Project #: E-25-L98
Cost share #:
Center #: 10/24-6-R0259-0A0
Center shr #:
Contract#: AGREEMENT SIGNED 1/7/97
Prime #:
Subprojects ?: N
Main project #:

Project unit: MECH ENGR
Project director(s): BAIR S S III

Sponsor/division names: QUAKER CHEMICAL CORPORATION / CONSHOHOCKEN, PA
Sponsor/division codes: 216 / 005

Award period: 970121 to 971120
Sponsor amount New this change Total to date
Contract value 46,252.00 46,252.00 46,252.00
Funded 46,252.00

Cost sharing amount

Does subcontracting plan apply ?: N

Title: REciprocating Friction Tester

PROJECT ADMINISTRATION DATA

OCA contact: Jacquelyn L. Bendall
Sponsor technical contact
Sponsor issuing office

STEVEn THOMAS
(610)832-4353

QUAKER CHEMICAL CORPORATION
ELM AND LEE STREET
CONSHOHOCKEN, PENNSYLVANIA
19428-0809

Security class (U,C,S,TS) : U
Defense priority rating : N/A
Equipment title vests with: Sponsor

ONR resident rep. is ACO (Y/N): N
N/A supplemental sheet

Administrative comments -
INITIATION OF FIXED-PRICE RESEARCH AGREEMENT.
Closeout Notice Date: 20-NOV-1997

Project Number: E-25-L98
Center Number: 10/24-6-R0259-0A0
Project Director: BAIR, SCOTT
Project Unit: MECH ENGR
Sponsor: QUAKER CHEMICAL CORPORATION/CONSHOHOCKEN, PA
Division ID: 4533
Contract Number: AGREEMENT SIGNED 1/7/97
Contract Entity: GTRC
Prime Contract Number:
Title: RECIPROCATING FRICTION TESTER
Effective Completion Date: 20-NOV-1997 (Performance) 20-NOV-1997 (Reports)

<table>
<thead>
<tr>
<th>Closeout Action</th>
<th>Y/N</th>
<th>Date Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Invoice or Copy of Final Invoice</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Final Report of Inventions and/or Subcontracts</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Government Property Inventory and Related Certificate</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Classified Material Certificate</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Release and Assignment</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Comments

Distribution Required:

- Project Director/Principal Investigator: Y
- Research Administrative Network: Y
- Accounting: Y
- Research Security Department: N
- Reports Coordinator: Y
- Research Property Team: Y
- Supply Services Department/Procurement: Y
- Georgia Tech Research Corporation: Y
- Project File: Y

NOTE: Final Patent Questionnaire sent to PDPI
RECIROCATING FRICTION TESTER

Final Report to
Quaker Chemical Corporation
Lime and Elm Streets
Conshohocken, PA 19428-0873

October 1997

Scott Bair, Principal Research Engineer
Georgia Institute of Technology
George W. Woodruff School of
Mechanical Engineering
MACHINE DESCRIPTION

The Reciprocating Friction Tester is of the pin on flat type. The pin (4.76mm dia. stem) oscillates against the stationary flat in an arc (127 mm radius) with a nominally circular contact. Loading (up to 101 N) is by dead weight. Wear is measured by detecting the advance of the pin into the flat. The friction force on the flat is also measured. A fixture is provided so that a 0.50 inch ball may be substituted for the pin. This fixture is of a new design which positively clamps the ball against rotation.

The pin is mounted to one end of an arm which pivots in gimbals about two axes. The arm is driven in harmonic motion about its vertical axis with a stroke of 50 mm by a crank and scotch yoke. The crank and yoke are housed in an oil bath which is sealed to the arm with a rubber bellows. A torque is applied to the arm about a horizontal axis by a loading arm and dead weight. The pin load is twice the weight on the pan plus 13 N. The flat is clamped in an oil bath with oil inlet and overflow fittings.

The crank is rotated by a variable speed DC motor which provides an average velocity of 40 to 3600 cm/min. See Table I. The digital velocity indicator reads cm/min. A furnace surrounds the test pieces and can provide a temperature of up to 250°C using two 60 W cartridge heaters in the bath and one 100 W radiator in the furnace to heat the pin and arm. One \(\frac{1}{16} \) inch thermocouple resides to one side of the heaters in the bath block directly beneath the flat.

WEAR CALIBRATION

With a pin and flat properly installed and 4 kg on the pan, move the LVDT until the output of the LVDT signal conditioner is at mid-span (zero volts for most models). The entire system may be calibrated for wear measurement by adding or removing leaf gauges between the pin and flat. Make measurements under load (constant load).
FRICITION CALIBRATION

The friction measurement system is calibrated by applying a known force by a mechanical force gauge or by dead weight and string and pulley to the side of the bath in the direction of motion.

SPECIMENS

The specimen triboelements consist of a round pin and a rectangular flat. The pin diameter is 0.1875 inch+0,.002. The flat is 3.00+0-.05 inch by 0.625+0-.05 by 0.125+0-.010 inch thickness. This thickness should be uniform within 0.0005 inch. The flat may be used for two tests by inverting it after the first test. It may also be helpful to provided a spherical surface of large radius to the pin ends to facilitate the initial running in. The pin may be replaced by a ball using the special holder.

OPERATION OF THE TESTER

Install the flat in the bath. Slide the flat toward the tube fittings until it touches the edge with the oil channels. Tighten the cleat screws to 2.5 in-lb. Install the pin between the steel blocks. Tighten the 8-32 socket screws to 12 in-lb. The cleats which retain the flat must be turned to the extreme ends of the bath. Rotate the crankshaft by hand through one revolution to check for interference.

Occasionally check the oil level in the crank housing by removing the cover. It should be at the center of the lower horizontal small (1/4 in.) shaft. The heater wire should not be plugged directly into the A/C power line. A variable power source (to 110 V) or proportional controller should be used. An on-off type controller will produce noise on the wear signal. The terminal of the piezoelectric cell should not be left uncovered. Contamination here is a major source of zero drift.
<table>
<thead>
<tr>
<th>PULLEY TEETH</th>
<th>BELT</th>
<th>VELOCITY RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Pulley</td>
<td>Crankshaft Pulley</td>
<td>cm/min</td>
</tr>
<tr>
<td>18</td>
<td>36</td>
<td>270L050</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>300L050</td>
</tr>
<tr>
<td>36</td>
<td>18</td>
<td>270L050</td>
</tr>
</tbody>
</table>