Abstract

DDR nanocrystals were synthesized using hydrothermal secondary growth. The morphology of the nanocrystals can be manipulated by changing the ratio of silica to water, the synthesis temperature, and the mineralizing agents. Specifically, nanocrystals with morphology of hexagonal plates, octahedral, and diamond-like plates are disclosed. These nanocrystals can be used as seed coatings for DDR membrane growth on substrates, and for the fabrication of mixed matrix membranes, and for any other use where uniform, small DDR zeolite crystals are beneficial.

Claims

28 Claims, 3 Drawing Sheets

Huang, Aisheng and Jürgen Caro, Cationic polymer used to capture zeolite precursor particles for the facile synthesis of oriented zeolite LTA molecular sieve membrane, Chem. Mater., 2010, 22(15), pp. 4353-4355.

fluorinated link, functionalization of zeolitic imidazolate frameworks, recovery of bio-alcohols, diazonium chemistry in the synthesis of microporous materials, derived from metal-organic framework nanoparticles for efficient pervaporation with inorganic membranes.

References Cited

OTHER PUBLICATIONS

Ranjani, Rajiv and Michael Tsapatsis, Microporous metal organic framework membrane on porous support using the seeded growth method, Chem. Mater., 2009, xxx(xxx), 000-000.

* cited by examiner
FIGURE 1

DDR building block

DDR pore structure
ZEOLITE DDR NANOPIRTELES

PRIOR RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 61/471,238, filed Apr. 4, 2011, and expressly incorporated by reference herein in its entirety.

FEDERALLY SPONSORED RESEARCH STATEMENT

Not applicable.

FIELD OF THE INVENTION

New methods for synthesizing DDR zeolite nanocrystals (200-2000 nanometers in size) are disclosed using hydrothermal secondary growth (seeded growth). By changing the ratio of silica to water, the synthesis temperature, and the mineralizing agents, the morphology and size of the crystals can be manipulated. Specifically, crystals with morphology of hexagonal plates, octahedral, and diamond-like plates are disclosed. These crystals can be used as seed coatings for DDR membrane growth on substrates, and for the fabrication of mixed matrix membranes, among other uses.

BACKGROUND OF THE INVENTION

The term “zeolite” was originally coined in 1756 by Swedish mineralogist Axel Fredrik Cronstedt, who observed that upon rapidly heating the material stilbite, it produced large amounts of steam from water that had previously been adsorbed into the material. Based on this, the called the material zeolite, from the Greek zeo, meaning “boil” and lithos, meaning “stone”.

We now know that zeolites are microporous, aluminosilicate or silicate minerals. As of November 2010, 194 unique zeolite frameworks have been identified (DDR being one of them), and over 40 naturally occurring zeolite frameworks are known.

Zeolites have a porous structure that can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+ and many others. These positive ions are rather loosely held and can readily be exchanged for others in a contact solution. Some of the more common mineral zeolites are analcime, chabazite, clinoptilolite, heulandite, natrolite, phillipsite, and stilbite.

The regular pore structure and the ability to vary pore size, shape and chemical nature makes zeolites very useful as molecular sieves. Depending on their structure and composition, zeolites can separate molecules based on adsorption and/or diffusion of certain molecules preferentially inside the pores or exclusion of certain molecules based on their size. The pore size is typically less than 2 nm and comparable to that of small molecules, allowing the use of zeolites to separate lightweight gases such as CO2 and CH4.

The maximum size of a species that can enter the pores of a zeolite is controlled by the dimensions of the channels in the zeolite. These are conventionally defined by the ring size of the aperture, where, for example, the term “8-ring” refers to a closed loop that is built from 8 tetrahedrally coordinated silicon (or aluminum) atoms and 8 oxygen atoms. The rings are not always symmetrical due to a variety of effects, including strain induced by the bonding between units that are needed to produce the overall structure, or coordination of some of the oxygen atoms of the rings to cations within the structure. Therefore, the pores in many zeolites are not cylindrical. The DDR zeolite of this invention has an 8-ring structure (see FIG. 1).

Thus, zeolites are widely used in industry for water purification, as catalysts, and in nuclear reprocessing. Their biggest use is in the production of laundry detergents, and they are also used in medicine and in agriculture.

