A MODEL CHECKER FOR JAVA BYTECODE, WITH NOVEL APPLICATIONS

A Dissertation
Presented to
The Academic Faculty

By

Burak Sahin

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in the
School of Computer Science

Georgia Institute of Technology

August 2017

Copyright © Burak Sahin 2017
A MODEL CHECKER FOR JAVA BYTECODE, WITH NOVEL APPLICATIONS

Approved by:

Dr. William Harris, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Alessandro Orso
School of Computer Science
Georgia Institute of Technology

Dr. Hadi Esmaeilzadeh
School of Computer Science
Georgia Institute of Technology

Date Approved: July 27, 2017
Yesterday I was clever, so I wanted to change the world.

Today I am wise, so I am changing myself.

Hz. Mevlana Celaleddin Rumi
To my beloved parents,

Fatma & Hulusi
I have been very fortunate to work with Professor William R. Harris as his research assistant. It has been a great pleasure and honor to work with him and being in his team. Words falling behind to describe his support, guidance and humane attitude towards his students. I would like to thank him for his support and advise. I admire his personality and advising approach, and I wish to be a mentor like him.

I wouldn’t be here if my mother’s and my father’s indescribable support and their prays for me. I have always felt their support in the predicament times even they are thousands of miles away. I am very lucky to be their offspring and raised by them. I would like to express my endless gratitude to them and my brothers for their support and love.

Finally, I also would like to thank Professor Alex Orso and Professor Hadi Esmaeilzadeh for serving in my Master of Science Dissertation Committee.
TABLE OF CONTENTS

Acknowledgments .. vi

List of Tables .. viii

List of Figures ... ix

Chapter 1: Introduction and Background 1

1.1 Program Analysis ... 1

1.1.1 Dynamic program analysis 1

1.1.2 Static program analysis 2

Chapter 2: Overview ... 5

2.1 Overview .. 5

2.2 Foundations .. 9

2.2.1 Interpolants ... 9

2.2.2 Path-invariant tree based lazily symbolic model checking 10

2.2.3 Program lifting into the logical space 10

Chapter 3: SAVERIA ... 11

3.1 Target language ... 11

3.1.1 Program structure .. 11
3.1.2 Program semantics 13

3.2 Formal logic .. 14
 3.2.1 Symbolic Representation of Program Semantics 16
 3.2.2 Interpolation 17

3.3 Program Modelling 20
 3.3.1 Program summaries 21
 3.3.2 Program Verification Algorithm 24

Chapter 4: Results 28
 4.1 Test Environment 28
 4.2 Evaluation ... 28

Chapter 5: Conclusion 30

Chapter 6: Future Work 31

References .. 33
LIST OF TABLES

4.1 The benchmark performance for CAMPY 29
LIST OF FIGURES

1. **Saveria** .. 3
2. A simple Lock example ... 6
3. Unwinding *CFG* into *Interpolant Tree* 8
SUMMARY

We believe that we can extend program analysis tool to improve software security via verifying the given safety properties. The work done for this thesis is at the intersection of programming languages and security which is called software security.

In this work, we have designed and developed an automated static program analysis tool which can check whether the given program satisfies the required safety properties for the Java bytecode. Using the combination of model checker and symbolic execution with lazy abstraction, we have been successful to validate whether a program satisfies the given properties or not.

Our focus is to automatically prove or disprove whether a given JVM bytecode program satisfies the required properties. We have developed a property verification tool for Java applications which is a base framework for our future studies.
1.1 Program Analysis

Software behaviour can be automatically analyzed and verified with respect to the given properties like safety, correctness etc. via program analysis [1]. Through program analysis, it is possible to automate software testing. Furthermore, program analysis have many applications in security such as bug finding, vulnerability detection, malware analysis and so forth.

In this section, the different approaches and techniques are described to accomplish the aforementioned purposes. Several techniques have been proposed and developed for property verification. The rest of this chapter will introduce the various techniques used to perform program analyses with dynamic analysis (program execution in environment) or static analysis (source code or bytecode).

1.1.1 Dynamic program analysis

Dynamic program analysis is a popular technique to analyze properties of programs performed at run-time. Dynamic program analysis offers many advantages like automated and continuous testing and reporting which reduces the cost of the test and maintenance. Dynamic program analysis provides many advantages including, but not limited to the list below:

- It can be performed on the applications which you cannot access either the source code or the bytecode. For example, a remote web services or web applications can be tested via dynamic program analysis.

- It can detect the vulnerabilities caused by environment or configuration other than the
application itself.

- It does not depend on the application environment such as programming language unlike static program analysis. For example, static analysis tool mostly targets a specific programming language such as Java or C/C++ source code and sometimes bytecode. However, applications written in different languages can be tested with same dynamic program analysis tool. For example, a web service provides same functionality written in different languages can be analyzed with one dynamic analysis tool.

Since analysis requires program execution on a real or virtual processor, effectiveness and coverage of dynamic program analysis depends on the test cases and inputs provided. The disadvantages of the dynamic program analysis are including, but not limited to the list below.

- Dynamic program analysis cannot guarantee the full coverage of the software (limited to inputs or test-cases provided); therefore it cannot address everything lacks in the aspect of security.

- The common perception about dynamic analysis is it is usually applied at later phases of development life cycle than static code analysis. Thus, cost and time for fixing the vulnerability is more than in earlier phases.

1.1.2 Static program analysis

Unlike dynamic approach, static program analysis does not require executing the program. Static program analysis can perform analysis using something close to either source code or object code. Since our target programming language is Java, we have developed our tool to analyze the JVM bytecodes. The primary advantages of static program analysis is depicted below:
• Static program analysis can determine facts that hold over program states in all possible runs.

• Static program analysis can detect the unreachable code, unused variables, uncalled functions.

We have chosen to implement our tool using static analysis techniques because our aim is to verify the correctness of a given program for the corresponding formal specification. Fig. 1 shows that our static analysis tool – S\textsc{averia} – takes JVM bytecode and user specified safety property as inputs, and proves/disproves whether the bytecode satisfies the safety property with the help of theorem prover. Using combination of static analysis techniques listed below, we have been able to practically prove whether the program satisfies the formal specification. If the formal specification is not satisfiable by the program behaviour, we can disprove the correctness of the software by generating an input on which the program performs an error.

\textit{Model checking} is a technique to verify the correctness of systems with respect to the given model formula in temporal logic. Normally, model checkers are used for the finite-state systems because they exhaustively explore and check all the possible paths. This situation can cause bloating and prevents them from using in infinite-state systems.

\textit{Symbolic execution} is an approach to determine how the inputs affect the program execution behaviour. Symbolic execution treats inputs as symbolic values instead of assigning
actual values.

Lazy abstraction is a paradigm which enumerates the paths on demand. Instead of exhaustively search then refining abstract model, lazy abstraction proposes to refine the single abstract model if required [2].

Lazy symbolic model checking is a technique to apply model checking on infinite-state systems [3]. Symbolic model checker works on symbolic variables instead of explicit values [4].
CHAPTER 2
OVERVIEW

In this chapter, we describe a brief overview of our technical approach to design our static model checker for Java bytecode to verify given safety properties with safety invariants. By design principles, this model checker should be easily extensible to complexity verification and DoS attack vulnerability detection for library written in Java programming language. SAVERIA supports many programming languages features such as unbounded inputs, unbounded multi-dimensional arrays, library objects and inter-procedural calls (including recursions).

