OXYNITRIDE COMPOUNDS, METHODS OF PREPARATION, AND USES THEREOF

Inventor: James L. Gole, Atlanta, GA (US)
Assignee: Georgia Tech Research Corporation, Atlanta, GA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 11/432,183
Filed: May 11, 2006

Prior Publication Data
US 2006/0251563 A1 Nov. 9, 2006

Related U.S. Application Data
Continuation-in-part of application No. 10/324,482, filed on Dec. 20, 2002, now Pat. No. 7,071,139, application No. 11/432,183, which is a continuation-in-part of application No. 11/371,788, filed on Mar. 9, 2006, now Pat. No. 7,186,392, which is a division of application No. 10/324,482.

Provisional application No. 60/680,412, filed on May 12, 2005, provisional application No. 60/342,947, filed on Dec. 21, 2001.

Int. Cl.
COJB 211082 (2006.01)
COJG 231047 (2006.01)

U.S. Cl. 204/157.41; 423/385; 423/610
Field of Classification Search 204/157.41; 423/385, 610

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS
JP 63-45197 * 2/1988

OTHER PUBLICATIONS
&ug=dbs+0+In+en%2Dus+sid+9D6D30F2%2DB470%2DB... ; Robert F. Service, Sep. 14, 2001; (5 pages).

ABSTRACT
Embodiments of the present disclosure provide for methods of transforming from one crystal structure to another crystal structure in TiO₂ nanocolloids and TiO₂₋ₓNₓ nanocolloids.
OTHER PUBLICATIONS

Small Times, Big News in Small Tech, Konarka Harnesses the Sun God in Pursuit of a Scientist’s Dream; Matt Kelly; Sep. 2002 (4 pages).

The Surface Science of Titanium Dioxide; Diebold, U.; Surface Science Reports; vol. 48; (Jan. 2003), pp. 53-229.

* cited by examiner
FIG. 3

FIG. 4
FIG. 7A

FIG. 7B
FIG. 8A

FIG. 8B
FIG. 10

FIG. 11
FIG. 12

FIG. 13
OXYNITRIDE COMPOUNDS, METHODS OF PREPARATION, AND USES THEREOF

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and is a continuation-in-part of U.S. Provisional Application entitled, "Oxynitride Compounds, Methods of Preparation, and Uses Thereof", filed with the United States Patent and Trademark Office on Dec. 20, 2002, and assigned Ser. No. 10/324,482, U.S. Pat. No. 7,071,139, which claims priority to and is a divisional application of Provisional Application entitled, "Generation of TiO$_2$-$_x$N$_x$ Photocatalysts from the Solution Phase Nitration of TiO$_2$", filed with the United States Patent and Trademark Office on Dec. 21, 2001, and assigned Ser. No. 60/342,947, both of which are entirely incorporated herein by reference.

TECHNICAL FIELD

The present disclosure is generally related to oxide compounds and, more particularly, is related to oxynitride compounds and methods of preparation thereof.

BACKGROUND

The initial observation of the photoinduced decomposition of water on titanium dioxide (TiO$_2$) has promoted considerable interest in solar cells and the semiconductor-based photocatalytic decomposition of water and of other organic materials in polluted water and air. A continued focus on TiO$_2$ has resulted because of its relatively high reactivity and chemical stability under ultraviolet excitation (wavelength <387 nanometers), where this energy exceeds the bandgaps of both anatase (3.2 eV) and rutile (3.0 eV) crystalline n-TiO$_2$.

However, both anatase and rutile TiO$_2$ crystals are poor absorbers in the visible region (wavelength <800 nm) and the cost and accessibility of ultraviolet photons makes it desirable to develop photocatalysts that are highly reactive under visible light excitation, utilizing the solar spectrum or even interior room lighting.

With this focus, several attempts have been made to lower the bandgap energy of crystalline TiO$_2$ by transition metal doping and hydrogen reduction. One approach has been to dope transition metals into TiO$_2$ and another has been to form reduced TiO$_2$ photocatalysts. However, doped materials suffer from a thermal instability, an increase of carrier-recombination centers, or the requirement of an expensive ion-implantation facility. Reducing TiO$_2$ introduces localized oxygen vacancy states below the conduction band minimum of titanium dioxide so that the energy levels of the optically excited electrons will be lower than the redox potential of the hydrogen evolution, and the electron mobility in the bulk region will be small because of the localization.

Films and powders of titanium oxynitride (TiO$_2$-$_x$N$_x$) have revealed an improvement over titanium dioxide under visible light in optical absorption and photocatalytic activity, such as photodegradation of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface. Substitutional doping of nitrogen by sputtering a titanium dioxide target in a nitrogen/argon gas mixture has been accomplished. After being annealed at 550°C in nitrogen gas for four hours, the films were crystalline with features assignable to a mixed structure of the anatase and rutile crystalline phases. The films were yellowish in color, and their optical absorption spectra showed them to absorb light between 400-500 nm, whereas films of pure titanium dioxide did not. Photocatalytic activity for the decomposition of methylene blue shows activity of TiO$_2$-$_x$N$_x$ at wavelengths less than 500 nm.

The active wavelength of TiO$_2$-$_x$N$_x$ of less than 500 nm promises a wide range of applications, as it covers the main peak of the solar irradiation energy beyond Earth's atmosphere. Further, it is an excellent light source, peaking at 390 to 420 nm, provided by recently-developed light-emitting indium gallium nitride diodes.

In addition, nitrogen can be incorporated into the TiO$_2$ structure by the nitridation reaction of TiO$_2$ nanopowders that are subjected to an ammonia (NH$_3$) gas flow at about 600°C. Transmission electron microscope micrographs showed that the synthesized TiN powder consisted of uniform spherical particles with an average diameter of about 20 nm when nitridation was performed at a temperature of about 600°C for 2-5 hours. No results with respect to the photocatalytic activity of this material were presented.

The synthesis of chemically modified n-type TiO$_2$ by the controlled combustion of Ti metal in a natural gas flame at a temperature of about 850°C represented another attempt at lowering the band gap energy of TiO$_2$. The modified films were dark gray, porous in structure and with an average composition of n-TiO$_2$-$_x$C$_y$ (with x about 0.15). This material absorbs light at wavelengths below 535 nm and has a lower band-gap energy than rutile TiO$_2$ (2.32 versus 3.00 electron volts). When illuminated with a 150 Watt xenon (Xe) lamp, and at an applied potential of 0.3 volt, the chemically modified n-TiO$_2$-$_x$C$_y$ (with x about 0.15) exhibited a higher water photoconversion efficiency (8.3%) than that of pure TiO$_2$ illuminated under the same conditions (1%).

All of these examples require the use of very high temperature synthesis conditions, and long periods of time to produce these materials. The time and temperature previously required to make the TiO$_2$-$_x$N$_x$ and n-TiO$_2$-$_x$C$_y$ compounds makes these techniques costly and inefficient.

