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SUMMARY

The objective of this research is to design resource-aware and robust image processing

algorithms, system architecture, and hardware implementation for intelligent image sen-

sor systems in the Internet-of-Things (IoT) environment. The research explores the design

of a wireless image sensor system with low-overhead pre-processing, which is integrated

with a recon�gurable energy-harvesting image sensor array to implement a self-powered

image sensor system. For reliable delivery of region-of-interest (ROI) under dynamic en-

vironment, the research designs low-power moving object detection with enhanced noise

robustness. The system energy is further optimized by a low-power ROI-based coding

scheme, whose parameters are dynamically controlled by a low-power rate controller to

minimize required buffer size with minimum computational overhead. To enable machine

learning based intelligent image processing at the IoT edge devices, the research proposes

resource-ef�cient neural networks. The storage demand is reduced by compressing the

neural network weights with an adaptive image encoding algorithm, and the computation

demand is optimized by mapping the entire network parameters and operations into the

frequency domain. To further improve the energy-ef�ciency and throughput of the edge

device, the research explores inference partitioning of a DNN between the edge and the

host platforms.

xxi



CHAPTER 1

INTRODUCTION

With the increasing demand of ubiquitous sensing and remote monitoring, wireless im-

age sensor systems are expected to become essential components of the Internet of Things

(IoT) environment. As these sensor nodes are usually operated under stringent resource

constraints and dynamic variations of operating condition, a critical goal in a design of a

sensor node is to enhance resource ef�ciency and robustness in delivering visual informa-

tion.

Conventional image sensor systems have focused on the capabilities of wireless sensor

nodes to capture, process, and transmit visual information to the base station, while leaving

the task of video analysis to human operators [1]. In this con�guration, delivering images

with higher perceptual quality to human operators is critical. Therefore, the sensor node de-

sign requires exploring resource-quality scalability to optimally allocate limited resources

for better visual information.

As human visual attention focuses on the Region-of-Interest (ROI) in an image, ROI-

based processing (ROI detection and ROI coding) is a common design approach for better

energy-quality scalability of sensor nodes [2]. In surveillance applications where the ROIs

are de�ned as the regions with moving objects, sensor systems usually incorporate moving

object detection methods to optimally allocate the resources while preserving the quality of

moving objects. Once the ROI is determined, ROI coding allocates the available data rate to

the ROI/non-ROI for higher ROI quality and graceful degradation of the non-ROI quality

[3]. One of the biggest challenges to the ROI detection is dynamic environmental noise

that can be falsely detected as moving objects. Another challenge is the stringent resource

constraints such as energy, area, and transmission bandwidth. Therefore, the ROI-based

processing methods should be robust to the noise as well as ef�cient in terms of memory
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and computation demand.

The optimization of video quality and energy consumption also involves variation in

a wireless channel condition. When the channel condition worsens, a wireless transmitter

usually enhances channel reliability at the cost of a lower channel data rate or higher signal

power, which results in an increase in transmission energy or degradation of the quality.

Therefore, an optimal energy-quality tradeoff under varying channel conditions requires

system-wide feedback control that adaptively tunes the target data rate. Once the target

data rate is determined, the remaining challenge is to guarantee the data volume generated

by an image processor match the target data rate, since the mismatch imposes energy/area

overhead due to large buffer requirement. However, the encoding rate can vary due to

the variable content of video frames. Consequently, to minimize the latency and buffer

requirement, there is a need for an on-line rate controller that matches the encoding rate

with the transmission data rate.

In remote sensing and military surveillance applications of image sensor systems, the

sensor systems are usually deployed in areas where human intervention for battery replace-

ment is a costly operation [4]. Therefore, it is highly desirable that the sensor node can

harvest energy to sustain longer with a limited battery or even power itself without a bat-

tery. To enable a truly self-powered system, an energy harvesting device should be an

on-chip module such as an image sensor array, and harvested energy should support a com-

plete image sensor including an image processor, memory, a power management unit, and

a transmission controller.