2.1 Overview

SAVERIA is a lazy interpolant-based infinite-state symbolic model checker for Java applications using counter-example model checker approach [2, 3]. To briefly present the algorithm, we walk through on a simple Java code fragment in Fig. 2a which has been inspired by the previous works on lazy abstraction paradigm [2, 3]. We can assume that upon entering the loop in the code fragment, the L is always free because if the L is acquired by some other process, acquireLock() function will wait till the L is freed. We want to demonstrate how SAVERIA can prove that the code fragment will always release the Lock – L – on leaving the loop in the code fragment in Fig. 2a when par1 > 0.

\[\{ \text{par1} > 0 \} \text{SAFELOCK} \{ L = 0 \} \]

(1)

Our safety property for SAVERIA to prove the correctness of the program is \(L = 0 \) where the precondition is \(\text{par1} > 0 \) in Eqn. 1. Fig. 2b is the corresponding control-flow graph (denoted CFG) of the source code in Fig. 2a. The vertices in the CFG represents the control
// SafeLock function takes
// two integers par1 and par2
while (par1 != 0) {
 acquireLock();
 temp++;
 if (par1 > 0)
 releaseLock();
 par1--;
 par2--;
}
(a) SafeLock example

Figure 2: A simple Lock example

locations in the source code. **SAVERIA** takes the **CFG** and unwinds it into the path-invariant trees as shown in Fig. 3. An path-invariant tree is formed by the paths of a program labeled with the path invariants to decide the path reachability [5]. Our path-invariant tree is rooted at error location, and each path in the tree is a path from the initial location to the error location. Each vertex labeled as **FALSE** by default except for the initial location which is labeled as **TRUE**. Upon reaching the entry point for the loop, **SAVERIA** weakens the path invariants for each control location and merges the labeled path into the path-invariant tree. Having a **FALSE** invariant for the error location means that the erroneous path is unreachable; hence, **SAVERIA** proves that the program satisfies the given safety property.

First, **SAVERIA** uses Soot [6] for control-flow construction and to lift the bytecode to a **Static Single Assignment** (SSA) intermediate representation. In SSA form, each variable assigned exactly once which makes easier to establish the logical equivalences during static program analysis. Then, **SAVERIA** takes the **CFG** and unwinds it into the path-invariant tree which contains the expanded single path traces.

ERR vertex represents the program state which is inconsistent with safety property. **SAVERIA** starts unwinding process with expanding the **ERR** vertex using breadth first search (BFS). **SAVERIA** maintains an expansion queue to store expanded vertices. Each created vertex is pushed into the expansion queue, and **SAVERIA** pops the first vertex in the expansion
queue to expand the path leading to it. Therefore, the first path explored is the shortest path to the \texttt{ERR} vertex – the path which skips the loop shown in Fig. 3a. To show that this particular path is not feasible, we have to prove that the \texttt{ERR} is unreachable via labeling as \texttt{FALSE} in this single execution path. To generate path \textit{invariants} for a given path, we have leveraged Interpolant Theorem Prover [7]. An \textit{interpolant} for a given path is a path \textit{invariant} for each control location starting with \texttt{TRUE} for initial location and \texttt{FALSE} for the \texttt{ERR} vertex. Therefore, having a \texttt{FALSE} \textit{invariant} for any control location in any single execution path means that the control location and the rest of the path is unreachable which implies the path is infeasible (see Defn. 1). Note the inconsistency between the assumption \texttt{par1} > 0 and the control location (line 4). To skip the body of for loop, the variable \texttt{par1} should be equal to 0. However, our assumption is \texttt{par1} is greater than 0. After generating \textit{interpolants}, \textsc{saveria} weakens the \textit{invariants} along the path and labels the \texttt{ERR} vertex as \texttt{FALSE} in Fig. 3a.

\textsc{saveria} resumes expansion at the \textit{vertex 1} (line 4). It is currently the only available condition location which has unexplored branch leading another execution path. The shortest path now executes the loop once, but skips releasing the lock (line 9) via jumping to the head of the if statement (line 8). Again, all the vertices are labeled with \texttt{FALSE} \textit{invariant} except for initial location for this single execution trace. To skip the body of if statement (line 9), the if condition should not hold. On this particular path, the if condition (line 8) does not hold which is quite opposite of our assumption. Since there is inconsistency between the assumption and the rest of the path after the control location at \textit{vertex 4} (line 8), the rest of the path is weakened with \texttt{FALSE} invariant. Upon refutation of the path (proving the \texttt{ERR} location is unreachable), this path is merged in to the path-invariant tree as shown in Fig. 3b. The \textit{vertices} 5 and the 1 corresponds to the same program control location (line 4). There are currently two vertices which have unexplored branches – 3 (end of if statement at line 8) and 5 (line 4). Since the \textit{vertex 3} has explored before the \textit{vertex 5}, the \textit{vertex 3} takes place before in the expansion queue than the \textit{vertex 5}. Therefore, \textsc{saveria} will continue to unwind
Figure 3: Unwinding CFG into Interpolant Tree

CFG with expanding the other branch leading to the vertex 3. This time, the expanded path will take the path releasing the lock (line 9). This makes $L = 0$ in the final program state. However, the final state for erroneous path is $L \neq 0$ in CFG (Fig. 2b). Once again, error path is infeasible. The path and the invariants along the path are showed in Fig. 3c.

At the final stage, the vertices 1 and 5 correspond to the same control location (line 4). In Fig. 3, the dashed line means that the path invariant at vertex 1 implies the path invariant at vertex 5. Using this implication relation, we can say that vertex 1 covers the vertex 5. As long as this implication relation holds, Saveria will not expand the other branches leading into the vertex 5. The vertices 4 and 7 also represent the same control location (line 8). Fig. 3c also shows that the path invariant at vertex 4 implies the path invariant at vertex 7. If this relation will not be broken in future, the vertex 7 will not be expanded into the other branches. While Saveria explores the vertices in the CFG, it puts the explored ones into the expansion queue. Saveria pops the next vertex, and continues to the expansion if and only if it has an unexplored branch and it has not covered by any other vertex. Finally, expansion queue is empty; in other words, there isn’t left any vertex which is not covered.
and doesn’t have unexplored branch. As a result, SAVERIA finds no path which leads to the error location. Fig. 3c contains the path-invariant tree which is the proof for the correctness of the program.

2.2 Foundations

SAVERIA depends on Craig interpolants to reason about the correctness of the program.

2.2.1 Interpolants

SAVERIA refines the path invariants using interpolants generated by an interpolating theorem prover upon refutation of the program paths [3, 8]. To understand our approach, first we will present how an interpolant works in First Order Logic and what it means in terms of verification.

Definition 1. For the given two well formed formulae φ_A and φ_B in some logic, if $\varphi_A \land \varphi_B$ is inconsistent, there is a reverse interpolant φ_I in the context with the following properties

- φ_I includes only the common non-logical symbols of both φ_A and φ_B
- $\varphi_A \models \varphi_I$
- $\varphi_B \models \neg \varphi_I$

Example 1. For all x, y and z, let $\varphi_A = x \leq y \land y < z$ and $\varphi_B = x - z - 5 > 0$. Then we have the following properties $\varphi_A \models x \leq z$ and $\varphi_B \models \neg (x \leq z)$. One interpolant for these two formulae is $\varphi_I = x \leq z$ where $\varphi_B \land \varphi_I$ is inconsistent.

The use of interpolants in program analysis relies on the inconsistency detection. Having a FALSE invariant for a single execution path in the CFG means that there are at least two formulae which are inconsistent with each other as shown in Ex. 1. In verification, this means the current execution trace is infeasible; therefore, the path does not satisfies the formal specification in the abstract model. SAVERIA proves or disproves the correctness of a system using interpolants described in the Defn. 1.
2.2.2 Path-invariant tree based lazily symbolic model checking

Our approach is to prove infeasibility of a path via refuting the path using interpolation based theorem prover [8] which generates an interpolant for each occurrence of a control location and for the error location. Refutation of a path happens upon generating FALSE invariant for any of the control location or for the error location. If there exists any FALSE invariant for any location along the path, the rest of the locations on the path also labeled as FALSE. Upon refutation, SAVERIA merges this trace into the traces tree. While merging each refuted path, the disjunction of the interpolants for the same control location is assigned as the invariant for the location. If there exists such a path which error location cannot be labeled with FALSE invariant, the path is feasible. Upon reaching a feasible path, SAVERIA decides the program satisfies the given properties if there exists such a single trace which error location cannot labeled with FALSE invariant.

