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SUMMARY

The inclusion ofDNA in materials systems has long evolved pastkitewn
biological functionin cells and has garnereexpandinginterest asa macromolecular,
recognitionbasedtool. To further the understanding of singlrandedDNA sequences
called aptamerthat bind with high affinity and specificitp nornucleotide targetghis
dissertation develops todis identify, quantify, and classifyecondary structure elements
(SSE) and secondaryrscturefamilies (SSF)hat distinguishaptamercandidates from a
large pool of random sequencd&3hapter 1 provides an overview of oligonucleotide
aptamers, the conventional method of their discovery;mumheotide target choices, and
examples of aptaméarget binding characterization approaches. Chapter 2 investigates the
effects of various nucleic acid additions during the seed mediated growth of gold nanorods
(AuNR) on observediltravioletvisible (UV-Vis) spectra. Chapter 3 describes a nhon
evolutiorary selection process we calCompetition-Enhanced Ligand Selection
(CompELS)or identifying DNA aptamers against gold nanorods (AuNR) and undertaking
primary structure analysis of sequences identified. Chapter 4 develops analytical methods
for secondarystructure analysis of DNA aptamers selected through aewolutionary
approach. Chapter 5 presentsa-evolutionary, twestage CompELS approach to identify
DNA aptamers against a protein target lacking antibody options due to important transient
oxidation events during cell signaling even@hapter 6 provides concluding comments

andthoughts on potential further development and application of this work.



CHAPTER 1. INTRODUCTION: A LITE RATURE REVIEW OF

OLIGONUCELOTIDE APTAMERS

Deoxyribonucleic acids (DNAs) use ascognitionbased detection and even as a
therapeuticagents has only been intensifying since the publication of screening methods
developed simultaneously and independently in the laboratories of G.F. Joyce, J.W.
Szostak, and L. Gold almost three decade® which enabled identification of
oligonucleotides which could bind with high affinity and specificity to -moicleotide
targets. This pioneering work has since enabled the identification of oligonucleotides that
can recognize targets which include ipsmall molecules, proteins, and even whole cells.
The interest in oligonucleotides persists due to their extremely unique and customizable
properties that allow facile modification of both physical and chemical properties for
tailoring of molecular intei@ions with both biological and synthetic materials systems.
The following literature review will outline the distinctive properties of DNA and other
nucleic acids and their evolved form, the aptamer. The conventional methods for
identification of aptamms as developed by Szostak and Gold will be discussed along with
common examples of aptamer targets in literature. Finally, currentofttie-art

characterization of aptamtarget binding will be reviewed.

1.1 Oligonucleotides and Their Properties

1.1.1 DNA andits Properties

1.1.1.1 DNA Chemical and Physical Structure and Properties




An oligonucleotide is a biomacromolecuwlebiopolymer chain with repeat units consisting

of series of nucleotides. For DNA, each repeat unit or nucleotide consists of an alternating
deoxyrbose sugar and a negatively chargdtbsphate group, which comprise the
backbone, and a purine or pyrimidine base side group which consist of either adenine (A)
or guanine (G) for purine bases or cytosine (C) or thymine (T) for pyrimidine fagese

1.11 shows the chemical structure ofatentides for DNA. The size of eadicleotide is

~0.6 nm.

Possible DNA Bases
Pyrimidines
H H CH,
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Nuéleoside Phosphate Nucleotide

Figure 1.11. lllustration the chemical structure of nucleotides@A. Modified from

[1]
The order in which nucleotides appear in the oligonucleotide, also known as the sequence

or its primary structureaffects the physiachemical properties of the oligonucleoti@.



In a living cellular contexta DNA sequence is the basis for the storage of genetic
information, and is naturally found forming a helical structure or duplex with another
oppositely oriented (5' to 3') and complementary DNA sequence. This iconic helical
structure of DNA is made possible by hydrogen bonding between the lmasdsch

specific complementarity between one purine base and a pyrimidine base is present and
allows for formation of AT and GC pairs. TheseNatsonrCrick base pairing are
illustrated n Figure1.12 in which A forms two hydrogen bonds to T and G forms three

hydrogen bonds to C.