In addition to conventional model-based image processing algorithms, there is a grow-

ing interest in complex deep neural networks (DNNs) for intelligent computer vision tasks

including image classi�cation, pattern recognition, and gesture detection [5][6][7]. To

eliminate the need for human involvement in the human operator based surveillance system,

deep neural networks can be adopted at the host platform to build an intelligent surveillance

system. In such a system con�guration, the most critical performance metric is detec-
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tion/classi�cation accuracy of the neural network. Therefore, ROI-based processing of the

image sensor node should be designed to process the video in a way that the neural network

achieves higher accuracy.

DNNs are also widely adopted at the IoT edge devices to enable more intelligence.

However, the biggest challenge is their storage demand and computational complexity. As

DNNs contain a large number of synaptic weights, the memory demand is a key challenge

for application of DNNs, especially for memory-constrained platforms such as mobile sys-

tems. Another bottleneck of DNNs is the computation demand, mostly due to their large

number of multiplications in convolution layers. Therefore, reducing the storage and com-

putation demand of neural networks is critical, speci�cally, to support in-�eld and on-chip

training and inference.

The goal of this research is to design an intelligent image sensor system through resource-

aware and robust image processing algorithms and deep neural networks. This goal is

achieved by �rst designing an low-power wireless sensor system with ROI detection and

coding. The system is integrated with an energy-harvesting image sensor array to imple-

ment a self-powered image sensor system. The moving object detection method is en-

hanced to have robustness to the environmental noise. Based on the ROI information,

the system energy is further optimized by a low-power ROI-based coding scheme. The

research also investigates how the energy-quality scalability of ROI-based processing is

translated into the energy-accuracy scalability. The ROI-based processing parameters are

dynamically controlled by a low-power rate controller to minimize required buffer size with

minimum computational overhead.

To enable deep learning based intelligent image processing at the IoT edge devices

with limited hardware resource, the research proposes neural network design with lower

storage and computation demand. The storage demand is reduced by compressing the

neural network weight, and the computation demand is optimized by mapping the network

into the frequency domain. The research also explores inference partitioning of a DNN
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between the edge and the host platforms to improve the energy-ef�ciency and throughput

of the edge device.

The rest of the thesis is organized as follows: In Chapter 2, the detailed background

and literature survey is presented. Chapter 3 presents the design and implementation of

low-power wireless image sensor system. Chapter 4 presents energy-ef�cient and robust

image processing through RoI-based processing. Chapter 5 introduces on-line adaptation of

target data rate and encoding data rate according to the variations in wireless channel and

input video characteristics. In Chapter 6, techniques for memory- and computationally-

ef�cient deep neural networks are presented. Chapter 7 introduces partitioning of neural

network inference for resource-ef�cient inference at the IoT edge devices. Finally, Chapter

8 describes the key research contributions and future research directions.
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CHAPTER 2

BACKGROUND

2.1 Image Sensor Systems with ROI-based Processing

To enhance the ef�ciency of wireless video sensor systems, several studies have suggested

approaches that concentrate on the ROIs in a video. Generally, these approaches can be

divided into two parts: ROI detection and ROI-based processing.

2.1.1 Moving ObjectDetectionMethods

The algorithm design for ROI detection depends on how the ROI is de�ned. When the

ROI is de�ned as a region with moving objects, detection of the ROI can be divided into

two categories depending on the complexity and robustness: low-power moving object

detection and noise-robust moving object detection.

Low-Power Moving Object Detection

Several prior studies have presented moving object detection methods for resource-constrained

applications using simpler methods based on frame differencing [8], edge detection [9], and

a combination of these two operations [10][11]. Frame differencing (FD) is the pixel-wise

difference between two consecutive frames, followed by thresholding. Although it is of

low complexity, it is subject to false detection on the frame with dynamic change in the

background [10]. Edge detection (ED) has also been used for low-power systems; how-

ever, it can generate false detection since an edge image contains not only the edge of

target objects but also that of background objects. Alternatively, approaches based on a

combination of ED and FD have been suggested; Kim et al. proposed an algorithm based

on the edge map of the inter-frame difference image (FD+ED) [10], and Ko et al. suggested
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Figure 2.1: (a) Memory requirements of moving object detection methods. Example de-
tection results under noisy condition using (b) FD, (c) ED, (d) FD+ED, and (e) ED+FD.

an algorithm based on the inter-frame difference of edge maps (ED+FD) [11]. However, as

Figure 2.1(b)-(e) show, these low-overhead methods are susceptible to noise in the dynamic

environment and are not suitable for outdoor sensor platforms.