The interpolants generated by the theorem prover for the corresponding control locations are used for the cover relation. The main benefit of the lazy abstraction paradigm applying on symbolic model checking is to enable model checking on infinite-state systems. Instead of unwinding each vertex, SAVERIA unwinds only the uncovered vertices in the path-invariant tree using lazy abstraction paradigm. In addition, lazy abstraction prevents SAVERIA from bloating and consuming more resource – memory and computation power.

2.2.3 Program lifting into the logical space

SAVERIA models program semantics as symbolic formulas – representing the instructions in the path as series of logical formulae. Therefore, SAVERIA can use theorem provers [8] to reason about the behavior of the path and prove the correctness of the program with respect to the given safety properties.
CHAPTER 3
SAVERIA

In this chapter, we introduce the technical details of SAVERIA. On the next sections, we present the target language in § 3.1 for SAVERIA and the formal logic basis § 3.2 for SAVERIA. Since CAMPY [9] runs SAVERIA, the target language and formal logic basis for SAVERIA is same in our previous published work CAMPY [9]. CAMPY uses the output of SAVERIA as its input. Hence, the sections § 3.1 and § 3.1.2, which are also defined for SAVERIA, are taken from our previously published work CAMPY [9].

3.1 Target language

In this section, we present the definition of the structure (§ 3.1.1) and semantics (§ 3.1.2) of the programs that SAVERIA takes as input.

3.1.1 Program structure

A program \mathcal{P} is a set of instructions Δ. Each instruction $\delta \in \Delta$ is a either

- Test statement which tests the program state and creates branches in the program flow
- Update statement which updates the program state
- Invoke statement which calls a procedure
- Return statement which returns from a call.

Let procnms be a space of procedure names; let Locs$_B$, Locs$_C$, and Locs$_R$ be disjoint sets of branch, call, and return control locations, and let the set of all control locations be denoted $\text{Locs} = \text{Locs}_B \cup \text{Locs}_C \cup \text{Locs}_R$, with a distinguished initial location l_i and final location l_f. Let $\text{proc} : \text{Locs} \rightarrow \text{procnms}$ map each control location to the procedure that contains
it, with \(\text{proc}(l_i) = \text{proc}(l_f) \). Let entry : procnms \(\rightarrow \) Locs map each procedure to its entry control location and exit : procnms \(\rightarrow \) Locs map each procedure to its exit control location. The space of all variables is denoted \(\text{Vars} \). The space of all instructions is denoted \(\Delta \). For each control location \(L \in \text{Locs} \) and sequence of locations \(s \in \text{Locs}^* \), \(s \) is an immediate suffix of \(L :: s \).

A program statement either tests and updates state, calls a procedure, or returns from a call. A pre-location, instruction, and branch-target-location is a branch statement; i.e., the space of branch statements is denoted \(\text{Brs} = \text{Locs}_B \times \Delta \times \text{Locs} \). For each branch statement \(b \in \text{Brs} \), the pre-location, instruction, and post-location of \(b \) are denoted \(\text{PreLoc}[b] \), \(\text{Instr}[b] \), and \(\text{BrTgt}[b] \), respectively.

A pre-location, call-target procedure name, and return-target control location are a call statement; i.e., the space of call statements is denoted \(\text{Calls} = \text{Locs}_C \times \text{procnms} \times \text{Locs} \). For each call statement \(c \in \text{Calls} \), the pre-location, call target, and return target of \(c \) are denoted \(\text{PreLoc}[c] \), \(\text{CallTgt}[c] \), and \(\text{RetTgt}[c] \), respectively. The call entry point of \(c \) is denoted \(\text{entry}(c) = \text{entry}(\text{CallTgt}[c]) \).

A return location represents a return statement; i.e., the space of return statements is denoted \(\text{Ret} = \text{Locs}_R \).

The space of all statements is denoted \(\text{Stmts} = \text{Brs} \cup \text{Calls} \cup \text{Ret} \). Each control location is the target of either potentially-many branch statement or exactly one call statement. For each call statement \(c \in \text{Calls} \) and return statement \(r \in \text{Ret} \) such that \(\text{CallTgt}[c] = \text{proc}(\text{PreLoc}[r]) \), \(r \) returns to \(c \). A program \(P \) is a set of statements in which for each branch location \(L \in \text{Locs}_B \) and location \(L' \in \text{Locs} \), there is at most one branch statement, denoted \(\text{BrAt}[P](L, L') \) with \(\text{PreLoc}[b] = L \) and \(\text{BrTgt}[b] = L' \). The language of programs is denoted \(\mathcal{L} \).
3.1.2 Program semantics

Visible execution state of a function call is denoted a store. A run of a program P is a sequence of stores that are valid along an interprocedural path of P. A nesting relation over indices models the matched calls and returns of along a control path [10]. For each $n \in \mathbb{N}$, let the space of positive integers less than n be denoted \mathbb{Z}_n.

Definition 2. For each $n \in \mathbb{N}$ and $\leadsto \subseteq \mathbb{Z}_n \times \mathbb{Z}_n$ such that for all indices $i_0, i'_0, i_1, i'_1 \in \mathbb{Z}_n$ with $i_0 \leadsto i'_0$ and $i_1 \leadsto i'_1$, either $i_0 < i_1 < i'_1 < i'_0$, $i_1 < i_0 < i'_0 < i'_1$, or $i_1 < i_0 < i'_0 < i'_1$, \leadsto is a nesting relation over n.

For each $n \in \mathbb{N}$, the nesting relations over \mathbb{Z}_n are denoted $\text{Nestings}[n]$. For each $i, j < n$ and nesting relation $\leadsto \in \text{Nestings}[n]$, we denote $(i, j) \in \leadsto$ alternatively as $i \leadsto j$.

A control path is a sequence of control locations visited by a sequence of branch statements, calls, and matching returns.

Definition 3. Let program $P \in \mathcal{L}$ and control locations $\mathcal{L} = [L_0, \ldots, L_{n-1}] \in \text{Locs}^*$ be such that the following conditions hold.

1. For each $0 \leq i < n$ such that $L_i \in \text{Locs}_B$, there is a branch statement $b \in P$ such that $\text{PreLoc}[b] = L_i$ and $\text{BrTgt}[b] = L_{i+1}$.

2. There is a nesting relation $\leadsto \in \text{Nestings}[n]$ such that the domain and range of \leadsto are exactly the indices of the call and successors of return locations in \mathcal{L}. For all $0 \leq i < j < n$ such that $i \leadsto j + 1$, there is some call statement $c \in P$ such that $L_{i+1} = \text{entry}(c)$ and $L_{j+1} = \text{RetTgt}[c]$, and some return statement $r \in P$ such that $L_j = \text{PreLoc}[r]$.

Then $[L_0, \ldots, L_{n-1}]$ is a path of P.

For each program $P \in \mathcal{L}$, the space of paths of P is denoted $\text{PATHS}[P]$, and the set of all paths is denoted Paths. For each path $\pi \in \text{Paths}$, we denote the locations and nesting relation of π as $\text{Locs}[\pi]$ and \leadsto_π, respectively.

Let the space of program values be the space of integers; i.e., the space of values is $\text{Values} = \mathbb{Z}$. SAVERIA can verify programs that operate on objects and arrays in addition
to integers. An evaluation of all variables in Vars is a store; i.e., the space of stores is $\text{Stores} = \text{Vars} \rightarrow \text{Values}$.