In particular, zeolites have been used in two types of molecular sieving membranes: mixed matrix membranes and pure zeolite membranes. To fabricate a mixed matrix membrane, zeolite crystals are first dispersed in a polymer solution. The dispersion is then cast into a film or spun into a tubular hollow fiber. Since the membrane thickness is desired to be less than 1 micron, it is necessary to have submicron zeolite particles.

In pure zeolite membrane fabrication, zeolite crystals are first deposited as a “seed” coating on a porous substrate and then grown into a thin continuous layer known as a zeolite membrane. The porous substrate provides mechanical stability for the membrane. In this approach crystals with submicron size are also preferred because the seed coatings will then be tightly packed and of high quality. Further, membrane thickness is ideally about 0.5-5 microns.

Among the various zeolite materials, DDR is a pure silica (SiO2) zeolite. The dimensions of the molecular sieving pores of the DDR zeolite are 3.6x4.4 angstrom. Due to its relatively small pore size, DDR can be used to separate light gases, such as CO2 (kinetic diameter~3.3 angstroms) from CH4 (diameter~3.5 angstroms). Other advantages of DDR zeolites include high thermal stability and chemical resistance due to the pure silica composition.

DDR zeolite crystals were first synthesized in 1986 and the synthesis was further developed by several researchers. These synthesis methods either take long time (9-25 days) or produce very large crystals (20 to 50 micrometers). DDR zeolite membranes were first reported in 2004 and the results showed that CO2/CH4 selectivity was 220 at 501 °K with feed pressure of 0.5 MPa.

However, there is no prior art on the synthesis of micron or nanometer sized DDR crystals, which are critical in fabricating high-quality membranes. In this disclosure, methods for synthesizing nanometer to micron size DDR zeolite crystals are described. Not only can the size and shape of the DDR crystal be controlled, but the synthesis time is significantly shortened. Thus, the methods and compositions described herein are a significant improvement on the prior art.

SUMMARY OF THE INVENTION

The present invention describes a technique to synthesize DDR zeolite crystals with a size in the range of 200 nm up to 2 microns and with control over the morphology and size of the crystals. The synthesis was carried out using seed growth under hydrothermal conditions with mixing. The raw materials solution contains organic template 1-Adamantamine (ADA), a silica source such as Ludox AS-30 colloidal silica (SiO2), Deionized water (DI) and Potassium Fluoride (KF) and optionally other cations, such as K+, Na+, Ca2+, Mg2+ and others, can be added to fine tune the zeolites. The range of molar ratios of these chemicals and other parameters are as follows:
Generally speaking, a method of making DDR zeolite crystals is provided, wherein the method comprises combining 1-adamantanamine ("ADA"), deionized water, a silica source, potassium fluoride ("KF"), and optionally a source of cations. This is mixed for a period of time and then seed crystals are added to said mixture. While continuing to mix, the mixture is heated, mixed and cooled to make DDR zeolite crystals of 200-2000 nm. If needed for the application, the crystals can be washed and further calcined to remove the ADA.

In preferred embodiments, the mixture comprises x:ADA: 100 SiO2: yKF: zH2O: mKOH, wherein x is between 6 and 50, y is between 50 and 100, z is between 2000 and 14000, and m is between 0 to 2. Further preferred embodiments include, initial mixing between 30 minutes and 6 hours; temperature of 130-160° C.; heating time between 6 hour and 12 hours.

The invention also includes the various DDR zeolite crystals made according to the above methods, including crystals having the following characteristics: a) size in the range of 200 to 2000 nm, b) a morphology selected from the groups consisting of diamond-like, octahedron, or hexagonal plate, c) a BET surface area in the range of 340 m2/g to 380 m2/g, and d) a pore volume from 0.123 to 0.132 ml/g. Also invented are crystals being octahedral of 1000-4000 nm, diamond plate of 200-500 nm, octahedrall of 200-500 nm and hexagonal plates, preferably of 200-500 nm. The sizes provided herein are average sizes, and preferably are ±10% and more preferably ±5%.

The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims or the specification means one or more than one, unless the context dictates otherwise.