Noise-Robust Moving Object Detection

The most common approach for noise-robust moving object detection is background sub-

traction with a multimodal background model. In this approach, the background pixel is

modeled through multiple probability distributions to cope with background objects show-

ing dynamic motions. The most widely- used modeling method is Gaussian Mixture Model

(GMM) [12], which employs a weighted sum of Gaussian distributions to describe the

probability of observing the intensity at each pixel. Other multimodal background model-

ing approaches have been proposed based on the codebook [13], kernel density estimation

(KDE) [14], and eigenspace [15]. A critical drawback of these methods, although they

perform well under noise, is signi�cant memory requirements [16], as summarized in Fig-

ure 2.1(a). Another way of identifying moving objects is to calculate optical �ow (OF),

the changes of motion between frames with the assumption of constant brightness. Horn-
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Figure 2.2: Frame data size and buffer level of the multi-rate method with a frame rate of
ROI =10, non-ROI =0.2 frames/sec.

Schunck method employs low-pass �ltering to reduce the noise-sensitivity [17]. Another

study exploited the consistency of optical �ows over a short period of time in order to cope

with the salient background [18]. Although these methods are effective under dynamic

background, they require substantial computation and memory resources to compute the

velocity of each pixel. For example, the standard Lucas-Kanade method as implemented

by Barron et al. requires 105 operations and 16 bytes of memory per pixel [19].

2.1.2 ROI-BasedCodingMethods

Once the ROI is detected, a video can be processed more ef�ciently by focusing on the ROI.

The simplest approach to ROI-based coding is to drop non-ROI blocks and encode/transmit

only the ROI blocks [20]. This approach reduces encoder energy and overall data volume

as non-ROI blocks are not encoded or transmitted. However, it can suffer from the loss

of context information and lower overall visual quality since no visual information on the

background is delivered. Moreover, in case of the false negatives, i.e., the ROI is falsely

determined as the non-ROI, the ROI quality degrades signi�cantly since no ROI informa-

tion is transmitted. To address these drawbacks, Lai et al. [21] have proposed the multi-rate

approach that transmits non-ROI blocks with a frame rate lower than that of ROI blocks.

However, whenever the frames with non-ROI blocks are transmitted, the transmit volume

increases signi�cantly, requiring a large buffer to accommodate high �uctuation in the en-
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Figure 2.3: MJPEG packet structure of each approach.

coding rate [Figure 2.2]. Moreover, for correct reconstruction of the image frames without

non-ROI blocks, a sensor node needs to transmit block identi�ers that contain the location

(or sequence number) of the blocks [Figure 2.3(b)].

An alternative (spatial) approach is to transmit both ROI and non-ROI blocks, but com-

press non-ROI blocks more than ROI blocks. One of the spatial approaches is to use mul-

tiple QF values in a frame; higher QF for ROI blocks, lower QF for non-ROI blocks [22].

However, the multi-QF approach also requires extra transmission of one additional QF

value and the ROI map indicating whether a block is encoded using the higher or lower QF

[Figure 2.3(c)]. Also, as the standard MJPEG uses a single QF in a frame, the multi-QF ap-

proach adds energy/area overhead to the MJPEG encoder/decoder to enable frame encoding

with the two different QFs. Another spatial approach is to pre-process non-ROI blocks to

enable higher compression at the encoder. The prior studies have proposed pre-�ltering of

non-ROI blocks via low-pass �lters such as a median �lter [23] and a Gaussian �lter [24],

which reduce high-frequency information in non-ROI blocks, enabling high compression

with the same QF. Pre-�ltering can be an attractive solution because the unit operation of

median or Gaussian �ltering is low-complexity. However, it is an inef�cient solution for

on-line tuning of non-ROI size/quality since larger �lter size for more smoothening (more

compression) requires heavy computation, and hence, increases computation energy [2].
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2.1.3 Effectof ROI-BasedProcessingonNeuralNetworkInference

Conventionally, most of the ROI-based processing schemes are targeted to provide high

perceptual quality of the ROI under the data rate constraint. These approaches assume a

base station with a human operator monitoring a video scene received from the sensor node.