For each instruction $\delta \in \Delta$, there is a transition relation $\rho_\delta \subseteq \text{Stores} \times \text{Stores}$. For each branch statement $b \in \text{Brs}$, the transition relation of the instruction in b is denoted $\rho_b = \rho_{\text{Instr}[b]}$. The transition relation of an instruction need not be total: thus, branch statements can implement control branches using instructions that act as assume instructions. The transition relation that relates each store at a callsite to the resulting entry store in a callee is denoted $\rho_C \subseteq \text{Stores} \times \text{Stores}$. The transition relation that relates each calling store, exit store of a callee, and resulting return store in the caller is denoted $\rho_R \subseteq \text{Stores} \times \text{Stores} \times \text{Stores}$.

For each space X, sequence $s \in X^*$, and all $0 \leq i < |X|$, let the ith element in X be denoted $s[i] \in X$. Let the first and last elements of s in particular be denoted $\text{Head}[s] = s[0]$ and $\text{last}[s] = s[|s| - 1]$.

A run of a program P is a sequence of stores Σ and a path p of equal length, such that adjacent stores in Σ satisfy transition relations of statements of P at their corresponding locations in p.

Definition 4. Let $P \in \mathcal{L}$ be a program, let $\Sigma = \sigma_0, \ldots, \sigma_{n-1} \in \text{Stores}$ be a sequence of stores, and let $\pi \in \text{PATHS}[P]$ be such that $|\text{Locs}[\pi]| = n$, such that the following conditions hold:

1. For each $i < n - 1$, $(\sigma_i, \sigma_{i+1}) \in \rho_{\text{BrAt}[P](L_i, L_{i+1})}$.
2. For each $i < j < n - 1$ such that $i \rightsquigarrow j + 1$, $(\sigma_i, \sigma_{i+1}) \in \rho_C$, $(\sigma_i, \sigma_j, \sigma_{j+1}) \in \rho_R$.

Then Σ is a run of q in P.

For each path $\pi \in \text{Paths}$, the space of runs of π is denoted $\text{Runs}[\pi] \subseteq \text{Stores}^*$.

3.2 Formal logic

Our approach uses formal logic to model the semantics of programs and synthesize summaries to prove or disprove that a given program satisfies a safety formula. A theory is
a vocabulary of function symbols and a standard model. For each theory \mathcal{T} and space of logical variables X, let the spaces of \mathcal{T} terms and formulas over X be denoted $\text{Terms}[\mathcal{T}](X)$ and $\text{Forms}[\mathcal{T}](X)$, respectively. For each formula $\varphi \in \text{Forms}[\mathcal{T}](X)$, the set of variable symbols that occur in φ (i.e., the vocabulary of φ) is denoted $\text{Voc}(\varphi)$. Each term constructed by applying only function symbols in \mathcal{T} is a ground term of \mathcal{T}; i.e., the space of ground terms of \mathcal{T} is $\text{GTerms}[\mathcal{T}] = \text{Terms}[\mathcal{T}](\emptyset)$.

For all vectors of variables $X = [x_0, \ldots, x_n]$ and $Y = [y_0, \ldots, y_n]$, the formula constraining the equality of each element in X with its corresponding element in Y, i.e., the formula $\bigwedge_{0 \leq i \leq n} x_i = y_i$, is denoted $X = Y$. For each vector of terms $T_Y = [t_0, \ldots, t_n]$, the repeated replacement of variables $\varphi[...t_0/x_0,...t_{n-1}/x_{n-1}]$ is denoted $\varphi[X/T_Y]$. For each formula φ defined over free variables X, the substitution of Y in φ is denoted $\varphi[Y] \equiv \varphi[Y/X]$.

A domain is a finite set of values. For each theory \mathcal{T}, a model of \mathcal{T} is a domain D and a map from each k-ary function symbol in \mathcal{T} to a k-ary function over D. The standard model of a theory \mathcal{T} is a distinguished model of \mathcal{T}. The domain of the standard model of \mathcal{T} is denoted $\text{Dom}[\mathcal{T}]$.

For theories \mathcal{T}_0 and \mathcal{T}_1, \mathcal{T}_1 is an extension of \mathcal{T}_0 if the vocabulary of \mathcal{T}_0 is contained by the vocabulary of \mathcal{T}_1 and the standard model of \mathcal{T}_0 is the restriction of the standard model of \mathcal{T}_1 to the vocabulary of \mathcal{T}_0. For all theories \mathcal{T}_0 and \mathcal{T}_1 whose standard models are equal on all symbols in the common vocabulary of \mathcal{T}_0 and \mathcal{T}_1, the combination [11] of theories \mathcal{T}_0 and \mathcal{T}_1 is denoted $\mathcal{T}_0 \cup \mathcal{T}_1$. We only consider theories \mathcal{T} with standard model m that maps to domain D such that for each element $d \in D$, there is a ground term $\text{term}[d] \in \text{GTerms}[\mathcal{T}]$ such that $m(\text{term}[d]) = d$ (e.g., theories of arithmetic), along with their combinations with the theory of uninterpreted functions (EUFILA).

For each theory \mathcal{T}, formula $\varphi \in \text{Forms}[\mathcal{T}](X)$, and assignment m of X to the domain of \mathcal{T}, m satisfies φ if φ evaluates to TRUE under m combined with the standard model of \mathcal{T} (denoted $m \models_{\mathcal{T}} \varphi$). For all \mathcal{T} formulas $\varphi_0, \ldots, \varphi_n, \varphi \in \text{Forms}[\mathcal{T}]$, we denote that
ϕ₀, ..., ϕₙ entail ϕₙ as ϕ₀, ..., ϕₙ |=ₜ ϕ. A ℰ-formula ϕ is a theorem of ℰ if |=ₜ ϕ.

Although determining the satisfiability of formulas in theories required to model the semantics of practical languages, such as LIA, is NP-complete in general, solvers have been proposed that often efficiently determine the satisfiability of formulas that arise from practical verification problems [7]. Our approach assumes access to a decision procedure for EUFIA, named EUFIA SAT.

3.2.1 Symbolic Representation of Program Semantics

The semantics of ℒ can be represented symbolically using LIA formulas. In particular, each program store σ ∈ Stores corresponds to a LIA model over the vocabulary Vars, denoted mσ. For each space of indices I and index i ∈ I, the space of variables Varsᵢ denotes a distinct copy of the variables in Vars, as does Vars', which will typically be used to represent the post-state of a sequence of transitions. For theory ℰ, the space of program summaries is Summaries = Forms[ℰ](Vars, Vars').

A safety constraint S is an comparison relation over the final stores of Vars. For each instruction δ ∈ ∆, there is a formula ψ[i] ∈ Forms[LIA](Vars, Vars') such that for all stores σ, σ' ∈ Stores, (σ, σ') ∈ ρᵢ if and only if mσ, mσ' ⊢ ψ[i]. There is a formula ψᵣ ∈ Forms[LIA](Vars, Vars') such that for all stores σ, σ ∈ Stores, (σ, σ') ∈ ρᵣ if and only if mσ, mσ' ⊢ ψᵣ. There is a formula ψᵣ ∈ Forms[LIA](Vars₀, Vars₁, Vars₂) such that for all stores σ₀, σ₁, σ₂ ∈ Stores, (σ₀, σ₁, σ₂) ∈ ρᵣ if and only if mσ₀, mσ₁, mσ₂ ⊢ ψᵣ.

Each program P and logical formula S over the initial state of P and final state of all Vars define safety specification problem. The problem is to decide if over each run r of P, the initial state of P and the final states of Vars in r satisfy S. For theory ℰ, the space of safety constraints is denoted Constraints[ℰ] = Forms[ℰ](Vars).

Definition 5. For each extension ℰ of LIA, program P ∈ ℒ, safety constraint S ∈ Constraints[ℰ], and path π ∈ PATHS[P], if for each run r ∈ Runs[q], it holds that m_{Head[r]}(Stores) ⊢ m_{last[r]}(Vars) ⊢ S, then q satisfies S. For each path π ∈ PATHS[P]
it holds that \(\pi \) satisfies \(S \), then \(\mathcal{P} \) satisfies \(S \), denoted \(\mathcal{P} \vdash S \). The safety-satisfaction problem \((\mathcal{P}, S) \) is to determine if \(\mathcal{P} \vdash S \).