Thus, a heretofore unaddressed need exists in the industry for a simple more cost effective method to fabricate novel materials capable of exhibiting photo catalytic activity such as...
as the photo-induced decomposition of water and pollutants. Additionally, a need exists for better methods for their use in the production of electricity through solar cells, as well as to address some of the aforementioned deficiencies and/or inadequacies.

SUMMARY

Embodiments of the present disclosure provide for methods of transforming from one crystal structure to another crystal structure in TiO$_2$ nanocolloids and TiO$_2$-N$_x$ nanocolloids. One representative embodiment includes: providing a TiO$_2$ nanocolloid that has an anatase crystal structure; mixing the TiO$_2$ nanocolloid with a metal hydrate compound at a temperature of less than about 600°C, wherein the metal hydrate compound is selected from a cobalt chloride hexahydrate compound, a cobalt nitrate hexahydrate compound, and a nickel chloride hexahydrate compound; and transforming the anatase crystal structure to a rutile crystal structure in less than 60 minutes and at a temperature of less than about 600°C.

Another embodiment of the present disclosure provides for methods of transforming from one crystal structure to another crystal structure. An exemplary method includes: providing a TiO$_2$ nanocolloid that has an anatase crystal structure; mixing the TiO$_2$ nanocolloid with a metal hydrate compound at a temperature of about 20 to 30°C; and transforming the anatase crystal structure to a rutile crystal structure in less than 5 minutes and at a temperature of about 20 to 30°C.

Another embodiment of the present disclosure provides for methods of transforming from one crystal structure to another crystal structure. An exemplary method includes: providing a TiO$_2$-N$_x$ nanocolloid that has an anatase crystal structure, wherein x is about 0.005 to 0.25; mixing the TiO$_2$-N$_x$ nanocolloid with a metal hydrate compound at a temperature of less than about 600°C, wherein the metal hydrate compound is selected from a cobalt chloride hexahydrate compound, a cobalt nitrate hexahydrate compound, and a nickel chloride hexahydrate compound; and transforming the anatase crystal structure to a rutile crystal structure.

Another embodiment of the present disclosure provides for methods of transforming from one crystal structure to another crystal structure. An exemplary method includes: providing a TiO$_2$-N$_x$ nanocolloid that has an anatase crystal structure, wherein x is about 0.005 to 0.25; mixing the TiO$_2$-N$_x$ nanocolloid with a metal hydrate compound at a temperature of less than about 20 to 30°C; and transforming the anatase crystal structure to a rutile crystal structure with a laser energy of greater than 120 mW; and transforming the anatase crystal structure to a rutile crystal structure.

Other systems, methods, features, and advantages of the present disclosure will be apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within these descriptions, be within the scope of the present disclosure, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

FIG. 1A is a low resolution transmission electron micrograph (TEM) image of titanium oxynitride nanocolloids. FIG. 1B is a high resolution (HR) TEM image showing the polycrystalline character and lattice planes of the sample. The HR TEM image corresponds to an anatase crystal structure confirmed by the x-ray powder diffraction pattern shown in the inset.

FIG. 2 includes (a) a reflection spectrum for Degussa P25TM TiO$_2$ whose spectrum rises sharply at 380 nanometers (nm), (b) a reflection spectrum of titanium oxynitride nanoparticles (3-11 nm) whose spectrum rises sharply at 450 nm, and (c) a reflection spectrum of titanium oxynitride partially agglomerated nanoparticles whose spectrum rises sharply at 550 nm.

FIG. 3 includes (a) an infrared spectrum for triethylamine showing a clear C=H stretch region, and (b) an infrared spectrum of titanium oxynitride nanoparticles (3-11 nm) corresponding to the yellow titanium oxynitride crystallites whose reflection spectrum rises sharply at 450 nm.

FIG. 4 is an XPS spectrum for untreated titanium dioxide nanoparticles and titanium oxynitride nanoparticles. The nitrogen peak, which is present in the titanium oxynitride nanoparticle sample, but not in the untreated titanium dioxide, is considerably more pronounced for the palladium treated titanium oxynitride nanoparticles.

FIG. 5A is an XRD powder pattern for untreated titanium dioxide powders. FIG. 5B is an XRD powder pattern for titanium oxynitride partially agglomerated nanoparticles corresponding with the sharply rising reflectance spectrum at 550 nm. While the XRD patterns in FIGS. 5A and 5B are indicative of the anatase phase, the broad XRD pattern for palladium treated titanium oxynitride may be attributed to a structural transformation.

FIG. 6A is a TEM of a palladium metal impregnated titanium oxynitride nanostructure. FIG. 6B is a TEM micrograph of a dark brown-black crystal phase accompanying the palladium impregnated nitride nanostructures. The dark crystallites are associated with a structural transformation (e.g., the analog of octahedrite in titanium dioxide).

FIG. 7A is a graph illustrating the photodegradation of methylene blue in water at pH 7 and at about 300 nm. FIG. 7B is a graph illustrating the photodegradation of methylene blue in water at pH 7 and at about 540 nm.

FIG. 8A illustrates Raman spectrum of untreated anatase TiO$_2$ nano-powder, while FIG. 8B illustrates the Raman spectrum of nitrized TiO$_2$ nano-colloid. The dashed line represents the fitted data and solid line represents the data. The spectrum in FIG. 8B is broader because the nanoparticles used are smaller.

FIG. 9A illustrates Raman spectra of the TiO$_2$ nanocolloid prepared with various concentrations of Co using CoCl$_2$, while FIG. 9B illustrates Raman spectra of the TiO$_2$ nanocolloid prepared with various concentrations of Co using Co(NO$_3$)$_2$. Note that the Raman signal for FIG. 9A was obtained using a 1 µm spot size and a power of 25 mW or less. The Raman signal for FIG. 9B was obtained at much higher laser powers (e.g., 150 mW) and is laser induced.
FIG. 10 illustrates Raman spectra of TiO₂₋₇xNx colloids for various Co concentrations using CoCl₂.

FIG. 11 illustrates and compares Raman spectra of the initial TiO₂₋₇xNx and Co-doped TiO₂₋₇xNx colloids (laser-induced).

FIG. 12 illustrates the Raman spectrum of Ni doped TiO₂ nanocolloid at powers less than 20 mW.

FIG. 13 illustrates the laser-induced Raman spectrum and fit for TiO₂₋₇xNx doped with CoCl₂. The vibrations at 388 cm⁻¹ and 690 cm⁻¹ have been assigned to a cobalt oxide site similar to that in Co₃O₄ (spinel).

DETAILED DESCRIPTION

Embodiments of the present disclosure include methods of treating TiO₂ nanocolloids, methods of treating TiO₂₋₇xNx colloids, and methods of transforming the crystal structure from the anatase crystal structure to the rutile crystal structure for each of the TiO₂ nanocolloids and TiO₂₋₇xNx colloids. Initially in each instance, the TiO₂ nanocolloids and the TiO₂₋₇xNx nanocolloids have an anatase crystal structure. The TiO₂ nanocolloids and the TiO₂₋₇xNx nanocolloids are each mixed with a metal hexahydrate compound. The crystal structure of the TiO₂ nanocolloids and the TiO₂₋₇xNx colloids are each changed from the anatase crystal structure to the rutile crystal structure at conditions substantially different from current techniques. In particular, the transformations are carried out at temperatures significantly less than that typically associated with the anatase to rutile transformation, which occurs stoichiometrically and requires a temperature of about 850°C for a time period of about 12 hours. The methods of the present disclosure are advantageous for at least the reasons that the transformation from the anatase crystal structure to the rutile crystal structure in TiO₂ nanocolloids and the TiO₂₋₇xNx nanocolloids are conducted at much lower temperatures and/or significantly faster times than previous methods.