Hydrogen bond

5"end 3"end

Figure 1.1.2. lllustration of WastorCrick base pairing in a DNA heli Taken fron{1]



WatsonCrick base pairing artne pedominant mode of base pairing in natural DNAs
however, occasional mismatcheswell as notWatsonCrick base pairing such as either
Hoogsteen or wobble base paifig¢] can occur Other base pairing schemasd
interactionhave been reported for more comp@XA structures, such as triplexés7]

and Gquaduplexes]|7, 8] but these only normally occur under very speafinarrowset

of conditions. Specific base pairing or hybridization in oligonucleoti@dssilt in the
secondary structur@ oligonucleotidesWhile the doublestranded DNA (dsDNA) helix

is the mostfamiliar secondary structure of DNA, it is also possible for base pairings to
occur within & individual sequence om singlestranded DNA (ssDNAHue toself
complementaritywithin the sequencesThus, unlike the common helix which is
independent of the nary structures of complementary DNAget selfcomplementarity

of ssDNA sequences can lead to many unique secondary strudthiiksthese secondary
structures are less studied in ssDNA systems, various secondary structure are commonly
observed in its Hose counterpaknown asribonucleic acid (RNA). While base pairing

plays a crucial role in secondary structure formatamditional factors includean der
Waals and hydrophobic interactgdgtoaskibnegt wefef
Repulsive Eectrostaticinteractions due tthe negatively charged phosphates can inhibit or
weaken hybridization if not well shielddsy ions from salt additionsOther factors that

can weaken thaability of the secondary structure of oligonucleotides inclextesre pH
conditions(purine bases can be hydrolyzed at low ¢jHind the phosphate backbone can

be degraded under high pH conditifi}) and temperatuf&l].

Differences in the naturef the single secondary stcture of an oligonucleotide can, in

turn, effect the overall conformation or higher level tertiary structure of the



oligonucledide. Depending on the oligonucleotides involved, the sequeoetentof
pairing bases, and solution conditipdsstinctive forms of the double helical structaen
occur as shown ifrigure 1.1.3 where the mostommonly observed form of theouble

helix is the Bform for WatsorCrick base pairing dDNA. [7]

Direction of helix

(a) A form (b) B form (c) Z form

Figure 1.1.3. Helical conformations of dsDNA in which (a) is righanded A form (b) is
right-handed B form an¢t) is lefthanded Z form. Taken fropi]

The alternateA and Z formshave been showto have implications in théiological
functions of oligonucleotides as well as affect the oversthbility of the formed

duplex[12]

1.1.1.2 Thermodynamic Properties of DNA and other Oligonucleotides




Onemetricto describe thatability of a giversecondary structure of oligonucleotides is
the value of themelting temperatur€Tm), which is defined as the temperature at which
half the total number of sequences are associated into their desired secondary.dtructure
other words,Tm iIs a measure of thermal stability of the secondary structure against
dissociation. Melting temperaturgepends on the number of base pair matches, the
composition of the base pair matches (ratiostbngerG-C to weaker A-T pairs),
oligonucleotide sequence concentration, and ionic strength of solt8pri4] For
example, sinc&-C pairs possess more hydrogen botids) AT pairs, sequences with
higher GC ratios result in higher melting temperaturks a second exang increasing

the totalnumber of base pairglso tends to raisthe melting temperatur&.he overall
propensity forhybridization of sequencds described thermodynamically in terms of
Gibb's free ener gy (Tmgedddissoaetidodnstamtdk) inwhiolp er at ut
we consider théybridization reaction between two complementary individual sequences

to form doublestranded (ds) product as follows:

i i O i 0O0d® P Qi 'O0060 (1.1.1.1)

where Kqis the equilibrium association constant. We can also describe this with the

Gibbs free energy (oG) for this reaction a

yd YYD (1.1.1.2)

and

K
Q
‘<‘<
Q
<
<

(1.1.1.3)



Where Risthegasconstait, i s absol ute temperature, oH
and @S 1 s entr op watthe &act mebirig tegppemnature Valaeddr a givens
oligonucleotide sequence#0.5 andTr, is defined as the temperature at wh¥ed Tt

After equatingequations 1.1.1.2 and 1.1.1dhe can rearrange terms to generate the

following equation

yo

" —— 1114
v Y'Y Yl D ( )

Finally, we can define the equilibrium dissociation constamta& the inverse of the

equilibrium constant K

: P
— 1.1.1.5
v ( )
By substituting Kin 1.1.1.2with equationl.1.1.5yields:
yi  _Y¥lya
6 o~ O (1.1.1.6)

Since these equations are expressed in arglerezl format, they can also be used to
explain thermodynamics of seliteraction or sethybridization of singlestranded (ss)

oligonucleotides with themselves, e.g.

i i 00O "YQa QOO QQQH o QE ¢ (1.1.1.7)

or even with a nomucleotide species such as protein:



06606 YN QOQBIE E an DB (1.1.1.8)

SinceDNA has been widely studied by groups such as SantalLucia and ZxR&}, the
predicted and experimentdlermodynamic parameters of many indigonucleotide and
intra-oligonucleotide interactions are well documented, including values for nearest
neighbour base stacking effecinY"d. Thisinformationenables computational methods
such as Zukerds UNAFOLD web server to be
y"d and Tmfor a given sequence or sequences under various in solution conditions through
summation of experim¢na | | 'y det er mined values of @G f

neighbour interactions:

Yydoéowde YO Q YO y'd y'd (1.1.1.9)

in which¢ is the number of incidences a particular nearest neighbour paiQ 'Q is
the free energy of the corresponding nearest neighbour paitd), andy'd
are the free energy of a terminal@or A-T pair respectively, and'd is the free energy

of selfcomplementarity.