Meanwhile, recent studies have proposed autonomous video monitoring systems to mini-

mize human error and intervention in a monitoring process [25]. More recently, the success

of deep neural networks on image classi�cation [26][27] have introduced deep-learning

based video monitoring systems in many applications such as moving object detection

[28], object tracking [29], and vehicle classi�cation [30]. In such a system con�guration,

the critical goal of the sensor node is to process/transmit images so that the neural networks

achieve higher detection/classi�cation accuracy. Several recent studies compared how the

neural networks and human subjects perform differently on distorted images [31][32]. An-

other set of studies have investigated how the deep neural network performance is affected

by different types of image distortions including noise [33], optical blur [34], and JPEG

compression [35]. However, all the existing studies have utilized uniformly distorted im-

ages for their experiments. For a wireless sensor node with limited energy and bandwidth,

allocating more resources to the ROI using ROI-based processing is necessary for better

energy-quality scalability. However, no work has been done to investigate the effect of

ROI-based processing on the classi�cation performance of neural network in wireless sen-

sor node applications.

2.1.4 ImageSensorNodeswith EnergyHarvesting

In the applications of wireless image sensor nodes, the sensor nodes are usually deployed

in areas where human intervention for battery replacement is a costly operation [4].There-

fore, sensor nodes are expected to operate for a long period of time with limited energy

sources. Longer life time can be achieved by harvesting ambient energy in the environment

[36]. However, energy harvesting generally requires additional devices (thermoelectric,
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Table 2.1: System level comparison chart with prior works

piezoelectric, photovoltaic, etc.). An alternative approach to a truly self-powered sensor

node design will be using the existing sensor itself as an energy harvesting device. Many

wireless image sensing requires relatively low frame-rate, often limited by the channel

bandwidth. Hence, the pixel array is used for sensing only for a limited fraction of time.

The on-chip sensor can be con�gured to harvest energy during the idle time and store har-

vested energy in a battery or super-capacitor, providing potential of a truly self-powered

system. A few recent studies have shown the feasibility of using an image pixel array for

harvesting (Table 2.1) [4][37][38][39][40]. However, the existing works only considered a

pixel-array and peripherals.

2.2 Data Rate Control in Image Sensor Systems

2.2.1 TargetDataRateControl

Only a limited body of work has focused on integrating ROI-based processing and the op-

timization of transmission energy under the variation of wireless channel conditions. To

adapt system parameters to varying channel conditions, Fallah et al. proposed a link adap-

tation technique in which a transmitter can adaptively control its transmission parameters

[41]. As the channel condition worsens, it increases transmission signal power or decreases

the channel data rate to satisfy the bit-error-rate (BER) target. However, when the data rate

of the channel is lower than that of the encoder, the conventional link adaptation tech-
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nique, which is independent of an encoder (the independent control scheme), may result

in random packet drop, leading to signi�cant quality degradation. To address this prob-

lem, Haratcherev et al. proposed cross-layer signaling, which informs the encoder of the

channel data rate so that the encoder can change its data rate as well (the feedback control

scheme) [42]. However, if the feedback control scheme uses conventional rate-controlled

encoders, it controls the source data rate by changing only the quality of the entire video,

which may result in a low-quality ROI (the content-unaware feedback control scheme).

Although the feedback controller with existing ROI-based processing approaches (i.e., the

content-aware and energy-unaware feedback control scheme) can optimize the quality of

the ROI, it is subject to an energy increase in the case of a channel rate decrease or a signal

power increase.

2.2.2 EncodingDataRateControl

A key challenge of applying ROI-based coding in wireless video sensing is to guarantee

the data volume generated by an ROI-based encoder (encoding rate) match the available

transmission data rate. However, the wireless channel bandwidth and the maximum trans-

mission data rate can vary over time. Likewise, the encoding rate can also vary due to the

variable content of video frames. If the encoder generates too much data that cannot be

accommodated by the transmitter, the data should be buffered to avoid random packet drop

at the transmitter. However, buffering introduces variable latency between the source and

destination, and imposes energy/area overhead due to large memory requirement. Conse-

quently, to minimize the latency and buffer requirement, there is a need for an on-line rate

controller that matches the encoding rate with the transmission data rate.