In addition, embodiments of the present disclosure provide for oxynitride nanoparticles having the following formula: MₓOᵧNₙ where M is a metal, a metalloid, a lanthanide, or an actinide; O is oxygen; N is nitrogen, and where x can range from about 1 to 3; y is about 0.5 to less than 5, and z is about 0.001 to 0.5, about 0.001 to 0.2, and about 0.001 to 0.1.

Another embodiment of the present disclosure provides for methods of preparation of MₓOᵧNₙ nanoparticles. An exemplary method of preparing MₓOᵧNₙ nanoparticles includes mixing at least one type of oxide nanoparticle (described below) with at least one alkyl amine at room temperature until the reaction between the oxide nanoparticles and alkyl amines is substantially complete (e.g., typically less than 60 seconds). The result is the formation of MₓOᵧNₙ nanocolloids and the MₓOᵧNₙ nanocolloids have an anatase crystal structure. The MₓOᵧNₙ nanocolloids are each changed from the anatase crystal structure to the rutile crystal structure at conditions substantially different from current techniques. In particular, the transformations are carried out at temperatures significantly less than that typically associated with the anatase to rutile transformation, which occurs stoichiometrically and requires a temperature of about 850°C for a time period of about 12 hours. The methods of the present disclosure are advantageous for at least the reasons that the transformation from the anatase crystal structure to the rutile crystal structure in TiO₂ nanocolloids and the TiO₂₋₇xNx nanocolloids are conducted at much lower temperatures and/or significantly faster times than previous methods.

In addition, another embodiment provides for oxynitride nanoparticles having the following formula: Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅ where M₁ and M₂ can be a metal, a metalloid, a lanthanide, or an actinide; O is oxygen; N is nitrogen, and where x₁ and x₂ are in the range from about 1 to 3; y is about 0.5 to less than 5; and z is about 0.001 to 0.5. Another embodiment provides for methods of preparing Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅ nanoparticles. The method is similar to the method described above in regard to MₓOᵧNₙ nanoparticles and will be described in more detail below.

Another embodiment of the present disclosure provides for MₓOᵧNₙ nanoparticles having a catalytic metal (Mₐₓₖₐ₅) disposed thereon and/or therein. A representative method of the preparation of MₓOᵧNₙ[Mₐₓₖₐ₅] nanoparticles includes mixing at least one type of oxide nanoparticle with at least one alkyl amine and a catalytic metal compound until the reaction between the oxide nanoparticle, alkyl amines, and catalytic metal compound is substantially complete (e.g., typically less than 60 seconds). The result is the formation of MₓOᵧNₙ[Mₐₓₖₐ₅] nanocolloids. Subsequently, the MₓOᵧNₙ[Mₐₓₖₐ₅] particles can be vacuum dried and stored for use in the future.

In addition, another embodiment provides for Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅ nanoparticles having catalytic metal (Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅)[Mₐₓₖₐ₅] disposed thereon and/or therein and methods of formation thereof. The method is similar to the method described above in regard to MₓOᵧNₙ[Mₐₓₖₐ₅] nanoparticles and will be discussed in more detail below.

Other embodiments of the present disclosure include the use of one or more types of MₓOᵧNₙ[Mₐₓₖₐ₅], Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅[Mₐₓₖₐ₅] nanoparticles in catalysts, for photocatalytic reactors, in photocatalytic supports, for solar panel energy systems, and in pigments.

For example, one or more types of MₓOᵧNₙ[Mₐₓₖₐ₅], Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅[Mₐₓₖₐ₅] nanoparticles can be used as a photocatalyst for converting water into hydrogen and oxygen. In addition, one or more types of MₓOᵧNₙ[Mₐₓₖₐ₅], Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ₋₅₅[Mₐₓₖₐ₅] nanoparticles can be used in the photodegradation of organic molecules present in polluted water and air.

In particular, TiO₂₋₇xNx and/or TiO₂₋₇xNx[Pd] nanoparticles can be used in photocatalytic reactors, solar cells, and pigments. For example, the TiO₂₋₇xNx and/or TiO₂₋₇xNx[Pd] nanoparticles can be incorporated into porous silicon structures (e.g., micro/nanoporous structures) and act as a catalyst, a photocatalyst, or an electrode material.

MₓOᵧNₙ Nanoparticles

Embodiments of the MₓOᵧNₙ nanoparticles include, but are not limited to, the following formulas: Mₓ₁₋₅₅Nₙ, Mₓ₋₅₅Oₓ₋₅₅Nₙ, Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ[Mₐₓₖₐ₅]. Embodiments of the MₓOᵧNₙ nanoparticles include, but are not limited to, the following formulas: Mₓ₁₋₅₅Nₙ, Mₓ₋₅₅Oₓ₋₅₅Nₙ, Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ[Mₐₓₖₐ₅]. Embodiments of the MₓOᵧNₙ nanoparticles include, but are not limited to, the following formulas: Mₓ₁₋₅₅Nₙ, Mₓ₋₅₅Oₓ₋₅₅Nₙ, Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ[Mₐₓₖₐ₅]. Embodiments of the MₓOᵧNₙ nanoparticles include, but are not limited to, the following formulas: Mₓ₁₋₅₅Nₙ, Mₓ₋₅₅Oₓ₋₅₅Nₙ, Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ[Mₐₓₖₐ₅]. Embodiments of the MₓOᵧNₙ nanoparticles include, but are not limited to, the following formulas: Mₓ₁₋₅₅Nₙ, Mₓ₋₅₅Oₓ₋₅₅Nₙ, Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ, and/or Mₓ₁₋₅₅M₂₋₅₅Oₓ₋₅₅Nₙ[Mₐₓₖₐ₅].
about 540 nm to 560 nm. Preferably, the M_1O_N nanoparticles absorb radiation at about 550 nm, the peak of the solar spectrum.

In general, the M_1O_N nanoparticles may maintain their crystal structure upon nitridation. However, some embodiments of the M_1O_N nanoparticles may experience crystal phase transformation. In particular, nitridation of anatase TiO_2 nanoparticles do not appear to experience phase transformation whereas nitridation of TiO_2 nanoparticles in the presence of $PdCl_2$ results in a structural transformation (e.g., transformation from the anatase crystal phase to a complex mixed structural phase).

Methods of Making $M_3O_2N_2$ Nanoparticles

Embeddings of the present disclosure also include methods of preparing $M_3O_2N_2$ nanoparticles. An embodiment of a representative method includes mixing at room temperature at least one type of oxide nanoparticle (M_1O_N nanoparticles (where h is in the range of about 1 to 3 and i is in the range of about 1 to 5)) with an excess of a solution having at least one type of alkyl amine. The solution can also contain hydrazine and/or ammonia.