Other considerations for the thermodynamics of oligonucleotides iwahations in
enthalpy with temperaturesince the assumption that enthalpy remainastant with
respect to temperatureg heat capacityY8? ), is not alwaysrue Thistemperature
dependencean be expressed by the rearrangement of equations 1.1.1.2 andtb.1.1.3

generatd he vanodét Hoff equation:

€

or



[wpd
. (4
<3

5 (1.1.1.10)
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From equation 1.1.1.10 and 1.1.1.11, it caoleervedhat Kawill vary with temperature

unlessY’® 1. Determination of the dependenceX® on temperature can be carried

out by measuring at various tempetares, takingthe slope of) as a function of to
o 3 ..
yield " The second derivative @f as a function off will yield Y0 . The value for

Y8 can beestimatedheoretically usingnet hods i n Zuker s~ UNAF OL L

()

Yo .

In contrast to pure oligonucleotide systerhgrinodynamic estimations fparameters in
equation 1.1.Binvolving theinteraction of DNA or another oligonucleotide with a non
nucleotide species are nabadly characterizef®3-26], as the number of variables such

as the particular oligonucleotide sequemoernucleotidespecies, solution conditions, and
modes ofassociation areseemingly countlessWhile it is not possible to explore all
potential DNA sequences interactions with a species, recent advancements in DNA solid
phase synthesis do allow for facile tailoring of both sequence and length, so investigation

of many of sequences of interest are more posigifde.

1.1.2 OtherCandidateOligonucleotides



1.1.2.1 RNA

Like DNA, ribonucleic acid (RNA) is also hiomacromolecule but haseral key
differences from DNA. Firstlythe backbone oRNA hasa ribose sugawith has a
hydroxyl group on the'zZarbon rather than the-Bydrogenpresenin deoxyribose shown
in Figure1.12. In general, thegpresence of this 2lydroxyl on ribose results in lower
chemical stability as compared DNA, especially inalkaline andelevatedtemperature
conditions (37°C<T<100°dR8, 29 The 2:hydroxyl can even result in self cleavage of
the phosphodiester bondstirebackboneof RNA.[30] Another key difference from DNA
is the substitutionof the thymine base in RNAvith a uracil base which is a chemical
analogue of thymine with a demethylated¢&fbon. RNAoftenoccursas asingle-stranded
biomacromolecule in natureyhich results in greater observed structutalersity in
contrast to dsDNA. In facesRNA &en possesses more conformational freedom than a
comparative ssDNA sequence, which potentially allowsdétitionalconformationge.g.

pseudoknothot possible for ssSDNA.

1.1.2.2 LNA

Locked Nucleic Acids (LNAs) are synthetic oligonucleotides that masjgects of both
DNA and RNA.Similar toRNA, it possesses réboselike sugarwith key modifications
the 2 hydroxyl group is replacedith 2'-oxygenand there i methylene linker connects
the2'-oxygen to the 4tarbon in the ribose as showrFigurel.14 to effectively lockthe

ribose into a C3&ndoconformation. LNA typically use®und inDNA (A, T, G, and C).

1C
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Figure 1.14. Chemical structure of LNA with the methylene linker (left) and in its C3
endoconformation (right). Taken frof81]

Thesemodificatiors of the ribosegroupresults in more Aorm helixes which are thought

to strengthen base stacking interactions as comparefoiorBdsDNA helixes[32, 33] In
addition to promoting strongeibase stacking interactions, the methylene bridge also
confers nuclese resistance, as compared to its RNA and DNA counterp24t5] The
Milam group has demonstrategreater hyhdization activityand fidelity of recognition
between of complementary oligonucleotide sequences with LHd&Sed sequences
compared to purBNA sequences, thougienerallyonly modest differences were found
in the association rate constaf6] Other groups have reported similar findimgs$erms

of overallaffinity and fidelity of recognition of LNA to complementary oligonucleotides

1.2 Aptamers

Aptamers are singlstranded oligonucleotides with high affinity and specificity for a
particular no-nucleotide target. Using-vitro screening processes, aptamers have been
identified for many targets ranging from ions to small molecules to proteins and even whole
cells. [37-44] Aptamers are commonly thought of as the oligonucleotide analogues of

antibodies, but with many significant advantages over their antibody counterparts. Similar