The recent encoders such as H.264/AVC incorporate rate controller schemes that allo-

cate proper bit budgets and determine a quantization parameter (QP) to minimize quality

degradation based on rate-distortion-optimization [Figure 2.4(a)]. However, calculation

and update of the parameters require complex computation with appreciable energy cost,
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Figure 2.4: ROI-based rate controller design (a) tied to H.264/AVC and (b) based on a
simple encoder (MJPEG).

and hence, it is not suitable for energy-constrained systems [43]. On the other hand, the

existing ROI-based coding schemes use lower-complexity codecs such as motion JPEG

(MJPEG); however, they do not employ rate controllers that can dynamically modulate

the ROI-based coding parameters. Therefore, an ROI-based coding scheme with a low-

complexity rate controller is necessary to improve the quality of visual information under

stringent system energy constraints.

2.3 Resource-Ef�cient Deep Neural Networks

2.3.1 MemoryDemandReductionTechniques

There have been various approaches that compress the weights of a neural network to en-

hance memory-ef�ciency. One simple way is reducing the bit-precision of the weights to

reduce both computation energy and storage requirements, as demonstrated in [44]. Instead

of uniformly quantizing all the weights with the same bit precision, per-layer quantization

[45][46] used different precision in each layer for higher compression ratio. However, the

compression is limited by the lowest bit precision, for example, reducing precision from
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32 bit to 4 bit will only result in 8X compression. To achieve higher compression, ap-

proaches have been explored to reduce the number of weights, for example, by neglecting

weights (pruning connections) with magnitude below a threshold [47]. Another approach

is the low-rank matrix approximation, which uses factorization to reduce the representation

by two smaller matrices [48]. For lossless compression of output images of convolutional

neural networks, Chen et al. used a run-length-based encoding technique [49]. There are

a few works that compress the weights by transforming them into the frequency domain.

Koutnk et al. has presented a method to discard high frequency components of the weights

to meet the compression requirement [50]. Chen et al. has proposed to random hashing

of the frequency components of convolutional neural network �lters into smaller set of

hash buckets [51]. Most of the preceding approaches for reducing the weight size require

changing the training process to minimize the accuracy loss. For example, the approach in

[52] utilizes �ne tuning (retraining) after each compression stage to maintain the original

accuracy. Other recent studies proposed a specialized training algorithm for binary repre-

sentation of the weights [53][54]. Chung et al. also proposed a method based on matrix

factorization and pruning [55], which also requires �ne tuning. If the prior compression

approaches are applied without modi�cation of training algorithm (or re-training), the ac-

curacy drop can be signi�cant [55].

2.3.2 ComputationDemandReductionTechniques

As the computation demand of CNNs is largely dominated by convolution layers, a number

of studies have explored ef�cient computation models for convolution layers [56]. Several

methods have focused on reducing the number of convolution operations by approximating

the network parameters [57]. An interesting alternative approach for fast training is to ex-

ploit the duality between spatial- and frequency-domain computation through the Fourier

transforms. Recent studies [58][59] have shown the feasibility of replacing convolutions

with simpler pointwise multiplications in the frequency domain (FFT-based approach).
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However, this approach replaced only the operations inside the convolution layer, requir-

ing computationally-intensive Fast Fourier Transforms (FFTs) and Inverse FFTs (IFFTs)

at the boundary of every layer. Moreover, frequency-domain mapping of the parameters

requires kernels to be prepared as same dimension as feature maps for pointwise multipli-

cations, thereby signi�cantly increasing the total memory required. In summary, although

the frequency-domain approach provides fast training of CNNs, the entire network model

should be carefully designed to reduce the overhead.

2.4 Collaboration of Edge and Host Platforms for DNN Inference

With recent advance in deep learning techniques, application of DNNs to the IoT environ-

ment is being actively investigated. A typical system con�guration uses edge platforms

for sensing visual data, which is transmitted to and processed by the host with a DNN in-

ference engine. This con�guration is appealing in the applications where the host make

central decision and control, such as vehicle detection and recognition [60], remote moni-

toring [61], and scene analysis [62]. Although this approach relieves the inference demand

for the edge platforms, its performance will largely depend on reliable transmission of the

images through a wireless channel with limited bandwidth.

Recent innovation in network compression [63] and hardware/architectural accelera-

tion techniques [64] has enabled edge platforms with an integrated image sensor and deep

learning inference engine [65]. When these edge platforms are used to perform the en-

tire inference for delivering the result to the host, large resource demand of deep neural

networks will limit their performance.