The term “about” means the stated value plus or minus the margin of error of measurement or plus or minus 10% if no method of measurement is indicated.

The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or if the alternatives are mutually exclusive.

The terms “comprise”, “have”, “include” and “contain” (and their variants) are open-ended linking verbs and allow the addition of other elements when used in a claim.

The phrase “consisting of” is a closed linking verb, and does not allow the inclusion of other elements.

The phrase “consisting essentially of” occupies a middle ground, and does not allow the inclusion of other material elements, but allows the inclusion of non-material elements that do not materially change the invention, such as different buffers, salts, drying steps, rinsing steps, re-precipitation steps, post-synthesis steps, and the like.

The following abbreviations are used herein:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>1-Adamantanamine</td>
</tr>
<tr>
<td>BET</td>
<td>BET theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for the measurement of the specific surface area of a material. In 1938, Stephen Brunauer, Paul Hugh Emmett, and Edward Teller published an article about the BET theory in a journal for the first time; “BET” consists of the first initials of their family names. Methods of calculating same are provided in the literature (e.g., en.wikipedia.org/wiki/BET_theory)</td>
</tr>
<tr>
<td>DDR</td>
<td>Refers to a type of silica zeolite with an 8 ring structure, as shown in FIG. 1.</td>
</tr>
<tr>
<td>DI</td>
<td>Deionized water</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>KF</td>
<td>Potassium fluoride</td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity index—a measure of the distribution of molecular mass in a given polymeric sample. The PDI calculated is the weight average molecular weight divided by the number average molecular weight. It indicates the distribution of individual molecular masses in a batch of polymer. The PDI has a value equal to or greater than 1, but as the polymer chains approach uniform chain length, the PDI approaches unity. PDI was measured herein by DLS, which gives the size distribution, from which we get the average size and PDI.</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron micrograph</td>
</tr>
<tr>
<td>SiO2</td>
<td>Silica, source Ludox AS-30 colloidal silica</td>
</tr>
</tbody>
</table>

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a DDR zeolite structure.
FIG. 2 is an SEM micrograph of DDR zeolite crystals with size of about 2 micrometers.
FIG. 3 is an SEM micrograph of diamond-like DDR zeolite nanocrystals with about 500x250 nanometer size.
FIG. 4 is an SEM micrograph of octahedral DDR zeolite nanocrystals with about 300 nanometer size.
FIG. 5 is an SEM micrograph of hexagonal plate DDR zeolite nanocrystals with about 500 nanometer size.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In a typical synthesis by the inventive method described herein, ADA was first dissolved in DI water. Then silica was added to the solution and the solution was mixed. After mixing the solution for 5 to 10 minutes, KF was added to the solution. The solution was mixed for another two hours. A small amount of crystal seeds synthesized using methods reported in literature was added to the solution. The solution was then put inside an autoclave with a Teflon liner and heated up to 160° C. The autoclaves were rotated (end-over-end) with a speed of 60 rpm in order to ensure adequate mixing and dispersal of regents during the seed growth. This mixing also appears to help with obtaining smaller crystals, and is important for nanometer sized crystal production. The reaction time was about 48 hours. The particles were then collected after the autoclaves were cooled to room temperature, washed with DI water and centrifuged until the pH of the wash water was close to 7.0. The particles were then dried and calcined at 700° C. for 8 hours. The ramping rate of calcination was 0.5° C. per minute.

The particles were first characterized with X-ray powder diffraction (XRD). The XRD pattern (not shown) of the crystals agrees well with the reference XRD pattern, confirming that the desired DDR zeolite was synthesized. The crystals
were also observed with scanning electron microscopy (SEM) (FIG. 2), which showed that these first crystals had an octahedral morphology and size of about 2 microns.

The particle size of these crystals was further reduced in subsequent experiments. The as-synthesized 2-micron crystals were ball-milled, and dispersed in water to form a suspension of 0.2-1 g/l. These were used as the seed crystals for the subsequent reactions.

A mixture of ADA, silica, DI water, and KF was prepared as described above. When the mixture was put into the autoclave, 5 to 10 grams of the suspension with ball-milled particles were also added into the autoclaves. Depending on the temperature can also have effect on both size and morphology. Lower temperatures result in smaller crystals and if below 150°C (150, 140 and 150°C were all tested) leads to nanometer sized octahedrons or hexagonal plates if KOH is also added, while higher temperatures (>160°C) surprisingly lead to diamond plate like crystals.