11



to antibodies, aptamers have been characterized by their equilibriwtialiss) constants,

and haveexhibitedvalues of k typically in the picomolar to the micromolar rang5

While antibodes typically rely on animahostsfor theirin vivo generation, aptamers are
generated from a synthesized oligonucleotide library which enables easy customization of
base content and oligonucleotide modifications with lower cost and high reproducibility
during theirin vitro selection processegl5-48] It is largelyaccepted that aptamerget
binding is strong, but neoovalent and occurs through structooenplementarity between
selthybridized aptamer and its targejg structural complementarity arises from several
factors includingthe aromatic ringsnvolved inbase stacking, electrostatic and van der
Waals interactions, hydrogen bonding any combimation thereof[49] Aptamer
interactions with their targedare often treated a& i {arwk & ybidding interaction
similar to that of an antibodyand its atigen, but other studiesindicate that other
mechanisms are involved in bind[®f, 51], discussed in detail isection1.5. These
properties of aptameisave inspired largecale investigation for uses therapeutics,

biosensing, diagnostics, and research

1.3 Conventional Aptamer Screening

As stated previously, three labs independently and simultaneously develcperlar
procedure foin-vitro selection of aptamers in 199®%2-54] Robertson and Joyce used
their in-vitro selection procedure to select a varianiTefrahymenaribozyme to cleave
singlestranded DNA more efficiently than the naturally occurring wild type of the enzyme.
[52] Through repeatedycles ofmutagenesis @hselective amplification, the first RNA
sequencaptameto begeneratedn vitro to specificallycleavesinglestranded DNAvas

identified by the Joyce group. Atthe same tifgerk and Goldised aandomizdeight

12



baselength region withinan RNA seqencethat waspreviouslyknown to bindto the
bacteriophage T4 DNA polymerase.hrbugh progressive rounds of selection and
amplification of the sequence, Tuerk and Gold demonstrated that they could identify a new
overall sequence with improved binding caiities to the T4 DNA polymeragé&4] It is

from this publication by Tuerk and Gold that the eventual preferred descriptive name for
thisinvitros el ect i on pr SystemmatsEvaution of Ligarads sEckponeiitial
Enrichment o (SELEX). The third group to pt
Szostakds group. Unli ke the previous group
randomized RNA library which did not contain any\poaisly known RNA sequence or

species with affinityfor their chosen targeg molecular dyg53] This nonpreferential

selection is what most current SELEX processes[d5gEllington and Szostak were also

the first to coin the t elamn iafitasfit menadiofiddh g n t h
andmedd denot i nlike rapeg unitty dascribe their identified RNA sequence

which preferentially bound to their molecular diggget in what they hypothesized to

occur throughii f o | dn[sucagvhy as to create a specific binding site forsmagla n d s . 0
[53] With these landmark papers as a foundatibe,SELEXbased selectioprocesses

has becomwide-spread ints use to identify aptamesequences or oligonucleotide based

ligands comprised o$inglestranded oligonucleotide sequences with high affinity and

specificityfor their particular nomucleotide target.

1.3.1 Conventionaln vitro SELEX

The first step inpreparation forSELEX is the generation of a random library of
oligonucleotides such d&3NA that willservea s a @ p o o | aptancelequyemcése nt i a |

during panning. A typicaDNA library consists of a large number of ssDNA fragments

13



(~10"° molecules) that share a templated design compadba central random region of
20-80 nucleotides with flankesl and 3' ends that aspecificor fixed base segmeni{d5
These fixed end segmeritilitate amplification of the sequences throughout the SELEX
process ashort complementary sequences cghiechers are designed hybridize tothese

fixed end segments and allow PCR to proceed as shokigune1.3.1.

ssDNA Template

5' Fixed  Fixed
Region Region

s Random Region - o —
Primer

Annealing Taq Exlension

— — "o

Reverse and

ssDNA Template

Primer Extension l Bl eeeeeeee—— [ —
2e) ’ + Reverse aq Extens
dsDNA - — Frimer Primer
aturation , Amneaing
05°C) Forveard T
“ Primer S and ssDNA Template
T, + Extension Taq Extansi
{727C) = S P — ]
Complement
\ T ] P 1
i dsDNA
: Complement
1t PCR Cycle ; [ ——— N o
: Denaturation
dsDNA (957C) ssDNA Template

Final number of template = 21 :' T : —
where n is the number of PCR Cycles 2 PCR Cycle " Complement

Figure 1.3.1. lllustration of the ideal polymerase chain reaction for a single ssDNA
template with a random region. A PCR cycle is comprised of (1) annealing of the primers
at 47°C (2) extension of ¢hprimer byTag polymerase at 72°Gn the presence of
monomeric species called dNTPs (not shoamg (3) denaturation of the doutdranded

DNA at 95°C.

