦ ίὫὲὕὅ ὨὩὸὩὧὸὭέὲ ίὧέὶὩ               ς 
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where w and b are the weight and bias parameters that were determined from the SVM 

classification model and J is the total number of features. The sign of the OC detection 

score determined which class a sample was assigned to: class H if negative and class D if 

positive. In this classification function, the two classes were divided in the dataspace by a 

hyperplane ◌● ὦ π that maximized the margins between samples of different 

classes. The margin between the two classes was defined such that:  

◌● ὦ ρȟ ὧ ρ                                                 σ 

◌● ὦ ρȟ        ὧ ρ                                               τ 

A recursive feature elimination (RFE) method,22  structured in the SVM analysis process 

as a nested leave-one (sample)-out design, was used to find the minimum set of 

discriminant features that maximized the accuracy of the SVM classification model. The 

design consisted of two loops. The outer loop used one randomly selected sample as a 

test sample while the remaining samples constituted the inner loop training set. In the 

inner loop, one sample was iteratively left out while the remaining samples were used as 

a training set to calculate weights for each metabolic feature and predict the left-out 

sample. These weights were averaged over all inner loop iterations, and the resultant 

SVM model was used to classify the outer loop test sample. Afterwards, a different outer 

loop test sample was selected and classified after another set of inner loop iterations were 

completed. This process ensued until all samples had been used as outer loop test 

samples. Once the averaged weights resulting from each inner loop process were 

summed, the feature that ranked least important (i.e., had the lowest summed weight) was 

discarded from the remaining feature set (wi = 0), and the inner/outer loop processes 
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began again.  The aforementioned procedure was repeated until all metabolic features 

were ranked. The performance characteristics for the RFE-SVM method were generated 

based on the percentage of test samples accurately classified during each phase of the 

feature elimination procedure. From this process, a feature panel with high accuracy, 

sensitivity, and specificity was chosen and tested again across all samples. 

PLS-DA was also performed to inspect data before and after discriminant feature 

selection via RFE. PLS-DA models were orthogonalized (oPLS-DA) and internally 

cross-validated using 5 iterations of random sample subsets with 8 data splits. Data were 

preprocessed by autoscaling prior to oPLS-DA analysis. 

3.3.8 Discriminant Feature Identification Procedure 

Metabolite identification was attempted for discriminant features. Mass spectral 

ion adduct analysis was first performed to ensure the unambiguous assignment of the 

signal of interest in each mass spectrum. The adduct ions that were investigated in the 

mass spectra included [M - H]-, [M + Cl]-, [M + CH3COO]-, [M + HCOO]-, [M + Na - 

2H]-, [M + K - 2H]-, [M - H2O - H]-, [M + H2O - H]-, and [2M ï H]- species, which are 

usually observed in negative electrospray ionization mode. The theoretical m/z values for 

these species were calculated and compared with the experimental values from mass 

spectral signals. For spectra in which multiple adducts were not present, the accurate 

mass of the candidate neutral molecule was calculated based on the assumption that the 

m/z value observed corresponded to the [M - H]- ionic species. For mass spectra in which 

multiple adducts were present, the [M - H]- spectral signal was determined and the 

accurate mass of the metabolic candidate neutral molecule was calculated based on it. 
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Elemental formulae were generated based on the exact mass (maximum mass error of 10 

mDa) and isotopic patterns of the features using MassLynx 4.1. The elements included in 

the formulae were constrained to C, H, N, O, P, and S. The lists of generated elemental 

formulae were searched against the METLIN database,38 the LIPID Metabolites and 

Pathways Strategy (LIPID MAPS) database,39 and the human metabolome database 

(HMDB).40 MetaboSearch41 was also utilized to search the aforementioned databases 

solely using neutral masses with a mass accuracy of 20 ppm. Tandem MS data could not 

be acquired for discriminant features where the precursor ion abundance was not high 

enough for sensitive quadrupole selection and MS/MS due to ion transmission losses.42 

The MS/MS METLIN database, MassBank,43 and literature searches were used to further 

confirm the identity of the candidates for which MS/MS data was successfully acquired. 

Additionally, fragmentation patterns were manually analyzed in a few cases to 

discriminate between different isobaric species. For the Dicer-Pten DKO mouse model 

study, available chemical standards were purchased to validate tentative metabolite 

identities by chromatographic retention time matching and/or MS/MS fragmentation 

pattern matching. These chemical standards also served the purpose of eliminating 

possible metabolite candidates from the tentative identification list. 
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3.4 Metabolomic Serum Profiling Detects Early-Stage High-Grade Serous 