As opposed to the entire inference at the edge or at the host, a recent study presented a

distributed structure of edge devices performing inference of a shallow part of the network

[66]. However, network partitioning presented in this study was not based on the energy

and throughput analysis of the system. Moreover, it did not apply an encoding technique

to the intermediate-layer features before transmitting them. Although a few studies have
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investigated the accuracy impact of input image encoding [67] and the weight compression

[63], there has been no work that explored the effect of intermediate-layer feature encoding

on the neural network performance.
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CHAPTER 3

RESOURCE-AWARE IMAGE SENSOR SYSTEM DESIGN

3.1 Design of a Low-Power Image Sensor System

3.1.1 Introduction

Wireless video sensor nodes in the IoT environment are usually powered by limited energy

sources. Therefore, the sensor system design should be optimized under a stringent system

energy constraint [68]. Since a major source of its energy consumption is wireless trans-

mission, an ef�cient video compression algorithm should be used to reduce the amount

of data being transmitted to the wireless network [69]. Although most conventional com-

pression algorithms assume equal importance of every region in a video, users pay more

attention to their regions of interest (ROI) in many video applications [3]. For example,

in a remote surveillance application with a �xed camera, regions with moving objects are

more important than the background. Therefore, by acknowledging the relative importance

of an ROI, we can enhance the energy ef�ciency of a system while preserving the quality

of an ROI. However, ROI-based processing can be computationally expensive, for exam-

ple, hardware engines for accurate motion estimation as used in H.264 standards require

signi�cant energy and area [70]. Therefore, to design a ROI-based video-processing ap-

proach suitable for resource constrained sensor nodes, we must investigate a system-level

tradeoff between energy and the ROI quality. In this section, I propose an energy-ef�cient

wireless video sensor node with content-aware pre-processing and an energy- and content-

aware feedback control scheme. This work proposes content-aware pre-processing, which

reduces both computation and transmission energy by selectively encoding and transmit-

ting regions with moving objects in a video. For energy- and area-ef�cient detection of

moving objects, I design a simple pre-processor based on edge detection and frame differ-
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encing, which provides an approximation of moving object detection. The content-aware

pre-processing is combined with the standard MJPEG encoder, improving both rate-quality

and energy-quality trade-offs over the conventional MJPEG and H.264-intra based encod-

ing approaches. I further reduce the area and energy of the proposed system through block-

level pipelining and an optimal voltage/frequency assignment with power gating. The full-

chip design and synthesis in the 45nm predictive technology model (PTM) library show

that the pre-processor adds only 3.0% energy and 5.5% area overheads to the standard

MJPEG. Analysis with a color video of 160 x 120 pixel resolution (twelve-bit pixel depth)

shows that the sensor node can operate within 1.1 uJ/frame computation energy at a frame

rate of ten frames/second.

3.1.2 Key DesignConcepts

System Design

The proposed system aims to maximize the quality of the ROI under varying channel con-

ditions with less area and energy consumption. This goal is achieved by the following

design concepts: 1) simple pre-processing for moving object detection, 2) an energy- and

content-aware control scheme for adapting to channel conditions, and 3) low-power design

techniques. The block diagram of the proposed system is shown in Figure 3.1. First, the

pre-processor calculates the temporal activity of edges for each macroblock (MB). Since

the standard MJPEG encoder processes the image with the unit of an 8x8 pixel block, the

MB size other than 8x8 pixels requires additional buffer and control logic. Therefore, I

use an 8x8 pixel MB for pre-processing in this work, but varying MB size would be inter-

esting future work. After each MBs activity is calculated, MBs with activity levels higher

than the pre-de�ned threshold are encoded by the MJPEG and transmitted, while MBs with

lower activity levels than the threshold are dropped. As the threshold can change the num-

ber of MBs to process in a frame, it can be used as a control parameter to regulate the

source data rate together with the quality factor (QF) in the baseline MJPEG encoder. The
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Figure 3.1: Block diagram of the proposed system.

source data rate is determined so that the target transmission energy is maintained even

in a variation of a wireless channel. Each module employs low-power design techniques

including block level pipe-lining and power gating. I use the MJPEG encoder in this work

because it is more ef�cient in terms of area and energy consumption than recent encoders

such as H.264 or MPEG. These encoders are computationally complex because they use

motion compensation techniques to remove temporal redundancy for higher compression

ratio [71]. Meanwhile, the baseline MJPEG does not exploit dependency between frames,

resulting in lower en-coding effectiveness. Therefore, to improve encoding effectiveness

with a small increase in complexity, I employ a simple pre-processor that eliminates tem-

poral redundancy (stationary background objects) by examining the dependency between

two consecutive frames.
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Figure 3.2: Procedure of the content-aware pre-processing.