In general, the M_3O_2 nanoparticles have a diameter of less than about 40 nm, in some embodiments less than about 30 nm. The M_3O_2 nanoparticles may be in several forms. In particular, the M_3O_2 nanoparticles can be suspended in a colloidal solution of one or more types of M_1O_N nanoparticles; a gel of one or more types of M_1O_N nanoparticles; or combinations thereof.

For M_2O_3 nanoparticles, M includes the transition metals, the metalloids, the lanthanides, and the actinides. More specifically, M includes, but is not limited to, Ti, Zr, Hf, Si, Co, Zn, Ph, Mo, V, Al, Nb, Ta, Si, Ag, Ir, Pt, Pd, Au, or combinations thereof. In particular, M can be Ti, Zr, Hf, Si, and Sn and, preferably, M is Ti.

The alkyl amine can include, but is not limited to, compounds having the formula of $N(R_1)(R_2)(R_3)$. R_1, R_2, and R_3 can each be selected from groups such as, but not limited to, a methyl group, an ethyl group, a propyl group, and a butyl group. The preferred alkyl amine is triethylamine. In general, an excess amount (based on the quantity of M_3O_2 nanoparticles) of alkyl amine is included in the mixture to ensure complete reaction of the M_3O_2 nanoparticles. However, it is contemplated and within the scope of this disclosure that amounts less than an excess of alkyl amine can be included in the mixture to produce $M_3O_2N_2$ nanoparticles.

Subsequent to providing $M_3O_2N_2$ nanoparticles and the alkyl amine, the $M_3O_2N_2$ nanoparticles and the alkyl amine can be mixed in a container, preferably a closed glass container with a magnetic stirring rod. Alternatively, the mixture can be mixed by shaking the container with a machine or by hand. The $M_3O_2N_2$ nanoparticles and the alkyl amine are mixed until reaction between them is substantially complete, which may be indicated by an exothermic reaction (e.g., heat release) and/or by a color change of the mixture. The reaction typically takes less than 60 seconds and, preferably, less than 10 seconds to form M_1O_N nanoparticles.

After the reaction between the $M_3O_2N_2$ nanoparticle and the alkyl amine is complete, the mixture is allowed to air dry. Subsequently, the mixture is dried under a vacuum (about $5x10^{-2}$ torr) for less than approximately 12 hours. The M_1O_N nanoparticles are typically colored (e.g., a yellow to orange/red color for titanium oxynitride particles).
Embodiments of the M₁₅M₂₃O₇N₅ nanoparticles may have the characteristic that they are able to absorb radiation (e.g., light) in the range of about 350 nm to 2000 nm, about 500 nm to 2000 nm, about 540 nm to 2000 nm, about 450 nm to 800 nm, about 500 nm to 800 nm, about 540 nm to 800 nm, and about 540 nm to 560 nm. Preferably, the M₁₅M₂₃O₇N₅ nanoparticles may absorb radiation at about 550 nm, the peak of the solar spectrum.

Methods of Making M₁₅M₂₃O₇N₅ Nanoparticles

Embodiments of the present disclosure also include methods of preparing M₁₅M₂₃O₇N₅ nanoparticles. An embodiment of a representative method includes mixing at room temperature two types of oxide nanoparticles (M₂₃O₇ nanoparticles (where h is in the range of about 1 to 3 and i is in the range of about 1 to 5)) with an excess of a solution having at least one type of alkyl amine. The solution can also contain hydrazine and/or ammonia.

Subsequently, the two types of M₂₃O₇ nanoparticles and the alkyl amine can be mixed in a container, preferably a closed glass container, with a magnetic stirring rod. Alternatively, the mixture can be mixed by shaking the container with a machine or by hand. The two types of M₂₃O₇ nanoparticles and the alkyl amine are mixed until the reaction is substantially complete, which maybe indicated by an exothermic reaction (e.g., heat release) and/or by a color change of the mixture. After the reaction between the two types of M₂₃O₇ nanoparticles and the alkyl amine is complete, the mixture is allowed to air dry. Subsequently, the mixture is dried under a vacuum (about 5x10⁻² torr) for less than 12 hours.

Another representative method includes mixing a mixed oxide nanoparticle having the formula M₁₅h₂M₂₃O₇ (where h₁ and h₂ can range from about 1 to 3 and i is in the range of about 1 to 5) with an excess of a solution having at least one type of alkyl amine. The solution can also contain hydrazine and/or ammonia.

Subsequently, the M₁₅h₂M₂₃O₇ nanoparticles and the alkyl amine can be mixed in a container, preferably a closed glass container, with a magnetic stirring rod. Alternatively, the mixture can be mixed by shaking the container with a machine or by hand. The M₁₅h₂M₂₃O₇ nanoparticles and the alkyl amine are mixed until the reaction is substantially complete, which maybe indicated by an exothermic reaction (e.g., heat release) and/or by a color change of the mixture. After the reaction of the M₁₅h₂M₂₃O₇ nanoparticles and the alkyl amine is complete, the mixture is allowed to air dry. Subsequently, the mixture is dried under a vacuum (about 5x10⁻² torr) for less than 12 hours.

Another embodiment of the present disclosure includes preparing M₁₅M₂₃O₇N₅[M₅Cl₄] nanoparticles. A representative method includes mixing at room temperature two types of M₂₃O₇ nanoparticles with a catalytic metal compound and an excess of a solution having at least one type of alkyl amine. The solution can also contain hydrazine and/or ammonia.

Subsequently, the two types of M₂₃O₇ nanoparticles, the catalytic metal compound, and the alkyl amine can be mixed in a container, preferably a closed glass container, with a magnetic stirring rod. Alternatively, the mixture can be mixed by shaking the container with a machine, or by hand. The two types of M₂₃O₇ nanoparticles, the catalytic metal compound, and the alkyl amine are mixed until the reaction is substantially complete, which maybe indicated by an exothermic reaction (e.g., heat release) and/or by a color change of the mixture. After the reaction between the two types of M₂₃O₇ nanoparticles, the catalytic metal compound, and the alkyl amine is complete, the mixture is allowed to air dry. Subsequently, the mixture is dried under a vacuum (about 5x10⁻² torr) for less than 12 hours.

Another embodiment of the present disclosure includes mixing M₁₅M₂₃O₇ with a catalytic metal compound, and an excess of a solution having at least one type of alkyl amine. The solution can also contain hydrazine and/or ammonia. Subsequently, the M₁₅M₂₃O₇ nanoparticles, the catalytic metal compound, and the alkyl amine can be mixed in a container, preferably a closed glass container, with a magnetic stirring rod. Alternatively, the mixture can be mixed by shaking the container with a machine or by hand. The M₁₅M₂₃O₇ nanoparticles, the catalytic metal compound, and the alkyl amine are mixed until the reaction is substantially complete, which maybe indicated by an exothermic reaction (e.g., heat release) and/or by a color change of the mixture. After the reaction of the M₁₅M₂₃O₇ nanoparticles, the catalytic metal compound, and the alkyl amine is complete, the mixture is allowed to air dry. Subsequently, the mixture is dried under a vacuum (about 5x10⁻² torr) for less than 12 hours.