While there are ~¥0 ssDNA in a library, there are typically multiple copies of each
sequence, so ¢hactual number of unique sequences may range~1C-10'? sequences.

If the ssDNA library is later to be transformed into an RNA library, a sense primer on the
5' end containing the T7 promoter sequence is necessary along with the antisense primer.
[45] The T7 promoter sequence allows the T7 RNA polymerase to transcribe the ssDNA
to RNA, however if a ssDNA library is to besed no additional preparation is necessary.

If performing SELEX with an RNA library, each round requires the RNA to be reverse
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transcribed back into ssDNA, subsequently amplified via reverse transcription polymerase
chain reaction (RPPCR), and transcriloeback into RNA with T7 RNA polymerasgt9]

DNA continues to have several advantages over RNA for its use as an aptasner, ev
ignoring these extra stepsiring PCR that are required for RNA SELEX; DNA possesses
greaterchemical stability inn vivo environments as compared tdR and thusmakes it

a more attractivégandoption.

After preparation of the oligonucleotide lilbya a commornprecursorstepto SELEX s
counter selectionCounter selection is essentially a partitioning steplving a negative
targetthat reduces the initial librargize byremovng sequences that have affinity to
undesirable targets such as raativessels, immobilization substrates, side products of a
reactionwith the desired targea closely comparable species to the desired target, or even
a different form of the desired target.Rigure1.3.2, a counter selection step is illustrated

for the case in which the desired target is immobilized ensubstrate, so a counter
selection against the substrate is a desirablesgtepaptamers witta significantaffinity

for the substrate are not a desiragjigamer candidatdt is possible temploymultiple
counter selection steps to enable more spesdlection of aptamer candidates for the

desired targe{42, 45, 55|

SELEX itself begins with amcubation stepo introduce the library to the target under a
desired set of environmental conditionsgoomotingspecific binding. Parameters include
choice of buffer salt and pH conditions, temperature conditgurtsstrate for convenient
immobilization of small target@andaddition ofpotential blocking agent® promotefor
equilibration ofthe library with the arget. Following incubation, the nestep in the

SELEX round is partitioningn whichunbound sequences are separated fewgetbound
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sequencedDepending on parameter choices, such as a substrate for target immobilization,
this step can bepotentialy accomplished via magnetic bead separation, centrifugal
separation of a bead substrate, gel shift assay separation, a wash of the target functionalized
solid phase in HPLC, or nitrocellulose filtratiofs5] After partitioning, the remaining

bound sequences are elutgdchangingbuffer conditions and/or temperaturepgimmote
dissociation of targesequence complexesand the elutedDNA sequences are
subsequently amplified via PCR as showikrigure1.3.1 or via RT-PCRfor elutedRNA

sequencesThe previously bound and now amplifiedpy rumbersof thesesequences are
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used to enrich the pool oandidatesequences and can now be reintroduced to the desired

target in a new SELEX round as showrFigurel1.3.2.

‘Initial Sequence Pool”
Counter Q
Selection r Negative Target

Incubate R
Desired Target
‘Remaining/Enriched Immobilized on
Sequence Pool” Bead Substrate

L
Last SELEX Round “j

r ;;*‘23’ SELEX G‘g
o Round

Clone Partition
Amplify
1 (., o
Sequence u?-/

(-
"Elute

'v\

Figure 1.32 Schematic of conventional SELEX. One round of SELEX includes (1)
incubation of the random oligonucleotide pool with tesiredtarget (2) partitioning of
non-binding sequences (3) the elutionbmfundsequences from the target @CR based
amplification of the previously bound sequences to be used in the next SELEX cycle. The
counter selection illustrated is an optiopedcursorstep to remove sequences that bind to
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a nondesirable target before they are introduteethe desiredarget After a set number
of rounds of SELEX, cloning and sequencing take place affieal PCR step

Rounds of SELEX argypically repeated multiple times in orderitteally promote the
selection of aset of sequences with the highest affimty o the library pool. Depending

on the mmber of SELEX rounds performédormallybetweernl0-30 roundg, complexity

of the target, and the stringency of selection condititihe SELEX process can take
approximately two month& completd42, 45] Some more recenstudiessuggestthat

while there arerelatively few sequences with high affinity in a given paafl ~10'°
sequencegd56] identification of these high affinity sequences can be accomplished in as
few as three SELEX roundsy employing high throughputiext generation sequencing
(NGS) ratherthan conventional, low throughput sanger sequerj&igFollowing the

final SELEX round, the final remaining sequences are typically clangthset of clones

and sequenceds mentioned previously, one modern methods skip tblningstep and
insteadsequence the entire remaining pool with NGS rather than just the smaller subset

available with sanger sequencir]