The washing and calcination steps were the same as described above for the 2-micrometer crystals, i.e., the particles were washed with DI water and centrifuged for several times. The mixture was further mixed at room temperature for 2 hours. The washing and calcination steps were the same as described above for the 2-micrometer crystals, i.e., the particles were washed with DI water and centrifuged for several times. The mixture was further mixed at room temperature for 2 hours.

In a typical synthesis, a mixture of ADA, silica, DI water, and KF and DI was made with the molar ratio of 6:100:50:10000. ADA was first dissolved in DI water. Due to the low solubility of ADA in water, the mixture was actually a partial suspension of ADA in water. Silica was then added to the suspension and mixed. After mixing the suspension for 5-10 minutes, KF was added to the suspension. The mixture was further mixed at room temperature for 2 hours.

After the mixture was prepared, 30 grams of the mixture was poured into an autoclave with a Teflon liner of 45 ml. 5 to 10 grams of seed crystals were added to the autoclave. The autoclave was then sealed and heated up inside an oven. The reaction was maintained for 8 hours. The autoclaves were then cooled to room temperature. The crystals were collected and washed with DI water and centrifuged for several times. Some of the crystals were calcined at 700°C for 8 hours to remove the organic template ADA.

The calcined crystals were then characterized with XRD, SEM, DLS, and N2 physisorption. The XRD pattern (not shown) confirmed that the average size of the crystals was 398 nm with a poly-dispersity index of 0.075. BET surface area and pore volume of the crystals from N2 physisorption were 371 m^2/g and 0.132 ml/g, respectively.

Example 2
Diamond DDR

In this Example, we show the synthesis of a DDR crystal with diamond-like morphology and approximate 500 x 250 nanometer size. General speaking, decreasing the time of the heat treatment unexpectedly changed the morphology and reduced the size.

Example 3
Smaller Octahedral DDR

Next DDR crystals with octahedron morphology and approximately 300 nanometer size were synthesized. Generally, lowering the temperature and heating time reduced crystal size.

In a typical synthesis, a mixture of ADA, silica, KF, and DI was made with the molar ratio of 6:100:50:10000. ADA was first dissolved in DI water. Due to the low solubility of ADA in water, the resulting mixture was a suspension of ADA in water. Silica was then added to the suspension and mixed. After mixing the suspension for 5-10 minutes, KF was added to the suspension. The mixture was further mixed at room temperature for 2 hours.

After the mixture was prepared, 30 grams of the mixture was poured into an autoclave with a Teflon liner of 45 ml. 5 to 10 grams of seed crystals were added to the autoclave. The autoclave was then sealed and heated up inside an oven. To
synthesize nanometer sized octahedral DDR nanocrystals, the temperature should be controlled less than or equal to 150 °C. The reaction was maintained for 6 hours with rotational mixing. The autoclaves were then cooled to room temperature. The crystals were collected and washed with DI water and centrifuged for several times. Some of the crystals were calcined at 700 °C for 8 hours to remove the organic template ADA.

The calcined crystals were then characterized with XRD, SEM, DLS, and N2 physisorption. The XRD pattern (not shown) agrees well with the reference pattern and that of diamond-like DDR nanocrystals. SEM image (FIG. 4) revealed that the crystals from this synthesis method had an octahedral morphology. DLS (not shown) confirmed that the average size of the crystals was 366 nm with a polydispersity index of 0.034. BET surface area and pore volume of the crystals from N2 physisorption were 346 m²/g and 0.123 ml/g, respectively.

Example 4
Hexagonal DDR

In this Example, we synthesized a DDR crystal with hexagonal plate morphology and about 500 nanometer size. Adding KOH surprisingly changed the crystal structure from octahedral to hexagonal plate.

To synthesize hexagonal plate DDR nanocrystals, a mixture of ADA, Silica, KF and DI was made with the molar ratio of 6:100:50:10000. ADA was first dissolved in DI water. Silica was then added to the suspension and mixed. After mixing the suspension for 5-10 minutes, KF was added to the suspension. 0.28 grams KOH were added to the mixture after adding KF. The mixture was mixed at room temperature for 2 hours.