M, M₁, M₂, M₅Cl₄, the catalytic metal compound, and the alkyl amines correspond to the descriptions provided above and will not be described here in any more detail.

M₁₅M₂₃O₇N₅[M₅Cl₄] Nanoparticles

M₁₅M₂₃O₇N₅[M₅Cl₄] nanoparticles include M₁₅M₂₃O₇N₅ nanoparticles (as described above in reference to M₁₅h₁M₂₃O₇ nanoparticles) having one or more catalytic metal compounds (M₅Cl₄) disposed thereon and/or incorporated therein. As described above, the M₅Cl₄ can be a metal such as, but not limited to, Pd, Ag, Rh, Pt, Co, Cu, or Fe.

Embodiments of the M₁₅M₂₃O₇N₅[M₅Cl₄] nanoparticles may have the characteristic that they are able to absorb radiation (e.g., light) in the range of about 350 nm to 2000 nm, about 500 nm to 2000 nm, about 540 nm to 2000 nm, about 450 nm to 800 nm, about 540 nm to 800 nm, about 500 nm to 800 nm, and about 540 nm to 560 nm. Preferably, the M₁₅M₂₃O₇N₅[M₅Cl₄] nanoparticles may absorb radiation at about 550 nm, the peak of the solar spectrum.

Methods of Making M₁₅M₂₃O₇N₅[M₅Cl₄] Nanoparticles

Another embodiment of the present disclosure includes treatments with TiO₂ nanocolloids having an anatase crystal structure with a metal hydrate compound (e.g., metal halide hexahydrate compounds) and directly transforming the crystal structure of the TiO₂ nanocolloids from the anatase crystal structure to the rutile crystal structure via a laser-induced transformation (e.g., greater than about 120-150 mW). Additional details regarding the TiO₂ nanocolloid crystal phase transformation as well as the laser-induced transformation are described below and in Example 3.

In general, the TiO₂ nanocolloids having an anatase crystal structure are mixed with a metal hydrate compound (e.g., a metal hexahydrate compound) at a temperature of less than...
The TiO₂ nanocolloids are initially anatase TiO₂ nanoparticle crystallites. The TiO₂ nanocolloids are synthesized using the sol-gel technique to form exclusively the anatase structure. The resulting liquidous form of the nanocolloid solution is treated with a metal hexahydrate (e.g., cobalt hexahydrate or nickel hexahydrate), for example. The TiO₂ nanocolloids can have a width (e.g., the longest dimension of a non-spherical nanoparticle or the diameter of a substantially spherical nanoparticle) of about 6 to 10 nm, and can be agglomerated into larger particles.

In an embodiment for direct transformation from anatase to rutile, the metal hexahydrate compound can include, but is not limited to, metal hexahydrate compounds and other metal hydride compounds where the metal has a lower secondary hydroxide coordination (e.g., magnetic transition metal hydride compounds, where the coordination of hydroxide depends upon the magnetic transition metal). The metal hexahydrate compound can include, but is not limited to, magnetic transition metal hexahydrates. The concentration of the metal hydride compound that is mixed with the TiO₂ nanocolloids is about 3 to 45 mol %.

In an embodiment for transformation from anatase to rutile via laser-induced transformation, the metal hexahydrate compound can include, but is not limited to, metal nitride hydride compounds and other metal hydride compounds where the metal has a lower secondary hydroxide coordination (e.g., magnetic transition metal hydride compounds, where the coordination of hydroxide depends upon the magnetic transition metal). The metal hexahydrate compound can include, but is not limited to, magnetic transition metal hexahydrates. The concentration of the metal hydride compound that is mixed with the TiO₂ nanocolloids is about 3 to 40 mol %.

In an embodiment for transformation from anatase to rutile via laser-induced transformation, the metal hexahydrate compound can include, but is not limited to, metal nitride hydride compounds and other metal hydride compounds where the metal has a lower secondary hydroxide coordination (e.g., magnetic transition metal hydride compounds, where the coordination of hydroxide depends upon the magnetic transition metal). The metal hexahydrate compound can include, but is not limited to, magnetic transition metal hexahydrates. The concentration of the metal hydride compound that is mixed with the TiO₂ nanocolloids is about 3 to 45 mol %.

As mentioned above, embodiments of the method include mixing the TiO₂ nanocolloid with a metal hexahydrate compound at a temperature of less than about 500°C, less than about 550°C, less than about 600°C, less than about 75°C, less than about 40°C, and less than about 30°C. In an embodiment, the temperature is about 20 to 30°C or about 25°C.

Embodyments of the method include transforming from the anatase crystal structure to the rutile crystal structure in less than 60 minutes, in less than 50 minutes, in less than 40 minutes, in less than 30 minutes, in less than 20 minutes, in less than 10 minutes, in less than 5 minutes, and in less than 3 minutes. In an embodiment, the transformation from the anatase crystal structure to the rutile crystal structure occurs in less than 5 minutes. It should be noted that the transformation from the anatase crystal structure to the rutile crystal structure occurs at the temperatures noted above.

Example 3

In general, the TiO₂-N₂ nanocolloids having an anatase crystal structure are mixed with a metal hydride compound at a temperature of less than 600°C (e.g., room temperature). The crystal structure transforms via laser-induced transformation from anatase to rutile in less than 60 minutes (e.g., 5 minutes) at a temperature of less than 600°C (e.g., room temperature) upon exposure to the radiation energy (e.g., a laser light energy). Embodiments of the method produce a TiO₂-N₂ nanocolloid and/or a TiO₂-N₂ nanocolloid/metal complex having a rutile crystal structure. In another embodiment, the metal replaces a portion of the Ti in the complex.

The TiO₂-N₂ nanocolloids can be formed using methods as described herein. The TiO₂-N₂ nanocolloids can include anatase TiO₂-N₂ nanoparticle crystallites. The TiO₂-N₂ nanocolloids can be in the form of a slurry formed via the amination of a sol-gel generated TiO₂ liquidous solution. The TiO₂ solution that is initially slightly opaque is transformed to an off-white, nearly opaque viscous fluid, which can be condensed into a gel; when dried in vacuum, it produces yellow crystallites. The TiO₂-N₂ nanocolloids can have a width (e.g., the longest dimension of a non-spherical nanoparticle or the diameter of a substantially spherical nanoparticle) of about 6 to 10 nm, which can be agglomerated to form larger structures.

The metal hydride compound can include, but is not limited to, transition metal hydrides and magnetic transition metal hydrides. In addition, the metal hydride compound can include, but is not limited to, metal hexahydrate compounds and other metal hydride compounds where the metal has a lower secondary hydroxide coordination (e.g., transition metal hydride compounds and magnetic transition metal hydride compounds, where the coordination of hydroxide depends upon the magnetic transition metal). The metal hexahydrate compound can include, but is not limited to, magnetic transition metal hexahydrates. The concentration of the metal hydride compound that is mixed with the TiO₂-N₂ nanocolloids is about 3 to 40 mole %.