PostSELEX analysis of the identified sequences commonly includes primaryusguct
analysis or predictedsecondary structure analyssnd possibly quantitative binding
affinity studies. Thgoal ofprimary structure analysists pinpointany shared or common
base segme(d) requisite for binding to the target, while the secopdiructure analysis
attempts to identifyany common secondary structsref these sequences aelf
hybridizedsegments thahaybind to the targeSinceprimary structure directly correlates
with secondary structure, batharedbase segments and comnsatondary structures of

resulting sequences are referred to as consensus [natits often treated as potential
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binding motifs[58, 59] For consensus motifgithin base segments is common to ignore

the fixed end portions in the sequence template as they occur in every sequence, but work
by Ouellet et algives credit to the postulation that fixed regions irtenfice with formed
structures should still be considerfed secondary structunmotifs. [60] Binding affinity

studies to determine equilibrium dissociation cant (ki) are common but can require
specialized equipment, labelling schemes, and differing conditions and experimental setup

from SELEX. Section 1.5 wiladdres¥& ¢ measuremesin more detail.

1.3.2 Pitfalls andLimitations of Conventional SELEX

While SELEXdiscovery of aptamers has a number of advantagesrovet methods to
generateantibodies for a targetonventional SELEX does have a number of limitations
and pitfalls. One limitation of conventional SELEX is that not all molecules or substrates
are sitable targets. Molecules that cannot be produced with high purisufécient
guantity should not be considered, as enrichmentnofifunctional or nonspecific
sequences is more likely. Evéar targets with high purity and yield, there is potential fo
enrichment on nonspecifically binding sequences through a number of pathways which
includethe following positively charged species which can nonspecifically bind to the
negatively charged backbone of oligonucleotides, species with hydrogerindgond
canddate sourcesvhich can nonspecifically bind toucleic acidbases, and hydrophobic
domainssuch asaromatic compourgiwhich can also nonspecifically bind to bafés.

62] Conversely, highly negatively charged speaan le challenging asarges due to
electrosatic repulsion witholigonucleotids. As desiredtargetsshift to more complex
systems, such dwing, diseasedgells, the increase ipotential but undesiredbinding

sites(e.g. areceptor found on both normal and diseased amis)greatly affedihe degree
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of specificityachieved in resultingaptames.[63] To ensure these issues are not generating
false positive hits among candidate sequencesunter selection becosiekey.
Additionally, some authors have even postulatedttiesimilanty in structures bserved

for distinct aptamersequence$or the same targdin separate SELEX processes by
different group¥fisuggests that some factors can affect the direction of aptamer evolution
which may result in the failure of aptamer selection for specifigetaor site of

i nt e[A7¢ Bhis ditected aptamer evolution may in part be due to interference

promotion of binding events played by fixed base segments

A secand set of limitations on SELEX involgghe challenge to uniformly standardize
SELEX across the communitySince targets vary, @& aptamer selectiorprotocol
appr@riate against one target may not be possilibe other targetsdue to the
incompatibility in immobilization and separatioschemes target sie, availability and
stability under selection conditiorendthelack of a suitable counter selectionnegative
target. An additional factor relating to tHisiitation is the environmental stability olfi¢
oligonucleotide in a complex environmestich as serundue to the presence of
oligonucleotidecleavingnucleasegjestabilizingpH conditionspresence obther nucleic
acids,andhydrophobic ankbr positively charged speci¢s.g. lysine residues ingotein)

in a biological environmenThus,oligonucleotides may be degraded or have structure loss
during the selection processself. This set of limitations results in SELEX requiring a
significant amount of optimization for mdsiblogicaltargets. iough automated SELEX
methods exi$b7, 64, 65, the chalenge to incorporate specialized robotic systems means
that manual handling (and all its associated errors) is currently used and likely to continue

for the immediate future.
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Lastly, a very specific pitfall of SELEX is the quality of the synthesized riybeand
subsequently selected pools in each round of SELEX. In 2005, Musheev and Krylov
publishedtheir findings detailing differences in PCR of a ssSDNA template with a random
central region versus a homogensaguence populatiomhich demonstrated that RGor
random libraries proceeds markedly differently and requires significant optimization to
reduce undesirable side product formafie@. Since then multiple groups have continued

to report bias in PCR during SELEX in both base content and side product formation using
either norequilibrium capillary electrophoresis (NECEEM) oGS characterization and
have proposed models of 4pyoduct formation and resulting selection bif&7-69
Recently, another group reported that bias arises eveheirordered template from
different manufactures, persists in PCR, and can affect the overall affinity of the identified
aptamers[70] Emulsion PCR (ePCRpY9, 71] as well asowdroplet digital PCRddPCR)

has now been shown to be one method to minimize PCR bias andaidetgormation

in random oligonucleotide librarieg/Q]