While we present our verifier \textsc{Saveria} for a simple language whose semantics can be modeled using only \textsc{lia}, practical languages typically provide features that can only be directly modeled using \textsc{lia} in combination with the theories of uninterpreted functions and the theory of arrays. The complete implementation of \textsc{Saveria} supports such language features (see §4).

3.2.2 Interpolation

Tree-interpolation problems formulate the problem of finding valid invariants for all runs of a particular program path that contains calls and returns [5]. The branching structure in the tree-interpolation problem models the dependency of the result of a function call on the effect of the path through the callee combined with the arguments provided to the callee by the caller.

Definition 6. For theory \(\mathcal{T} \), a \(\mathcal{T} \)-tree-interpolation problem is a triple \((N, E, C) \) in which:

- \(N \) is a set of nodes.
- \(E \subseteq N \times N \) is a set of edges such that the graph \(T = (N, E) \) is a tree with root \(r \in N \).
- \(C : N \rightarrow \text{Forms}[\mathcal{T}](X) \) assigns each node to a \(\mathcal{T} \) constraint.

For each tree-interpolation problem \(T = (N, E, C) \), an interpolant of \(T \) is an assignment \(I : N \rightarrow \text{Forms}[\mathcal{T}](X) \) from each node to a \(\mathcal{T} \) formula such that:

- The interpolant at the root \(r \in N \) of \(T \) entails \(\text{false} \). I.e., \(I(r) \models_\mathcal{T} \text{false} \).
- For each node \(n \in N \), the interpolants at the children of \(n \) and the constraint at \(n \) entail the interpolant at \(n \). I.e., \(\{I(m)\}_{(m,n) \in E}, C(n) \models_\mathcal{T} I(n) \).
For each node \(n \), the vocabulary at \(n \) is the common vocabulary of all descendants for \(n \) and all non-descendants of \(n \). The vocabulary of the interpolant at \(n \) is contained in the vocabulary of \(n \). I.e.,

\[
\text{Voc}(n) = \bigcup_{(m,n) \in E^*} \text{Voc}(C(m)) \cap \bigcup_{(m',n) \notin E^*} \text{Voc}(C(m'))
\]

\[
\text{Voc}(I(n)) \subseteq \text{Voc}(n)
\]

For theory \(T \) and variables \(X \), the space of all tree-interpolation problems whose constraints are \(T \) formulas over \(X \) is denoted \(\text{Itp}[T, X] \). For each tree-interpolation problem \(T \in \text{Itp}[T, X] \), the nodes, edges, root, and constraints of \(P \) are denoted \(N[T], E[T], r[T], \) and \(\text{Ctrs}[T] \), respectively. The conjunction of all constraints in \(T \) is denoted \(\text{Ctr}[T] = \bigwedge_{n \in N[T]} C(n) \). A model of \(\text{Ctr}[T] \) is referred to alternatively as a model of \(T \).

For each tree-interpolation problem \(T \) and node \(n \in N[T] \), the tree-interpolation problem formed by the restriction of \(T \) to the subtree with root \(n \) is denoted \(T|_n \). The procedure \(\text{TMRG} \) takes two tree-interpolation problems \((N, E, C) \) and \((N', E', C') \) with \((N', E') \) a subtree of \((N, E) \) and constructs a tree-interpolation problem in which the constraint for each node is the conjunction over constraints for all nodes in \(N' \). I.e., \(\text{TMRG}((N, E, C), (N', E', C')) = (N, E, C'') \) with \(C''(n) = C(n) \) for each \(n \in N \setminus N' \) and \(C''(n) = C(n) \land C'(n) \) for each \(n \in N' \).

Definition 7. For a tree-interpolation problem a cover relation \(\trianglerighteq \subseteq N \times N \) is a tuple in which:

- \(M \) is a mapping function which maps the each \(n \in N \) to its corresponding control location \(L : M(n) = L \).

- The path ancestor relation for \(m, n \in \pi \) is denoted \(m \sqsubseteq n \) where \(m \) is an ancestor of \(n \) in a path \(\pi \) if the depth of \(n \) is less than the depth of \(m \).
The ancestor relation for the nodes pointing same control location \(M(m) = M(n) \) in the tree is denoted \(m \sqsubseteq n \) where the depth of \(n \) is less than the depth of \(m \).

A node \(n \) is covers another node \(m \) (denoted \((n, m) \in \triangleright \)) if and only if \(m \sqsubseteq n \) and \(\varphi(m) \models \varphi(n) \).

When a node is covered, then all of its ancestors in the paths leading to the covered node are also covered. A node can only be covered by only one node. A covered node cannot cover others. When a new cover relation added such as \((n, m) \in \triangleright \), \textsc{Saveria} checks if there are other records in such as \((m, \cdot) \in \triangleright \). If such relation exists, then \textsc{Saveria} removes the cover on the covered nodes and their ancestors. Since the invariants are estimated, they are approximate; hence we cannot establish transitivity on implications.

For theory \(\mathcal{T} \) and \(\mathcal{T} \)-interpolation problems \(U_0 \) and \(U_1 \) containing the same nodes and edges, \(U_0 \) is as weak as \(U_1 \) if for each node \(n \), the constraint in \(U_0 \) for \(n \) is as weak as the constraint for \(n \) in \(U_1 \) and the vocabulary of the constraint in \(U_1 \) is contained by the vocabulary of the constraint in \(U_0 \).

Definition 8. For theory \(\mathcal{T} \), variables \(X \), and \(U_0, U_1 \in \text{Itp}[\mathcal{T}, X] \), if for \(N = N[\mathcal{T}] = N[U] \), \(E[\mathcal{T}] = E[U] \), and for each \(n \in N \), (1) \(\text{Ctr}[U_0](n) \models \text{Ctr}[U_1](n) \) and (2) \(\text{Voc}(\text{Ctr}[U_0](n)) \subseteq \text{Voc}(\text{Ctr}[U_1](n)) \), then \(U_1 \) is as weak as \(U_0 \).

Because weaker interpolation problems have weaker constraints per node, they admit fewer interpolants.

Lemma 1. For theory \(\mathcal{T} \), variables \(X \), all \(U_0, U_1 \in \text{Itp}[\mathcal{T}, X] \) with common nodes \(N \) such that \(U_1 \) as weak as \(U_0 \), and all \(I : N \rightarrow \text{Forms}[\mathcal{T}](X) \) such that \(I \) is an interpolant of \(U_1 \), \(I \) is an interpolant of \(U_0 \).

For theory \(\mathcal{T} \), an interpolating theorem prover takes a \(\mathcal{T} \)-interpolation problem \(T \) and returns either a \(\mathcal{T} \)-model or a map from the nodes of \(T \) to \(\mathcal{T} \)-formulas. An interpolating theorem prover is sound if it only returns a valid model or interpolant of its input.
Definition 9. For theory \mathcal{T}, variables X, let effective procedure $t : \text{ITP}[\mathcal{T}, X] \rightarrow (X \rightarrow \text{Dom}[\mathcal{T}]) \cup (\mathbb{N}[\mathcal{T}] \rightarrow \text{Forms}[\mathcal{T]}(X))$ be such that for each tree-interpolation problem $U \in \text{ITP}[\mathcal{T}, X]$, (1) if $t(U) : X \rightarrow \text{Dom}[\mathcal{T}]$, then $t(U)$ is a model of U; (2) if $t(U) : \mathbb{N}[\mathcal{T}] \rightarrow \text{Forms}[\mathcal{T]}(X)$, then $t(U)$ are interpolants of U. Then t is a sound interpolating theorem prover for \mathcal{T}.

Previous work has presented an algorithm EUFLIAITP that solves a given EUFLIA tree-interpolation problem T by invoking an interpolating theorem prover for EUFLIA a number of times bounded by $|\mathbb{N}[T]|$ [5].