In an embodiment for transformation from anatase to rutile via laser-induced transformation, the metal hexahy-
A reaction is found to take place readily between the nanocolloids with a metal hexahydrate compound and treat­
ing with a laser (e.g., at greater than about 120-150 mW) at temperatures as described in regard to the TiO₂ nanocolloid methods. In an embodiment, the temperature is about 20 to 30° C or about 25° C.

Embodiments of the method include irradiating the mixture of TiO₂₅Nₓ nanocolloids and the metal hexahydrate compound. The irradiation source can include, but is not limited to, a laser source. In an embodiment, the laser source can include, but is not limited to, an argon ion, a krypton ion, or a pulsed nitrogen laser source.

EXAMPLE 1

The following is a non-limiting illustrative example of an embodiment of the present disclosure. This example is not intended to limit the scope of any embodiment of the present disclosure, but rather is intended to provide specific experimental conditions and results. Therefore, one skilled in the art would understand that many experimental conditions can be modified, but it is intended that these modifications are within the scope of the embodiments of the present disclosure.

This example discusses the formation of TiO₂₅Nₓ nanoparticles on the order of seconds at room temperature employing the direct nitridation of TiO₂ nanostructures using alkyl ammonium compounds. Photocatalytically active TiO₂₅Nₓ particles were produced, which absorb well into the visible region (e.g., from about 350 nm to 2000 nm). The TiO₂₅Nₓ particles are (i) stable, (ii) inexpensive, (iii) have a conduction band minimum that is higher than the H₂/H₂O couple (described above), and (iv) can absorb most of the photons of the solar spectrum.

TiO₂ nanoparticles prepared by the controlled hydrolysis of titanium (IV) tetraisopropoxide in water under deaerated conditions can vary in size between 3 and 11 nm and forms a nearly transparent colloidal solution, which is stable for extended periods under refrigeration. Extended exposure to air at room temperature or controlled heating at 50° C. produces a mild agglomeration of the TiO₂ nanoparticles and results in the formation of a virtually opaque gel. Both the initial TiO₂ nanoparticle colloidal solution and the agglomerated gel solution are treated with an excess of triethylamine. The mixture is mixed with a Teflon®-coated magnetic stirrer (or by shaking) in a small closed glass container. A reaction is found to take place readily between the TiO₂ nanoparticle colloidal solution and the triethylamine, which appears to be complete within several seconds following heat release and the formation of a yellowish, partially opaque, mixture. Upon drying and exposure to a vacuum of 5x10⁻⁵ Torr for several hours, the treated, initially transparent, nanoparticle solution forms deep yellow crystallites whose transmission electron micrograph (TEM), high resolution (HR) TEM, and electron diffraction patterns are illustrated in FIGS. 1A and 1B. The treated, partially agglomerated, nanoparticle gel is found to form orange to orange-red crystallites. XRD and HR TEMs demonstrate that both the treated nanoparticle structures correspond dominantly to the anatase crystalline form of TiO₂-Nₓ, as do the original TiO₂ nanoparticle crystallites.

FIG. 2 compares (a) the optical reflectance spectrum for Degussa P25™ TiO₂ (reported at an average size of 30 nm), onsetting sharply at about 380 nm; (b) the reflectance spectrum for TiO₂₅Nₓ nanoparticles (3-11 nm), rising sharply at 450 nm; and (c) the corresponding spectrum for TiO₂₅Nₓ partially agglomerated nanoparticles, rising sharply at 550 nm.

In addition, PdCl₂ was introduced into another nitriding amine-TiO₂ mixture. The corresponding transmission electron micrograph and photoelectron spectra obtained for TiO₂₅Nₓ nanoparticles (3-11 nm) with palladium incorporation (about 1 µg added to the nitriding solution), demonstrated not only the effects of an increased nitrogen uptake but also the impregnation of the TiO₂₅Nₓ structure with reduced Pd nanostructures (TiO₂₅Nₓ[Pd]). Furthermore, it was observed that the TiO₂₅Nₓ anatase crystal structure was also converted to alternate crystal phase forms (possibly the octahedrite form) for some of the TiO₂₅Nₓ nanoparticles. The TiO₂₅Nₓ[Pd] agglomerated nanoparticles, which are brown-black in color, absorb radiation at wavelengths in the range of about 450 nm to 2000 nm.

In contrast to the nanoparticle activity, no measurable reaction or heat release is observed as either distinct rutile or anatase TiO₂ micropowders are treated directly with an excess of triethylamine. The treatment of Degussa P25™ “nanopowders” (mean distribution of about 30 nm) results in a much slower reactive process, over several hours, which appears to decant the smaller nanoparticles from the material. The treatment forms a pale brown crystalline form, which yields a complex reflectance spectrum. The TiO₂ nanoparticle solutions also interact strongly with hydrazine and to a lesser extent with an ammonium hydroxide (NH₄OH) solution. However, the reaction with triethylamine is found to be facile at room temperature, leading to nitrogen incorporation into the TiO₂ lattice to form TiO₂₅Nₓ nanoparticles when the direct nitridation process is carried out at a nanometer scale.

The infrared spectra depicted in FIG. 3 demonstrate another aspect of the nitridation process. Specifically, there is no evidence for hydrocarbon incorporation in the final doped TiO₂ product. The IR spectrum shown in FIG. 3(a) corresponds to that for the trialkylamine, demonstrating, among other features, the clear alkyl C—H stretch region. In contrast, the IR spectrum shown in FIG. 3(b), corresponding to the yellow TiO₂₅Nₓ nanocrystallites (yielding a reflectance spectrum of about 450 nm) pressed into a KBr pellet, shows virtually no infrared spectra especially in the C—H stretch region. This indicates virtually no residual organic incorporation after the air and vacuum drying processes have been performed on the nitrided TiO₂ nanoparticles. This observation is consistent both with photoelectron (XPS) and X-ray diffraction (XRD) studies.

XPS studies detect the presence of nitrogen not only at the surface, but also incorporated into the TiO₂₅Nₓ nanoparticle
agglomerates over a range from about 2.5 to 5.1 atomic % and increasing from about 7.5 to 17.1 atomic % for the Pd treated samples. The XPS spectra for TiO₂ and TiO₂₋ₓNₓ are compared in FIG. 4. The nitrogen concentrations indicated above should be compared to less than 1 atomic % for a virgin TiO₂ powder. The XRD data taken for TiO₂ (FIG. 5A) and the nitried partially agglomerated TiO₂ gel solution (FIG. 5B) show the effects of a clear expansion of the "a" lattice parameter, due presumably to nitrogen incorporation. XRD is a sensitive tool for determining whether the nitrogen dopants are actually incorporated on interstitial lattice sites of the TiO₂ particles or are merely adsorbed at the surface. Nitrogen doping was found to lead to a measurable increase of the interplanar spacings in the agglomerated TiO₂ particles and peak broadening, which can be attributed to the strain fields of interstitially dissolved nitrogen atoms and also the breaking at the TiO₂ lattice structure. The analysis of the XRD patterns demonstrates the presence of a dominant anatase phase in both the untreated TiO₂ nanoparticles and the doped samples (Table 1 below) for either the nitried TiO₂ nanoparticles (3-11 nm) or partially agglomerated TiO₂ nanoparticle samples. In this case no evidence for any degree of conversion from the anatase to the rutile structure was found.