1.4 Aptamer Targets

This next section provides awverviewof some of the general trends in targebices for
SELEX-based aptamer screenings stated previously, aptamers have been selected for
targets ranging from ionendsmall molecules to proteins and even whole cg8%-44]

The next question can entail the actapplicationof an aptamerThe answer ishatan
aptamer may potentially be used as both a recognition, detection tool as well a potential
therapeutic tool[50, 72-74] As examples a number of potentially therapeutic and
diagnostic aptamesequencesave been investigateds capture agents fohuman

immunodeficiency virugHIV) related proteins, Hepatitis C related proteins, leukemia
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cells, immunoglobulin E, thrombin, and vascular endothelial growth factor (VESF).
The first FDA approved aptamgrerapeutic iknown as Pegatnib or Macugen, a pegylated

aptamer for VEGKF75|

1.4.1 A ModelAptamer Target: VEGF

VEGEF is abasic heparin bindinglycoproteinwhich isencoded by gingle gene and can
be expressed in four different isoforms: VEGFVEGFss VEGFss, and VEGEos in
which the VEGF isoform number is equal to the number of amino acid residues present.
[76, 77] The most common isoform expressed in humans is VG5 kDa). While
the VEGH2: isoform is acidic, the other isoforms are basic, and exhibitehibnding
affinity to heparin,a glycosaminoglycan which functions as an anticoagulgfgl
VEGF21is a freely soluble protein, and though VEGsis somewhat dable, a significant
portion of the isoformremainsphysicallyassociated with the cell surface or extracellular
matrix when secretgd9] VEGF assumes an antiparallebtbralimer structure and
possesses two binding domains, the receptuting domain and théeparinrbinding
domain[80, 81] Correlation ofthe structure ofVEGFss with its function has been
effectively demonstrated through limited proteolysis of VEGF which tesub 7-10 fold
reduction inits bioactivity. [82] The high affinity bindingof VEGF (Kq~1-10 pM) to

multiple receptors also has begitlely characterized.

The unique structur@and propertiesof VEGF extend taits distinctive roles as a mitogen
and angiogen. VEGF has been defedveidisagd as
that produces a therapeutesponse dEDso as low as 2 pM[77] As implied in its name,

groups have reported VE@&electivelyinduces mitosis or mitogenesisf endothelial cells
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from vans, arteries, and lymphatidsut not for other cell typeg.83-89 As an angiogen,
VEGF regulates angiogenesis through interactions with tyrosine receptoekivagh

can result in either desired physiological angiogenesis (e.g. tissue regeneration) or
undesired pathological angiogenesis (e.g. tumor growW80,. 91] In physiological
angiogenesis, VEGF has been shown to play crucial roles in embryonic vasculogenesis and
angiogenesifd2, 93] postnatal developmef®4, 95 skelgal growth and bone
formation[96, 97] and ovarian angiogenegi®/, 98 Conversely, pathological
angiogenesis has been found to be mediated by VEGF in solid tumors and hematologic
malignancie$99, 10Q intraocular neovascular syndroni@§1-103 inflammation and

brain edem#104, 105 and pathology of the female reproductive tr§t@6 107 Thus,

the duaVEGFplaysin mediation of angiogenesis in a variptyysiological contextnakes

it an ideal target for therapeutic applications as both a target for inhilifi6 or

promotion of angiogenesis activifyt09, 110

The trifecta of its unique molecular structure, structure related function and relevant
therapeutic and diagnostic applications allowed VEGF come into the spotlight as an ideal
target for aptamer identificatiothrough SELEXsince an aptameipotentially enables
tailored control of inhibition or uptake of a molecular species as well as potentially function
as a delivery platform[74, 111-113 The first reportedand subsequerdptames for
VEGFes were identified by Janjic and coworker$114-11€6 Janjicet al. continued to
investigate affinity and structural modification for stability and truncation of the RNA
aptamer for VEGEssand later demonstrated that they could in fact inhibit receptor binding
of VEGF as well asubgquent VEGF mediated vascular permeability throtagbeted

aptamer bindingo the receptor for VEGH117] After clinical trials, a pegylatedersion
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of the RNA aptamer for VEGF165 was approved by the FDA for use in humans under the
namePegatnib or Macugev5, 90] Since the identification of RNA aptamers for VEfed

by Janijicet al.,other groups have identifietlditionalDNA aptamers for VEGfss.[118

The apamers forVEGFues interactions have continued to be investigatecadigitional
groupsto study aptameYEGF binding mechanisms, affinity and kinetics after selective
modification, truncation, and deletion pbrtions of theaptamer structur¢119, 120 The

Milam group has explored regulated uptake, release, and regeneration of aptamer binding
capabilityusing competitive targetdisplacemenstrategies[81] Thus,VEGF has served

as amodeltarget for selection of aptamers via SELEXhelppave the way for aptamer

based therapeutic applications.