In § 3.3, we describe an approach for proving that a program whose semantics are expressed in a theory \mathcal{T}_0 satisfies a constraint expressed in an extension \mathcal{T}. To simplify the presentation of our approach, we fix \mathcal{T}_0 to be LIA, and fix \mathcal{T} to be an arbitrary extension of LIA. However, our approach can be applied using any theory for \mathcal{T}_0 that satisfies the above conditions: in particular, our actual implementation of SAVERIA uses the combination of the theories of linear arithmetic, uninterpreted functions with equality, and arrays as its base theory.

3.3 Program Modelling

In this section, we describe a safety property verifier SAVERIA which CAMPY, a complexity verification tool, [9] is built on. CAMPY [9] takes the output of the SAVERIA which is a tree interpolation problem and performs complexity analysis on the paths indicated unsafe by SAVERIA. For complexity analysis, CAMPY adds axioms to the erroneous path, and then CAMPY either approves the result of SAVERIA or decides the path is safe. In § 3.3.1, we define the space of the summaries that SAVERIA deduce to prove given a program satisfies a given constraint. In § 3.3.2, we introduce the property verification algorithm for SAVERIA. Once again, the section § 3.3.1 are taken from our previously published work CAMPY [9] because SAVERIA works on same language and summaries. CAMPY takes the output of SAVERIA as input.
3.3.1 Program summaries

SAVERIA, given a program P and safety constraint S, attempts to infer summaries of the behavior of P that imply that all paths of P satisfy S. A program summary is a map from each control location L to a symbolic summary of the effects of all runs from the entry point of L’s procedure to L. The space of program summaries is denoted $\text{ProgSums} = \text{Locs} \to \text{Summaries}$. Program summaries are inductive for P and S if they imply that all runs of P satisfy S.

Definition 10. For program $P \in \mathcal{L}$ and safety constraint $S \in \text{Constraints}[T]$, let $\Phi \in \text{ProgSums}$, be such that:

1. For each procedure $f \in \text{procns}$,

 $\text{Vars} = \text{Vars}' \models \Phi(\text{entry}(f))$

2. $\Phi(l_f) \models \text{Constraints}[T]$;

3. For each branch statement $b \in P$,

 \[
 \Phi(\text{PreLoc}[b])[\text{Vars}_0, \text{Vars}_1], \psi[b][\text{Vars}_1, \text{Vars}_2] \models \\
 \Phi(\text{BrTgt}[b])[\text{Vars}_0, \text{Vars}_2]
 \]

4. For each call statement $c \in P$ and each return statement $r \in P$ that returns to c,

 \[
 \Phi(\text{PreLoc}[c])[\text{Vars}_0, \text{Vars}_1], \psi_C[\text{Vars}_1, \text{Vars}_2], \\
 \Phi(r)[\text{Vars}_2, \text{Vars}_3], \psi_R[\text{Vars}_1, \text{Vars}_3, \text{Vars}_4] \models \\
 \Phi(\text{RetTgt}[c])[\text{Vars}_0, \text{Vars}_4]
 \]

Then Φ are inductive summaries for P and S.

The space of inductive summaries for program $P \in \mathcal{L}$ and safety constraint $S \in \text{Constraints}[T]$ is denoted $\text{IndSums}(P, S)$. The space of program summaries is a subset of $\text{IndSums}(P, S)$.

Theorem 11. For any program $P \in \mathcal{L}$ and safety constraint $S \in \text{Constraints}[T]$, $\text{ProgSums}(P, S)$ is a subset of $\text{IndSums}(P, S)$.

Proof.

Let $\Phi \in \text{ProgSums}(P, S)$. Then Φ satisfies the conditions of Definition 10. Therefore, $\Phi \in \text{IndSums}(P, S)$.

Theorem 12. For any program $P \in \mathcal{L}$ and safety constraint $S \in \text{Constraints}[T]$, $\text{IndSums}(P, S)$ is a subset of $\text{IndSums}(P)$.

Proof.

Let $\Phi \in \text{IndSums}(P, S)$. Then Φ satisfies the conditions of Definition 10. Therefore, $\Phi \in \text{IndSums}(P)$.

Corollary 13. For any program $P \in \mathcal{L}$ and safety constraint $S \in \text{Constraints}[T]$, $\text{IndSums}(P, S) \subseteq \text{IndSums}(P)$.

Proof.

From Theorems 11 and 12.

The space of inductive summaries for program $P \in \mathcal{L}$ and safety constraint $S \in \text{Constraints}[T]$ is complete if it contains all possible summaries that satisfy S. The completeness of $\text{IndSums}(P, S)$ is a fundamental property that enables the use of summaries in the verification of programs.
Constraints[\mathcal{T}] is denoted \text{Ind}[\mathcal{P}, S]. Inductive summaries are evidence of safety constraint satisfaction.

Lemma 2. For each program \(\mathcal{P} \in \mathcal{L}\) and constraint \(S \in \text{Constraints}[\mathcal{T}]\), if there are inductive summaries \(\Phi \in \text{Ind}[\mathcal{P}, S]\), then \(\mathcal{P} \vdash S\).

For path \(\pi\), a visible suffix of \(\pi\) is a sequence of locations in \(\pi\) connected over only branch edges, nesting edges, and return edges.

Definition 11. For each path \(\pi \in \text{Paths}\), let \(L \in \text{Locs}^*\) be such that \(\text{last}[L] = l_f\) and there is some function \(m : \mathbb{Z}_{|L|} \to \mathbb{Z}_{|\pi|}\) such that for each \(0 \leq i < |L|, L[i] = \pi[m(i)]\), if \(L[i] \in \text{Locs}_B\) or \(L[i] \in \text{Locs}_R\), then \(L[i + 1] = \pi[m(i) + 1]\), and if \(L[i] \in \text{Locs}_C\), then for \(j < |\pi|\) such that \(i \rightsquigarrow_{\pi} j\), \(L[i + 1] = \pi[j]\). Then \(L\) is a visible suffix of \(\pi\).

For each path \(\pi \in \text{Paths}\), let the space of visible suffixes of \(\pi\) be denoted \(\text{Suffixes}[\pi] \subseteq \text{Locs}^*\). For program \(\mathcal{P} \in \mathcal{L}\), the visible suffixes of all paths of \(\mathcal{P}\) are denoted \(\text{Suffixes}[\mathcal{P}] = \bigcup_{\pi \in \text{Paths}[\mathcal{P}]} \text{Suffixes}[\pi]\).

Path summaries are sets of visible suffixes of a program’s paths, with each visible suffix \(s\) mapped to a summary of the effect of all runs of \(s\).

Definition 12. For program \(\mathcal{P} \in \mathcal{L}\), let \(Q \subseteq \text{Suffixes}[\mathcal{P}]\) be visible suffixes of paths of \(\mathcal{P}\), and let \(\Phi : Q \to \text{Summaries}\). Then \((Q, \Phi)\) are visible suffix summaries of \(\mathcal{P}\).

For program \(\mathcal{P} \in \mathcal{L}\), the space of all visible suffix summaries of \(\mathcal{P}\) is denoted \(\text{VisSums}[\mathcal{P}]\).

For all visible suffix summaries \(\Phi \in \text{VisSums}[\mathcal{P}]\), the visible suffixes and summary map of \(\Phi\) are denoted \(\text{Suffixes}[\Phi]\) and \(\text{Sums}[\Phi]\).

If visible suffix summaries soundly model the semantics of the paths of which the summaries are subsequences, then the summaries are valid.