Ovarian Cancer in a Mouse Model 

3.4.1 DKO Mouse Cohort 

Typically, between 4 and 7 months, DKO mice develop HGSCs of the fallopian 

tubes, which later spread to envelop the ovaries and at a late stage metastasize throughout 

the abdominal cavity including peritoneal tissues (Figure 3.1). For the purpose of this 

study, early-stage tumors in DKO mice were defined as those confined to the fallopian 

tube without any sign of metastasis. Eventually, all DKO mice die from metastatic 

HGSCs after developing hemorrhagic ascites, an accumulation of hemorrhagic fluid in 

the abdominal cavity. The typical life span of these mice is 6.5ï13 months.16 

 

 

 
Figure 3.1: Early- and late-stage high-grade serous carcinomas (HGSCs) in DKO mice 

(Dicer flox/flox Pten flox/flox Amhr2 cre/+). (A): Early fallopian tube tumors (yellow arrows) 

formed in a 6.8-month-old DKO mouse used in this study with normal ovaries (white 

arrowheads) and uterus (green arrows). (B): Massive fallopian tube tumors that engulfed 

the ovaries in a 10.7-month-old DKO mouse with late-stage HGSCs. 
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Figure 3.2: Principal Component Analysis (PCA) scores plot of early-stage tumor Dicer-

Pten DKO (red circles), late-stage tumor Dicer-Pten DKO mice (green triangles), and 

control mice (blue squares). The model consisted of 2 PCs with 30.70% total captured 

variance. 

 

 

 

 Initially, an exploratory experiment was conducted to determine to what extent 

UPLC-MS metabolic profiling could differentiate the blood sera of 9 ET (mean age 319 ± 

36 days) and 10 LT (mean age 309 ± 34 days) DKO mice, in addition to 10 control (mean 

age 342 ± 80 days) mice. For this experiment, DKO mice were staged based on the 

presence or lack of ascitesðLT DKO mice had developed ascites while ET DKO mice 

had not. Unsupervised PCA of the resultant data showed clear separation of LT DKO 

mice from ET DKO mice and control mice along the 1st principal component (unpaired t-

test, n = 29, p = 0.002) (Figure 3.2). However, both ET DKO mice and control mice were 

clustered together. As expected, this result somewhat reflects what is clinically observed 
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for the diagnosis of human ovarian carcinomas, i.e. late-stages in which metastasis has 

occurred are more easily detectable because the disease is systemically widespread. Yet, 

detection of early-stages is challenging since the disease is still localized and 

asymptomatic. 

At this stage the focus of the study was shifted to the detection of early-stage 

HGSC in DKO mice by comparing metabolomic profiles between DKO mice with early-

stage HGSC against control mice, as this is the equivalent of the clinically-relevant 

challenge for human HGSC detection. Therefore, a set of 14 Dicer-Pten DKO mice with 

early-stage HGSC (mean age 206 ± 19 days) and 11 control mice (mean age 211 ± 30 

days) was investigated via an alternative approach involving supervised multivariate 

analysis. To ensure complete confidence in the class membership of each mouse in the 

cohort, ET DKO mice were sacrificed after blood sample collection to confirm the early-

tumor status by ensuring that all had primary tumors located on their fallopian tubes with 

no visible metastasis. Table 3.1 describes detailed information of the mice included in 

these experiments as well as the tumor status verified for each ET DKO mouse. 
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Table 3.1: Early-Stage Tumor Dicer-Pten Double Knockout Mice and Control Mice Characteristics. 

Early-Stage Tumor DKO Mice Control Mice 

ID 
Date of 

Birth 

Age 
Tumor Status ID 

Date of 

Birth 

Age 

(days) (months) (days) (months) 

310 5/8/12 181 6.0 Tumor on each oviduct 109 2/16/12 257 8.6 

312 5/8/12 181 6.0 Tumor on each oviduct 115 2/28/12 245 8.2 

315 5/8/12 181 6.0 Tumor on each oviduct 116 2/28/12 245 8.2 

252 4/16/12 199 6.6 Tumor on each oviduct 156 3/14/12 230 7.7 

255 4/16/12 199 6.6 Tumor on one oviduct 222 5/12/12 170 5.7 

215 4/10/12 204 6.8 Tumor on one oviduct 223 4/10/12 202 6.7 

216 4/10/12 205 6.8 Tumor on one oviduct 218 4/3/12 209 7.0 

217 4/10/12 205 6.8 Tumor on one oviduct 309 4/3/12 209 7.0 

219 4/10/12 205 6.8 Tumor on each oviduct 311 4/3/12 209 7.0 

205 4/8/12 206 6.9 Precursor tumor lesion on each oviduct 372 5/8/12 175 5.8 

220 4/3/12 211 7.0 Precursor tumor lesion on each oviduct 453 5/8/12 175 5.8 

256 4/16/12 217 7.2 Tumor on each oviduct     

143 3/10/12 235 7.8 
Precursor tumor lesions on each 

oviduct 
    

153 3/14/12 250 8.3 Tumor on each oviduct     
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3.4.2 Multivariate Classification Performance 

MZmine data processing extracted 934 features (Rt, m/z pairs) from the UPLC-

MS data from both control and ET DKO mice. These extracted features were utilized to 

build an oPLS-DA model which classified the respective serum samples from each class. 