Content-Aware Pre-processing

In order to perform moving object detection in a low-power sensor node, the pre-processor

should adopt an energy- and area-ef�cient algorithm. At the same time, the algorithm

should correctly detect moving objects to maximize both the reduction in the transmission

energy and the quality of the ROI. As ED is ef�cient in memory requirement and boundary

detection and FD can remove temporal redundancy, I employ a sequential combination of

ED and FD to take advantage of the two methods. The procedure of the proposed algorithm

is shown in Figure 3.2. After performing edge detection using the Sobel operator on the

current frame n, we obtain an edge mapEn in which the pixel value is 1 on an edge and

0 otherwise. Then, we calculate the absolute pixel-by-pixel difference betweenEn with

E(n� 1) and sum them up for an MB to obtain the activity level of i-th MB in a frame n,A i
n ,

19



i.e.,

A i
n =

X

(x;y )MB i
n

jEn (x; y) � E(n� 1)(x; y)j: (3.1)

If the activity level of an MB is larger than or equal to the threshold, the MB is sent to

the encoder. Otherwise, the MB is not processed. That is, MBs that have more pixels with

varying edges than the threshold are marked as ROIs. In a color video with a YUV format,

the Y component, which represents the luminance of the color, is a good candidate for edge

detection [72]. Therefore, to reduce the computation, pre-processing is performed only on

the Y component. Since the U and V components are normally in half-resolution of the Y

components, the number of MBs in the Cb or the Cr components is less than that in the Y

component. Therefore, if at least one MB in the Y component is determined as the ROI,

the corresponding MBs in the Cb and the Cr components are also marked as the ROI to

correctly represent the color of ROI MBs. The most important advantage of the proposed

method is its high ef�ciency in terms of energy and area. Since it is based on computation-

ally inexpensive operations such as edge detection, frame differencing, and thresholding, it

is of low complexity. It is also area-ef�cient because it requires only one-bit memory per

pixel to store the previous edge map, while FD necessitates eight-bit memory per pixel to

store the original data of the previous frame. In addition to the high ef�ciency, the pro-

posed approach also yields a high performance in detecting moving objects. It is robust to

dynamic scene changes since the edge information on the objects remains signi�cant even

in a variable environment. Moreover, it reduces false detection on stationary objects since

the FD operation followed by ED removes temporal redundancy on the edge locations of

the stationary objects over two consecutive frames. Even if slight temporal changes in their

edge locations generate noise in the background MBs, the thresholding operation followed

by ED and FD correctly drops these MBs since their activity levels are usually lower than

that of ROI MBs.
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Figure 3.3: Effect of pipelining level. (a) Diagram. (b) Area estimation.

3.1.3 Low-PowerEncoderDesign

The MJPEG encoder with pre-processing is designed in the 45-nm PTM library. To in-

crease energy ef�ciency of the system, I employ low power design techniques including

block-level pipelining and pow-er gating.

Pipelining

The proposed system has two pipeline stages (the pre-processor and the MJPEG), in which

we can apply two kinds of pipelining schemes: block- and frame-level pipelining, shown in

Figure 3.3(a). In block-level pipelining, once the pre-processor processes one MB, the MB

stored in a buffer is fetched by the MJPEG encoder. By contrast, frame-level pipelining

stores and processes the video frame by frame. Our design uses block-level pipelining

since it allows lower latency and a smaller buffer. This advantage de-pends on the size of

an input video. If we assume a video with 160 x 120 pixels and 300 MBs in one frame, the

latency and required buffer size for block-level pipelining is 300X lower than that required

for frame-level pipelining. Figure 3.3(b) shows that block-level pipelining reduces the area

by 38% compared to frame-level pipelining.
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