Definition 13. For program \(\mathcal{P} \in \mathcal{L}\), let visible-suffix summaries \(\Phi \in \text{VisSums}[\mathcal{P}]\) be such that for each visible suffix \(s \in \text{Suffixes}[\Phi]\), \((I)\) for each procedure \(f \in \text{procnms}, \text{if Head}[s] = \text{entry}(f), \text{then} \)

\[\text{Vars} = \text{Vars}' \models \text{Sums}[\Phi](s) \]
(2) for each branch statement $b \in \mathcal{P}$ such that $\text{BrTgt}[b] = \text{Head}[s]$ and $s_0 = \text{PreLoc}[b] :: s \in \mathcal{P}$,

$$\text{Sums}[\Phi](s_0)[\text{Vars}_0, \text{Vars}_1], \psi[b][\text{Vars}_1, \text{Vars}_2] \models$$

$$\text{Sums}[\Phi](s)[\text{Vars}_2/\text{Vars}_0]$$

(3) and each call statement $c \in \mathcal{P}$ such that $s_0 = \text{PreLoc}[c] :: s \in \text{Suffixes}[\Phi]$ and return statement $r \in \mathcal{P}$ such that $\text{proc}(c) = \text{proc}(r)$ and $s_1 = r :: s \in \text{Suffixes}[\Phi]$,

$$\text{Sums}[\Phi](s_0)[\text{Vars}_0, \text{Vars}_1], \psi_C[\text{Vars}_1, \text{Vars}_2]$$

$$\text{Sums}[\Phi](s_1)[\text{Vars}_2, \text{Vars}_3], \psi_R[\text{Vars}_1, \text{Vars}_3, \text{Vars}_4] \models$$

$$\text{Sums}[\Phi](s)[\text{Vars}_0, \text{Vars}_4]$$

Path summaries define inductive summaries of \mathcal{P} when they define summaries of all paths of \mathcal{P}.

Definition 14. For each program $\mathcal{P} \in \mathcal{L}$ and constraint $S \in \text{Constraints}[\mathcal{T}]$, let $\Phi \in \text{VisSums}[\mathcal{P}]$ be valid suffix summaries. Let $\mathcal{P}' \in \text{ProgSums}$ be such that for each location $L \in \text{Locs}$,

$$\Phi'(L) = \bigvee \{\text{Sums}[\text{Sum}](t) \mid t \in \text{Suffixes}[S], \text{Head}[t] = L\}$$

If Φ' are inductive summaries for \mathcal{P} and S (Defn. 10), then Φ are inductive visible-suffix summaries for \mathcal{P} and S.

SAVERIA attempts to prove that a given program \mathcal{P} satisfies a given safety property S by inferring inductive visible-suffix summaries for \mathcal{P} and S.
Input: A program $P \in \mathcal{L}$ and safety specification $S \in \text{Constraints}[\mathcal{T}]$.

Output: A decision as to whether P satisfies S.

1. Procedure $\text{SAVERIA}(P, S)$

 2. Procedure $\text{SAUX}(\Phi)$

 switch $\text{UNWIND}[P](\Phi)$ do

 case TRUE: do return TRUE;

 case π: do

 switch $\text{REFINE}[P, S](\pi, \Phi)$ do

 case FALSE: do return FALSE;

 case Φ: do

 $\text{COVER}[P](\Phi)$;

 return $\text{SAUX}(\Phi)$;

 end

 end

return $\text{SAUX}((\emptyset, \emptyset))$;

Algorithm 1: SAVERIA: a safety verifier. SAVERIA uses procedures $\text{UNWIND}[P]$, $\text{REFINE}[[,]P, S]$, and $\text{COVER}[P]$ which are described in § 3.3.2.

3.3.2 Program Verification Algorithm

Alg. 1 shows pseudo-code for the main algorithm of SAVERIA which takes a program P and a safety constraint S (line 1) to show whether P satisfies S. SAVERIA is based on counter-example guided refinement loop approach as in [2, 3]. SAVERIA uses SAUX (line 2 — line 14) function which takes the visible summaries Φ. SAUX calls three core algorithms which are UNWIND (line 3), REFINE (line 6) and COVER (line 9) functions. First, SAVERIA checks that if Φ summarizes the program P. If so, UNWIND returns true, and SAVERIA halts and returns TRUE (line 4) to indicate P satisfies S. Otherwise, UNWIND returns a path $\pi \in P$ such that Φ does not summarize. Then, SAVERIA calls REFINE (line 6) procedure to generate interpolants and refine path invariants along the path π. If, REFINE functions returns either FALSE or visible suffix summaries Φ. If it returns FALSE, then SAVERIA halts and returns FALSE (line 7) to indicate that P does not satisfy S. Otherwise, SAVERIA takes Φ and calls the COVER (line 9) function to check the cover relation over updated Φ by REFINE.
Input: Visible suffix summaries Φ.

Output: TRUE to indicate Φ summarizes the program \mathcal{P}, or a path $\pi \in \mathcal{P}$ not summarized by Φ.

Algorithm 2: \textsc{Unwind}[\mathcal{P}](\Phi)

- \textbf{Procedure} \textsc{UnwindAUX}(\textit{expq}, \triangleright)

 \begin{algorithmic}
 \STATE \textbf{if} \textit{expq} = \emptyset \textbf{then} \textbf{return} TRUE;
 \STATE \textit{n} := \textit{expq}.\textit{pop}();
 \STATE \textbf{if} (\cdot, n) $\not\in \triangleright \lor (\cdot, (n \sqsubseteq \cdot)) \not\in \triangleright$ \textbf{then}
 \STATE \textbf{if} $\left(\text{Tgt}[M(m)] \times \rho_i \times \text{PreLoc}[M(n)]\right) = \emptyset$ \textbf{then}
 \STATE $\varphi(n) :=$ TRUE;
 \STATE \textbf{return} π_n;
 \ELSE
 \STATE forall $\left(\text{Tgt}[M(m)] \times \rho_i \times \text{PreLoc}[M(n)]\right)$ \textbf{do}
 \STATE $\pi_m := m \rightarrow_{\rho_i} \pi_n$;
 \STATE $\varphi(m) :=$ FALSE;
 \STATE \textit{expq}.\textit{push}(m);
 \ENDFOR
 \STATE \textbf{return} \textsc{UnwindAUX}(\textit{expq}, \triangleright);
 ENDIF
\end{algorithmic}

\textbf{Algorithm 2:} \textsc{Unwind}[\mathcal{P}] procedure takes the visible suffix summaries Φ, and returns either (1) TRUE to indicate the program is safe or (2) a path $\pi \in \mathcal{P}$ which is not summarized by Φ.

Alg. 2 presents pseudo-code for the algorithm of \textsc{Unwind}[\mathcal{P}]. \textsc{Unwind}[\mathcal{P}] defines and uses the procedure \textsc{UnwindAUX} (line 2—line 16) the takes expansion queue \textit{expq}, and the cover relation set \triangleright of the program \mathcal{P}. \textit{expq} contains nodes $n \in \mathcal{N}$ to expand $\text{Locs} \in \mathcal{P}$ into $\pi \in \text{Paths}[\mathcal{P}]$. First, \textsc{UnwindAUX} checks if there is any node in \textit{expq} to expand (line 3). If \textit{expq} is empty, then \textsc{UnwindAUX} returns true (line 3) to indicate that all paths $\pi \in \text{Paths}[\mathcal{P}]$ is summarized by the visible suffixes Φ. Otherwise, \textsc{UnwindAUX} takes the first none n in the expansion queue (line 4), and checks whether n is covered (line 5). If n is directly covered by another node, or any of its descendants are covered, then n is not expanded. If n is not covered, \textsc{UnwindAUX} checks if $M(n)$ is the initial location (line 6). If n is the initial location, then the label for n is assigned as TRUE (line 7), and \textsc{UnwindAUX} returns a unique path (line 8). If n is not covered, a node m is created for each location which are previous locations of $M(n)$ in the CFG (line 10). An edge is created
Input: A path \(\pi \in \mathcal{P} \), and visible suffix summaries \(\Phi \).