Performance characteristics of the initial oPLS-DA analysis of the data matrix that 

included all 934 metabolic features (Figure 3.3a and 3.3b) were 76%, 68%, and 83% for 

the cross-validated accuracy, sensitivity, and specificity, respectively. A total of five 

murine serum samples were misclassified. This 3 latent variable model interpreted 

35.35% and 93.64% variance from the X- (feature peak areas) and Y- (mouse class 

membership) blocks, respectively. Though the model performance was not entirely poor, 

genetic algorithms were used to attain a smaller, but more robust, metabolic feature set 

that could serve to better discriminate between control and ET DKO mice with higher 

cross-validated accuracy, sensitivity, and specificity. A panel of 18 metabolic features 

with the lowest RMSECV was selected through the genetic algorithm variable selection 

process. oPLS-DA modeling with this smaller panel (Figure 3.3c and 3.3d) resulted in 

100% cross-validated accuracy, sensitivity, and specificity; therefore, no mice were 

misclassified. This model interpreted 33.12% and 98.30% of the X- and Y-block 

variances, respectively, with only 2 latent variables ðone less than the model using all 

934 metabolic features. Furthermore, the captured Y-block variance was slightly higher, 

thereby, demonstrating that the down-selected panel of 18 features is more informative 

than the initial set.  
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Figure 3.3: Orthogonal projection to latent structures-discriminant analysis (oPLS-DA) 

models of early-stage tumor (ET) Dicer-Pten DKO (red circles) vs. control mice (blue 

squares). (A): oPLS-DA calibration scores plot using the total initial set of 934 spectral 

features. The model consisted of 3 LVs with 35.35% and 93.64% total captured X- and 

Y-block variances, respectively. The cross-validated accuracy, sensitivity, and specificity 

were 76%, 68%, and 83%, respectively. (B): The corresponding ET cross-validated 

prediction plot for (A). There were 5 misclassified mice. (C): oPLS-DA calibration scores 

plot using the 18 discriminant metabolic feature panel obtained from genetic algorithm 

variable selection. The model consisted of 2 LVs with 33.12% and 98.30% total captured 

X- and Y-block variances, respectively. The accuracy, sensitivity, and specificity were all 

100%. (D): The corresponding ET cross-validated prediction plot for (C). There were no 

misclassified mice. 
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Of the 18 selected features, the concentration levels of 9 metabolites were found to 

increase and 9 metabolites were found to decrease in ET DKO mice. While only 11 of 

these concentration changes were univariately significant (Mann-Whitney U test, n = 25, 

p Ò  0.05; Figure 3.4), the co-varying concentrations of all 18 metabolic features allowed 

us to distinguish the detected metabolomes of control and ET DKO mice in multivariate 

space; accordingly, they all display discriminatory power when collectively included as 

part of a joint panel. The concentration levels of those features that were not statistically 

different between ET DKO and control mice in a univariate fashion could also be a result 

of the relatively modest sample size used in this study. 

To further investigate these results, PCA was utilized to evaluate the performance 

of the 18-feature discriminant panel in an unsupervised manner. Scores plots were 

generated for both the initial set of 934 metabolic features and the 18 discriminant feature 

panel (Figure 3.5). Using the initial set, 3 principal components interpreting 46.43 % of 

the data matrix variance showed no distinct grouping of the sample classes (Figure 3.5a). 

However, better clustering was observed with the 18-feature 3-principal component PCA 

model which interpreted 53.49% of the variance (Figure 3.5b). The PCA class separation 

was statistically significant and occurred along the 1st principal component (unpaired t-

test, n = 25, p = 0.0055), providing further evidence of the robustness of the 18-feature 

discriminant panel. 
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Figure 3.4: Discriminatory spectral features having statistically significant univariate 

changes between early-stage tumor (ET) Dicer-Pten DKO mice (n = 14) and control (C) 

mice (n = 11). P-values were calculated using the Mann-Whitney U test. Box plots with 

mean (square), median, upper and lower quartile, outliers, and minimum and maximum 

(whiskers) data values are displayed. Feature ID numbers are indicated on top of each 

case. 
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Figure 3.5: Principal Component Analysis (PCA) of early-stage tumor Dicer-Pten DKO 

(red circles) and control mice (blue squares). (A): PCA scores plot using the initial set of 

934 spectral features. The model consisted of 3 PCs with 46.43% total captured variance. 

(B): PCA scores plot using the 18 discriminant feature panel obtained from genetic 

algorithm variable selection. The model consisted of 3 PCs with 53.49% total captured 

variance. 

 

  