After the mixture was prepared, 30 grams of the mixture were poured into an autoclave with a Teflon liner of 45 ml. 5 to 10 grams of seed crystals were added to the autoclave. The autoclave was then sealed and heated up inside an oven. The temperature was set at 150 °C, and the chambers rotationally mixed, as above. The reaction was maintained for 6 hours. The autoclaves were then cooled to room temperature. The crystals were collected and washed with DI water and centrifuged for several times. Some of the crystals were calcined at 700 °C for 8 hours to remove the organic template ADA.

The calcined crystals were then characterized with XRD, SEM, DLS, and N2 physisorption. The XRD pattern (not shown) agreed well with the reference pattern and that of diamond-like DDR nanocrystals. SEM image (FIG. 5) revealed that the crystals from this synthesis method had a hexagonal plate morphology, which has previously not been reported in literature. DLS (not shown) confirmed that the average size of the crystals was 484 nm with a polydispersity index of 0.055. BET surface area and pore volume of the crystals from N2 physisorption were 356 m²/g and 0.126 ml/g, respectively.

Table 1 summarized the average size, PDI, BET surface area and pore volume for the crystals of the four examples described herein.

<table>
<thead>
<tr>
<th>DDR Crystal (example no.)</th>
<th>Average size (nm)</th>
<th>Polydispersity Index (PDI)</th>
<th>BET surface area (m²/g)</th>
<th>Pore volume (ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octahedron (3)</td>
<td>366</td>
<td>0.034</td>
<td>348.0</td>
<td>0.123</td>
</tr>
<tr>
<td>Hexagonal plate (4)</td>
<td>484</td>
<td>0.055</td>
<td>368.3</td>
<td>0.126</td>
</tr>
</tbody>
</table>

The crystals prepared herein can be used for any use that DDR zeolites have traditionally been used for. One particular use is for CO2 removal e.g., from refinery or chemical plant waste or natural gas usage.

The following references are incorporated by reference in their entirety.

What is claimed is:
1. A method for preparing DDR zeolite crystals, said method comprising the steps of:
 a) combining the following materials to make a mixture: 1-adamantanamine (ADA), deionized water (DI), a silica source, potassium fluoride (KF), and optionally a source of a cation, wherein said mixture comprises about 6 ADA: 100 SiO2: 50 KF: 10000 H2O;
 b) mixing said mixture of step a) for a period of time;
 c) adding seed crystals to said mixture; and
 d) continuing to mix said mixture at a temperature of 100-200 °C for 4-72 hours to make DDR zeolite crystals of 200-3000 nm.

2. The method of claim 1, further comprising washing said DDR zeolite crystals.

3. The method of claim 2, further comprising calcining said washed crystals to remove said ADA.

4. The method of claim 1, wherein the cation is potassium, sodium, calcium, magnesium, manganese, barium, copper, cobalt, or strontium.

5. The method of claim 1, wherein period of time in step b) is between 30 minutes and 6 hours.

6. The method of claim 1, wherein the amount of seed crystals is between 0.0002 and 0.001 grams per ml of mixture.

7. The method of claim 1, wherein the temperature of step d) is 130-160 °C.
8. The method of claim 7, wherein the heating time of step d) is between 6 hours and 12 hours.

9. A composition comprising DDR zeolite crystals, said crystals having the following characteristics:
 a) size in the range of 200 to 3000 nm;
 b) a morphology selected from the group consisting of diamond-like, octahedral, and hexagonal plate;
 c) a BET surface area in the range of 340 \(\text{m}^2/\text{g} \) to 380 \(\text{m}^2/\text{g} \); and
 d) a pore volume from 0.123 to 0.132 ml/g.