TABLE 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>a(Å)</th>
<th>c(Å)</th>
<th>b(Å) standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Rutile</td>
<td>4.5986</td>
<td>2.9694</td>
<td>0.006</td>
</tr>
<tr>
<td>Processed</td>
<td>Anatase</td>
<td>3.7862</td>
<td>9.5070</td>
<td>0.0011</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Anatase</td>
<td>3.7942</td>
<td>9.4676</td>
<td>0.007</td>
</tr>
<tr>
<td>Orange TiC > 2</td>
<td>Anatase</td>
<td>3.7942</td>
<td>9.4676</td>
<td>0.007</td>
</tr>
</tbody>
</table>

However, the XRD pattern, observed for the nitried TiO₂ nanoparticles (3-11 nm) treated with palladium is broad and complex and demonstrates not only the formation of the Pd crystallites but also an apparent conversion from the anatase to rutile structure. The TEM micrographs of FIGS. 6A and 6B demonstrate both the impregnation of the TiO₂₋ₓNₓ structure with smaller "reduced" palladium nanoparticles, as well as the formation of a significant additional aluminum structure. The Pd treated samples appear black in color, indicating that they absorb well into the near infrared region.

Photocatalytic activity was evaluated by measuring the decomposition of methylene blue at 390 and 540 nm, respectively, using a Clark MXT™ 2001 femtosecond laser producing a 1 kHz pulse train of 120 femtosecond pulses. The laser output was used to pump either an optical parametric amplifier to obtain tunable wavelengths in the visible spectrum including 540 nm or a second harmonic generation crystal to produce 390 nm.

FIG. 7A illustrates the photodegradation observed at 390 nm for methylene blue in water at pH 7. The data for the nitried TiO₂ nanoparticles, as well as the palladium treated TiO₂ nanoparticles referred to above, are consistent with a notably enhanced activity for the TiO₂₋ₓNₓ nanoparticle crystallites at 390 nm. FIG. 7B illustrates the photodegradation observed at 540 nm in which the partially agglomerated nitried TiO₂₋ₓNₓ and palladium treated TiO₂ nanoparticles still display a notable activity, whereas the activity for TiO₂ nanoparticles is considerably muted. In contrast, at wavelengths below 350 nm, the activity of both the TiO₂ nanoparticles and nitried TiO₂ nanoparticles is comparable. Thus, nitried TiO₂₋ₓNₓ nanoparticles, which can be generated in several seconds at room temperature, are catalytically active at considerably longer wavelengths than TiO₂ nanoparticles.

These results demonstrate that by forming and adjusting an initial TiO₂ nanoparticle size distribution and mode of nanoparticle treatment, it is possible to tune and extend the absorption of a doped TiO₂₋ₓNₓ sample well into the visible region. Further, these results indicate that an important modification of a TiO₂ photocatalyst can be made considerably simpler and more efficient by extension to the nanometer regime. The current process can produce submicrometer agglomerates of a desired visible light-absorbing TiO₂₋ₓNₓ nanoparticle via a room temperature procedure, which otherwise is highly inefficient, if not inoperative, at the micron scale.

EXAMPLE 2

The following is a non-limiting illustrative example of an embodiment of the present disclosure. This example is not intended to limit the scope of any embodiment of the present disclosure, but rather is intended to provide specific experimental conditions and results. Therefore, one skilled in the art would understand that many experimental conditions can be modified, but it is intended that these modifications are within the scope of the embodiments of the present disclosure.

This example discusses the formation of ZrO₂₋ₓNₓ nanoparticles at room temperature employing the direct nitridation of ZrO₂ nanostructures using alkyl ammonium compounds. An excess volume of triethyl amine was added to a powder of zirconium dioxide (ZrO₂) nanoparticles, and this mixture was subsequently treated with HClO₂. The mixture was mixed with a Teflon-coated magnetic stirrer (or shaken) in a small closed glass container. A reaction was found to take place readily between the ZrO₂ powder/nanoparticles and the triethylamine and appears to quickly complete following heat release and the formation of a yellowish, partially opaque, mixture. Upon drying and exposure to a vacuum of 5x10⁻² Torr for several hours, the treated, initially white, colloidal, nanoparticle solution forms pale yellow crystallites. The change in color appears to indicate that nitrogen incorporation into the ZrO₂ powder has occurred to form ZrO₂₋ₓNₓ nanostructures.

EXAMPLE 3

The following is a non-limiting illustrative example of an embodiment of the present disclosure. This example is not intended to limit the scope of any embodiment of the present disclosure, but rather is intended to provide specific experimental conditions and results. Therefore, one skilled in the art would understand that many experimental conditions can be modified, but it is intended that these modifications are within the scope of the embodiments of the present disclosure.

The TiO₂ nanoparticle crystallites and the TiO₂₋ₓNₓ nanoparticle crystallites are formed in a manner as described above. Each of the TiO₂ nanoparticle crystallites and the TiO₂₋ₓNₓ nanoparticle crystallites have been treated with Co²⁺ and Ni²⁺ hexadecylammonium. In particular, the Co hexadecylammonium include cobalt chloride hexadecylammonium (also referred to as CoCl₃), and cobalt nitrate hexadecylammonium (also referred to as Co(NO₃)₂), and the Ni hexadecylammonium is nickel chloride hexadecylammonium (also referred to as NiCl₂). In general, the TiO₂ nanoparticle crystallites are mixed with the hexadecylammonium at room temperature (about 25°C.).
The TiO₂ nanoparticle crystallites are originally in the anatase form, but are converted upon interaction with the hexahydrate to the rutile form in less than about five minutes while still at about room temperature. This conversion from anatase to rutile form is unexpected because such a stoichiometric conversion typically occurs at temperatures of the order of 850°C, after 12 hours.

In general, the TiO₂-Nₓ nanocolloids are exclusively of the anatase crystal structure, as identified by the three Raman lines appearing near 514.5 cm⁻¹, 515 cm⁻¹, and 635 cm⁻¹, as shown in FIG. 8A. The Raman spectrum for the triethylamine-treated TiO₂ nanocolloid is shown in FIG. 8B. After nitridation, the nanocolloid remained anatase, but an additional feature appears near 550 cm⁻¹. This feature has been attributed to the presence of the non-stoichiometric titanium oxynitride. A background luminescence is also present in the nitridized sample and thus it is also included in the fit, as shown in FIG. 8B.