Output: \text{FALSE} to indicate \(\pi \) does not satisfy \(S \), or visible suffix summaries \(\Phi \) of \(\mathcal{P} \).

1. **Procedure** \textsc{Refine}[\(\mathcal{P}, S \)](\(\pi, \Phi \))
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Algorithm 3: \textsc{Refine}[\(\mathcal{P}, S \)] procedure takes a path \(\pi \) and the visible suffix summaries \(\Phi \) of \(\mathcal{P} \), and returns either (1) \text{FALSE} if there is no inductive summaries of the path \(\pi \) or (2) visible suffix summaries \(\Phi \) of \(\mathcal{P} \) merged with the inductive summaries of \(\pi \).

which contains the transitions \(\rho_i \) from \(m \) to \(n \) (line 11). The label of \(m \) is assigned to \text{FALSE} (line 12), and \(m \) is pushed into the expansion queue (line 13).

Alg. 3 presents pseudo-code for the algorithm of \textsc{Refine}[\(\mathcal{P}, S \)]. \textsc{Refine}[\(\mathcal{P}, S \)] defines and uses the procedure \textsc{Refineaux} (line 2 — line 13) which takes the cover relation. First, \textsc{Refineaux} checks whether the path \(\pi \) is safe or not (line 3). \textsc{Refineaux} takes a path and the negation of the safety property. Interpolants for the path \(\pi \) is generated by a theorem prover [12]. The result of the generated interpolants is either (1) \text{FALSE} to prove that the path \(\pi \land \neg S \) is infeasible or (2) \text{TRUE} to prove \(\pi \land \neg S \) is feasible. If the path is safe, the final program state does not end with the error state \(\neg S \). Let the initial location and the final location in a path are donated \(l_i \) and \(l_f \) respectively. In this case, all nodes in the path \(\pi \) are traversed from \(M(m) = l_i \) through \(M(n) = l_f \) (line 4 — line 11). The disjunction of the current invariant of the node \(n \) and the generated interpolant for \(n \) (line 5) is compared with the current invariant (line 6). If the disjunction is weaker than the current invariant, \(n \)'s covered by information is removed from cover relation. The node \(n \) is pushed again.
Input: A program $P \in \mathcal{L}$ and safety specification $S \in \text{Constraints}[\mathcal{T}]$.

Output: A decision as to whether P satisfies S.

1\hspace{1em}Procedure \text{COVER}([P])(\Phi)

\hspace{1em}Procedure \text{COVERAUX}(N,\triangleright)

\hspace{1em}forall $n \in N$ do

\hspace{2em}forall $m \sqsubseteq n$ do

\hspace{3em}if $(\cdot, m) \not\in \triangleright \lor (\cdot, (m \sqsubseteq \cdot)) \not\in \triangleright$ then

\hspace{4em}if $\varphi(m) \models \varphi(n)$ then

\hspace{5em}\triangleright := \triangleright \cup (n, m); \\

\hspace{5em}\triangleright := \triangleright \setminus (m, \cdot); \\

\hspace{4em}end

\hspace{3em}end

\hspace{2em}end

\hspace{1em}return \text{COVERAUX}(N,\triangleright)

Algorithm 4: \text{COVER}([P]) takes the visible suffix summaries Φ and maintains the cover relation of the nodes $n \in N$.

to expand, if there is any direct ancestor left to expand (line 8). Note that, pushing into expansion queue is performed for all nodes $m \sqsubseteq n$ where any m has at least one ancestor left unexpanded.

Alg. 4 contains pseudo-code for the algorithm of \text{COVER}([P]). \text{COVER}([P]) defines and uses the procedure \text{COVERAUX} (line 2 — line 12) which takes the nodes of path-invariant tree. First, for all nodes $n \in N$, \text{COVERAUX} traverses all nodes $m \sqsubseteq n$ (line 4 — line 11).

For a node m such that m or any of its descendants is not covered (line 5), \text{COVERAUX} performs an implication check whether n is weaker than m (line 6). If m is stronger than n, then n covers m and this relation is added to the cover relation (line 7). Since a covered node cannot cover others, the relation for m covers others are removed from the cover relation.

For the nodes covered by m, since they are not covered anymore, they are pushed into the expansion queue if they or their ancestors in the same path have any unexpanded ancestor left.
CHAPTER 4
RESULTS

In this chapter, we will talk about the empirical results for CAMPY. In § 4.1, we will present our test environment. In § 4.2, we will discuss the results presented in Table 4.1 which is taken from CAMPY [9].

4.1 Test Environment

All the experiments are performed on the machine with the following properties

- 16 cores
- 1.4 GHz
- 132 GB RAM

4.2 Evaluation

We have collected variety of benchmarks from various online coding exercise and challenge platforms [13, 14, 15]. Since our final product is CAMPY, only CAMPY is experimented on the benchmarks and its performance measurements are collected. In Table 4.1, performance measurements both time and memory are shown. The correctness of results and performance measurements for CAMPY promises its applicability. Considering CAMPY performs additional computation over the output of SAVERIA, SAVERIA requires even less time and memory. This makes SAVERIA worth to provide as a tool which other tools can be plugged in SAVERIA as CAMPY.
Table 4.1: The results of evaluating CAMPY. Each benchmark program is associated with two rows: the first row contains data for verifying that the program satisfies the tightest bound found; the second row contains data for verifying that the program does not satisfy the loosest bound found. The column titled “Name” contains the benchmark’s name; the column titled “LoC” contains the number of lines of source code; the column titled “Loops” contains the number of loops in the benchmark; the column titled “Nesting” contains the maximum nesting depth of loops in the benchmark. The column titled “Bound” contains the bound provided to CAMPY. Under heading “Performance”, the column titled “Time” contains the time used by CAMPY; the column titled “Memory” contains the peak amount of memory used by CAMPY. "-" indicates that CAMPY timed out on the benchmark and did not return a definite result.

<table>
<thead>
<tr>
<th>Program Structure</th>
<th>Bound</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (s)</td>
</tr>
<tr>
<td>Name</td>
<td>LoC</td>
<td>Loops</td>
</tr>
<tr>
<td>Array2</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BirthdayCandles</td>
<td>43</td>
<td>4</td>
</tr>
<tr>
<td>Bit</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CodeChefJava</td>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRGNBOOL</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FibonacciIterative</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideone</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JewelAndStone</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jewel2</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIS</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loops_1</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pie</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scroll</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmartSieve</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test0</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test1</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test2</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test3</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test4</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test5</td>
<td>77</td>
<td>6</td>
</tr>
<tr>
<td>Test6</td>
<td>36</td>
<td>4</td>
</tr>
</tbody>
</table>
CHAPTER 5
CONCLUSION

We have presented and automated property verifier, SAVERIA, which can prove whether a program satisfies the desired property. Since CAMPY runs on SAVERIA, the correctness of CAMPY relies on SAVERIA. If SAVERIA does not work properly, then it is not expected for CAMPY to work as expected. The soundness and correctness of CAMPY implies that SAVERIA is sound as a verification tool. The success of CAMPY thrives us to extend SAVERIA to verify different properties of Java programs.
CHAPTER 6
FUTURE WORK

There are plenty of extensions can be developed in the future to improve the security and privacy for software written in Java programming language. The common feature of all these extensions are to find bugs, detect vulnerabilities (by implementation or design) and disclose malicious behaviours.

- **DoS Attack Vulnerability Detection:** Using current complexity verifier and safety checker, upon modelling the current synchronization in Android [16] is possible to detect the entry points to critical paths which could lead to freezing and eventually DoS attacks in Android.

- **Partial Information Leakage Detection:** Given set of sensitive information and leak functions, it is possible to extend the current safety verifier to detect whole even partial information leakage. The leak detection would be able to detect for only the given sensitive information source and leak vectors.

- **Cross Channel Attacks Based on Timing:** It is possible to gain information about program behaviour or whether the inputs are sensitive or not based on the runtime of the program on different inputs.
REFERENCES