10. The composition of claim 9, wherein said crystals further comprise one of the following:

<table>
<thead>
<tr>
<th>DDR Crystal shape</th>
<th>Average size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octahedron</td>
<td>1000-3000</td>
</tr>
<tr>
<td>Diamond-like</td>
<td>200-500</td>
</tr>
<tr>
<td>Octahedron</td>
<td>200-500</td>
</tr>
<tr>
<td>Hexagonal plate</td>
<td>200-500</td>
</tr>
</tbody>
</table>

11. The composition of claim 9, wherein said crystals are shaped like a hexagonal plate.

12. The composition of claim 9, said crystal shaped like a diamond, having an average size of 500 x 250 nm ± 20%.

13. The composition of claim 9, said crystal shaped like an octahedron, having an average size of 300 x 300 nm ± 20%.

14. The composition of claim 9, said crystal shaped like a hexagonal plate, having an average size of 500 x 500 nm ± 20%.

15. The composition of claim 9, said crystal shaped like a diamond, having an average size of 500 x 250 nm ± 10%.

16. The composition of claim 9, said crystal shaped like an octahedron, having an average size of 300 x 300 nm ± 10%.

17. The composition of claim 9, said crystal shaped like a hexagonal plate, having an average size of 500 x 500 nm ± 10%.

18. A separation membrane made with the DDR zeolite crystals of claim 9.

19. A method for preparing DDR zeolite crystals, said method comprising the steps of:
 a) combining the following materials to make a mixture:
 1-adamantanamine (ADA), deionized water (DI), a silica source, potassium fluoride (KF), and optionally a source of a cation, wherein said mixture comprises about 6 ADA: 100 SiO2: 50 KF: 8000 H2O: 0.005 KOH;
 b) mixing said mixture of step a) for a period of time;
 c) adding seed crystals to said mixture; and
 d) continuing to mix said mixture at a temperature of 100-200° C. for 4-72 hours to make DDR zeolite crystals of 200-3000 nm.

20. The method of claim 19, wherein said mixture comprises about 6 ADA: 100 SiO2: 50 KF: 8000.

21. The method of claim 19, wherein the method is conducted according to the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA/SiO2</td>
<td>0.06 to 0.5 molar ratio</td>
</tr>
<tr>
<td>KF/SiO2</td>
<td>0.5 to 1.0 molar ratio</td>
</tr>
<tr>
<td>DI/SiO2</td>
<td>2000 to 14000 molar ratio</td>
</tr>
<tr>
<td>KOH</td>
<td>0-2 molar ratio</td>
</tr>
</tbody>
</table>

i) 6-12 hr heat treatment d) results in smaller crystals (2-500 nm), or
ii) about 48 hr heat treatment d) results in larger crystals (2 µm); and
iii) Temperatures ≤ 150° C. results in nanometer octahedrons or
 Temperatures ≤ 150° C. plus KOH (1-2 molar ratio) results in hexagonal plates or
 Temperatures ≥ 160° C. results in diamond-like structures.

22. The method of claim 19, wherein said mixture comprises about 6 ADA: 50 KF: 10000 H2O: 0.005 KOH.

23. The method of claim 19, further comprising washing said DDR zeolite crystals.

24. The method of claim 19, further comprising calcining said washed crystals to remove said ADA.

25. The method of claim 19, wherein the cation is potassium, sodium, calcium, magnesium, manganese, barium, copper, cobalt, or strontium.

26. A composition comprising DDR zeolite crystals, said crystals having the following characteristics:
 a) size in the range of 200 to 3000 nm;
 b) a morphology selected from the group consisting of diamond-like, octahedral, and hexagonal plate;
 c) a BET surface area in the range of 340 \(\text{m}^2/\text{g} \) to 380 \(\text{m}^2/\text{g} \); and
 d) a pore volume from 0.123 to 0.132 ml/g, wherein the composition comprises about 6 ADA: 100 SiO2: 50 KF: 10000 H2O.

27. The composition of claim 23, wherein said crystals further comprise one of the following:

<table>
<thead>
<tr>
<th>DDR Crystal shape</th>
<th>Average size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octahedron</td>
<td>1000-3000</td>
</tr>
<tr>
<td>Diamond-like</td>
<td>200-500</td>
</tr>
<tr>
<td>Octahedron</td>
<td>200-500</td>
</tr>
<tr>
<td>Hexagonal plate</td>
<td>200-500</td>
</tr>
</tbody>
</table>

28. The composition of claim 23, wherein said crystals are shaped like a hexagonal plate.