The Raman spectra of the CoCl₂ treated TiO₂ nanocolloid, for various initial Co concentrations, are shown in FIG. 9A, and the Raman spectra for Co(NO₃)₂-treated TiO₂ are shown in FIG. 9B. Note that for the CoCl₂ treated samples, the Raman signal intensity drops as a function of increasing Co content. In the case of Co(NO₃)₂ treated samples, however, the opposite is true, and the Raman signal strength, which is laser-induced, increases with increasing Co content.

Similar results can also be seen in the case of CoCl₂ doping of the nitrided TiO₂ nanocolloid, TiO₂-Nₓ, as shown in FIG. 10. The Raman signal strength in this case decreases with decreasing Co concentration, which is similar to the results noted for Co(NO₃)₂ treated TiO₂, but it is opposite to the behavior of the CoCl₂ treated TiO₂ nanocolloid.

Another interesting result is that although the initial TiO₂ and TiO₂-Nₓ nanocolloids are exclusively of the anatase crystal structure, (shown in FIGS. 8A and 8B), the Co doped material has transformed almost completely, exhibiting the more stable rutile structure (vibrations near 235 cm⁻¹, 440 cm⁻¹, and 605 cm⁻¹) depicted in black in FIG. 11. In this figure, the initial TiO₂-Nₓ nanocolloid structure, which is anatase, is plotted along with the Raman spectrum.

It should be noted that this structural transformation is not unique to doping with Co. In fact, a similar structural change has also been noted in Ni doped (NiCl₂) TiO₂ nanocolloids, as demonstrated in FIG. 12. In this case, the crystal structure, as determined from the Raman spectrum, also corresponds at least in part to the rutile phase, although additional phase transformations are indicated.

In addition to the characteristic rutile Raman lines evident in the Co-TiO₂, there are several more Raman lines that are not characteristic of the rutile or the anatase phase of TiO₂. These can be seen in FIGS. 8A, 8B, 9A, and 9B and in FIG. 13, which is the Raman spectrum of a TiO₂-Co(NO₃)₂ nanocolloid. In this case, the lines at 388 cm⁻¹ and 690 cm⁻¹ do not correspond to a structural phase of TiO₂. However, it has been reported previously that the vibrations of spinel (Co₂O₃), with which are associated it’s tetrahedral Co²⁺ sites, result in a 383 cm⁻¹ line, while the Al₃ phonon mode of spinel has been reported at 691 cm⁻¹. It is thus suggested that these phonon modes result from CoO sites in the TiO₂ lattice that are similar to those sites in Co₂O₃, most likely formed during the solution and laser treatments of the TiO₂ and TiO₂-Nₓ nanocolloids. The vibrations at 388 cm⁻¹ and 690 cm⁻¹ have been assigned to a cobalt oxide site similar to that in Co₂O₃.

It should be emphasized that the above-described embodiments and principles of the disclosure, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.

The invention claimed is:

1. A method of transforming from one crystal structure to another crystal structure, comprising:
 - providing a TiO₂ nanocolloid that has an anatase crystal structure;
 - mixing the TiO₂ nanocolloid with a metal hexahydrate compound at a temperature of less than about 600°C, wherein the metal hexahydrate compound is selected from a group consisting of: a cobalt chloride hexahydrate compound, a cobalt nitrate hexahydrate compound, and a nickel chloride hexahydrate compound; and
 - transforming the anatase crystal structure to a rutile crystal structure in less than 60 minutes and at a temperature of less than about 600°C.

2. A method of transforming from one crystal structure to another crystal structure, comprising:
 - providing a TiO₂ nanocolloid that has an anatase crystal structure;
 - mixing the TiO₂ nanocolloid with a metal hydrate compound at a temperature of about 20 to 30°C; and
 - transforming the anatase crystal structure to a rutile crystal structure in less than 5 minutes and at a temperature of about 20 to 30°C.

3. The method of claim 2, wherein the metal hydrate compound comprises a transition metal hydrate compound.

4. The method of claim 2, wherein the metal hydrate compound comprises a magnetic transition metal hydrate compound.

5. The method of claim 2, wherein the metal hydrate compound comprises a cobalt hexahydrate compound.
6. The method of claim 5, wherein the cobalt hexahydrate compound is a cobalt chloride hexahydrate compound.

7. The method of claim 2, wherein the metal hydrate compound comprises a nickel hexahydrate compound.

8. The method of claim 7, wherein the nickel hexahydrate compound comprises a nickel chloride hexahydrate compound.

9. The method of claim 2, wherein transforming occurs at about 25°C.

10. The method of claim 2, further comprising forming a TiO$_2$ nanocolloid/metal complex, wherein the TiO$_2$ nanocolloid/metal complex is a TiO$_2$ nanocolloid/Co complex, wherein Co replaces at least one Ti in the rutile crystal structure.

11. The method of claim 2, wherein the metal hydrate compound comprises a transition metal chloride hexahydrate compound.

12. A method of transforming from one crystal structure to another crystal structure, comprising:

- providing a TiO$_{2-x}$N$_x$ nanocolloid that has an anatase crystal structure, wherein x is about 0.005 to 0.25;
- mixing the TiO$_{2-x}$N$_x$ nanocolloid with a metal hexahydrate compound at a temperature of less than about 600°C, wherein the metal hexahydrate compound is selected from a group consisting of: a cobalt chloride hexahydrate compound, a cobalt nitrate hexahydrate compound, and a nickel chloride hexahydrate compound;
- irradiating the interaction of the mixture of the TiO$_{2-x}$N$_x$ nanocolloid and the metal hexahydrate compound with a laser energy of greater than 120 mW; and
- transforming the anatase crystal structure to a rutile crystal structure.

13. A method of transforming from one crystal structure to another crystal structure, comprising:

- providing a TiO$_{2-x}$N$_x$ nanocolloid that has an anatase crystal structure, wherein x is about 0.005 to 0.25;
- mixing the TiO$_{2-x}$N$_x$ nanocolloid with a metal hydrate compound at a temperature of about 20 to 50°C; and
- irradiating the interaction of the mixture of TiO$_{2-x}$N$_x$ nanocolloid and the metal hydrate compound with a laser energy of greater than 120 mW; and
- transforming the anatase crystal structure to a rutile crystal structure.

14. The method of claim 13, wherein the metal hydrate compound comprises a transition metal hydrate compound.

15. The method of claim 14, wherein the metal hydrate compound is selected from a transition metal chloride hydrate compound and a transition metal nitrate hydrate compound.

16. The method of claim 13, wherein the metal hydrate compound comprises a magnetic transition metal hydrate compound.

17. The method of claim 16, wherein the metal hydrate compound is selected from a magnetic transition metal chloride hydrate compound and a magnetic transition metal nitrate hydrate compound.

18. The method of claim 13, wherein the metal hydrate compound comprises a cobalt hexahydrate compound.

19. The method of claim 18, wherein the cobalt hexahydrate compound is selected from cobalt chloride hexahydrate compound and cobalt nitrate hexahydrate compound.

20. The method of claim 13, wherein transforming occurs at about 25°C.

* * * * *