Tsirelson’s problem and linear system games

William Slofstra

IQC, University of Waterloo

October 10th, 2016

includes joint work with Richard Cleve and Li Liu
Non-local games

Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance
Non-local games

Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress
Strategies for non-local games

Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob’s strategy is described by:

$$P(a, b|x, y) = \text{the probability of output } (a, b) \text{ on input } (x, y)$$

Correlation matrix: collection of numbers $\{P(a, b|x, y)\}$
Classical and quantum strategies

Classical: can use randomness, flip coin to determine output.

Correlation matrix will be \(P(a, b|x, y) = A(a|x)B(b|y) \).

Quantum: Alice and Bob can share entangled quantum state

Bell’s theorem: Alice and Bob can do better with an entangled quantum state than they can do classically.
Quantum strategies

How do we describe a quantum strategy?

Use axioms of quantum mechanics:

• Physical system described by (finite-dimensional) Hilbert space
• No communication ⇒ Alice and Bob each have their own (finite dimensional) Hilbert spaces \mathcal{H}_A and \mathcal{H}_B
• Hilbert space for composite system is $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$
• Shared quantum state is a unit vector $|\psi\rangle \in \mathcal{H}$
• Alice’s output on input x is modelled by measurement operators $\{M^x_a\}_a$ on \mathcal{H}_A
• Similarly Bob has measurement operators $\{N^y_b\}_b$ on \mathcal{H}_B

Quantum correlation: $P(a, b|x, y) = \langle \psi | M^x_a \otimes N^y_b | \psi \rangle$
Quantum correlations

Set of quantum correlations:

\[C_q = \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M^x_a \otimes N^y_b | \psi \rangle \right\} \]
where
\[|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \text{ where } \mathcal{H}_A, \mathcal{H}_B \text{ fin dim'l} \]
\[M^x_a \text{ and } N^y_b \text{ are projections on } \mathcal{H}_A \text{ and } \mathcal{H}_B \]
\[\sum_a M^x_a = I \text{ and } \sum_b N^y_b = I \text{ for all } x, y \]

Two variants:

1. \(C_{qs} \): Allow \(\mathcal{H}_A \) and \(\mathcal{H}_B \) to be infinite-dimensional

2. \(C_{qa} = \overline{C_q} \): limits of finite-dimensional strategies

Relations: \(C_q \subseteq C_{qs} \subseteq C_{qa} \)
Commuting-operator model

Another model for composite systems: *commuting-operator model*

In this model:

- Alice and Bob each have an algebra of observables \(\mathcal{A} \) and \(\mathcal{B} \)
- \(\mathcal{A} \) and \(\mathcal{B} \) act on the joint Hilbert space \(\mathcal{H} \)
- \(\mathcal{A} \) and \(\mathcal{B} \) commute: if \(a \in \mathcal{A}, \ b \in \mathcal{B} \), then \(ab = ba \).

This model is used in quantum field theory

Correlation set:

\[
C_{qc} := \left\{ \{ P(a, b|x, y) \} : P(a, b|x, y) = \langle \psi | M^x_a N^y_b | \psi \rangle , \quad M^x_a N^y_b = N^y_b M^x_a \right\}
\]

Hierarchy: \(C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc} \)
Tsirelson’s problem

Two models of QM: tensor product and commuting-operator

Tsirelson problems: is $C_t, t \in \{q, qs, qa\}$ equal to C_{qc}

Fundamental questions:

1. What is the power of these models?

 Strong Tsirelson: is $C_q = C_{qc}$?

2. Are there observable differences between these two models, accounting for noise and experimental error?

 Weak Tsirelson: is $C_{qa} = C_{qc}$?
What do we know?

Theorem (Ozawa, JNPPSW, Fr)

\[C_{qa} = C_{qc} \text{ if and only if Connes' embedding problem is true} \]

Theorem (S)

\[C_{qs} \neq C_{qc} \]
Other fundamental questions

Question: Given a non-local game, can we compute the optimal value \(\omega_t \) over strategies in \(C_t, \ t \in \{qa, qc\} \)?

Theorem (Navascués, Pironio, Acín)

Given a non-local game, there is a hierarchy of SDPs which converge in value to \(\omega_{qc} \)

Problem: no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if \(\omega_{qc} < 1 \)
Two theorems

Theorem (S)

\[C_{qs} \neq C_{qc} \]

Theorem (S)

It is undecidable to tell if \(\omega_{qc} < 1 \)

Proofs: make connection to group theory via linear system games
Linear system games

Start with \(m \times n \) linear system \(Ax = b \) over \(\mathbb{Z}_2 \)

\[\implies \text{Get a non-local game } G, \text{ and} \]

\[\implies \text{a solution group } \Gamma \]

\(\Gamma \): Group generated by \(X_1, \ldots, X_n \), satisfying relations

1. \(X_j^2 = [X_j, J] = J^2 = e \) for all \(j \)

2. \(\prod_{j=1}^{n} X_j^{A_{ij}} = J^{b_i} \) for all \(i \)

3. If \(A_{ij}, A_{ik} \neq 0 \), then \([X_j, X_k] = e\).
Quantum solutions of $Ax = b$

Solution group Γ: Group generated by X_1, \ldots, X_n, satisfying relations

1. $X_j^2 = [X_j, J] = J^2 = e$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = J^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $[X_j, X_k] = e$.

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system $Ax = b$. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ
Group embedding theorem

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system $Ax = b$. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system $Ax = b$, with $\phi(J_0) = J$.
How do we prove the embedding theorem?

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system $Ax = b$, with $\phi(J_0) = J$.

Given finitely-presented group G, we get Γ from a linear system.

But what linear system?

Linear systems over \mathbb{Z}_2 correspond to vertex-labelled hypergraphs.

So we can answer this pictorially by writing down a hypergraph...
The hypergraph by example

\[\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \ldots = v^2 \rangle \]

does not include preprocessing
\(\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \cdots = v^2 \rangle \)

Thank-you!