1.4.2 Modification of Aptamers for Optimization of Target Selection

Severabf thepreviously discussddnitationsof natural nucleic acids (i.e. DNA and RNA)
can be mitigatedoy chemically modifying oligonucleotidesto alter their physical,
chemical, or structural properties. The following secioil discuss three overarching
schemes for optimization of aptamperformancahrough the followingoligonucleotide
modificationroutes template desig synthetic nucleic acighcorporation into library pool

and postSELEX sequencenodification.

1.4.2.1 Template Design Modification

One of themost easily implementable modifications to oligonucleotide libraries is to bias
their properties even before introduction to the target through thoughtful design of the
templatestrands There are severpbssiblestratagems$o evenadapt the template dga

to better suita specific targesuch ag1) biasing base content in the random regi@n
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tailoring the basdength of the random regip(B) redesigning fixedbase segmentand

(4) intentionallyintroducing conserved secondary struciate the Ibrary.

Biasing base content in the random region can allow for formation of more unique
secondary structures, enabletter chemicastability inthe screeningnvironment, or
promote selectioonf higher affinity fromcandidates possessing bases wih@awvn

affinity to a specific target. This has besffectivelyused with G/T and G/C rich libraries
to promoteG-quaduplex formation[121] This G-quaduplex featwed libraryis
generallyassociated with higher serum stability aoell uptakd.121] As described in
Chapter 3, the Milam groupntentionallyutilized an Arich library for panninggainst
gold-based target based on prior reports of the stronger interactions between gold and
adenine[127 Other groups haveubsequentlpiased their chosen sequence after
selectionin which, for exampleanaptamer rich ilPA/T wasoriginally identified for an

A/T binding protein, andhenmutatednto anon-A/T rich sequence to demonstrate
resultingreduction in affinity[123 Though the motivation for base bias has mene
must exercise particular caution sirzased weightingfdases in the random region

also may be an undesired side product from unoptimized PCR bias.

The second optiomvolvestailoring thebasdength of the random region. To this purpose,
most have argued for significamductionof the randonsegmenof the templateas longer
random region templates cannot potentially display all their variations within a given
library of 10'® or fewer total sequenc§$24-127] On the other hand, kile shorter random
regions have been successful for identification of aptafi®4 125 127, 12§, these
shorterbase lengthibraries may not be able to achieve sufficient structural diveirsity

terms of secondary structure yield high affinity for the target[126 To balance these
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competing factorsjVanget al. have proposed a scheme in which the starting template has
a short random region, but after every SELEX round the random region is ext@@éled.
Another very recently developed compromise to this issuekaksed stepping libraries

which use an array of random region lendtt(]

Rather than modifying the entire template strandsjification of the fixedbase segment

has been a optimization strategy since the development off BXIRShortly after the
introduction of PCRas a sequence amplificatiagachnique,the importance of primer
designand its complement became quickly appaf&Bg Furthermorethese fixedbase
segmerd can affect aptameelection due teheir potentialdirectinteraction witheither

the targetitself or with the random regiof60, 133 The Krylov groupinvestigated
modifying thebaselengthof thefixed base segmentsr the purposes of optimization of
PCRof library templategor SELEX [66] There iscommonagreementhat shorenng the

fixed baseregion is ideal[134 One group hasven proposed eliminating fixed regions
entirely through development of new methods for a cycle consisting of: removal of fixed
regions from the library, incubation with the target, and subsequent regeneration of the
fixed regions[133 A simple solution for preventing fixed region interference for some
targets has been to just introduce ¢benplemerdry sequenct the fixed regions during
incubationwith the targeto promote the formation of duplex end® the fixed regions

will be ideally be associated in a dupl#sat do not compromise binding activiby the
random regiomvith thetarget[60] Another recent modification to the fixédse segments
also involves introducing aruncatedcomplemerdry sequencéo any one of the fixed
regions, however in this instance the complementary seqitsetfas immobilized to a

substrate[135
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The last template design optimization schentaesintentionalntroduction of conserved
secondary structure into the library temtel To our knowledge, the first to propose this
scheme was S moevkich ackndesvedycentral fpairpin loop structure flanked

by a random region on each side was used to facilitate identification of an aptamer for GTP.
[136 Othe groups have also reported successful identification of aptamers utilizing
conserved structures to enhance hairpin loop formation within the central random region
[133 137] Another proposed concept is that of structsingtching aptamerby Nutui and

Li who also used a conserved central structure flanked by random regions but utilized
fluorescently labeling onomplementary sequences to either of the fixed ends and another
complementary sequence to the central structure with a quga8&8eIThis integrationof

dye into the structure of the template design enabled identification of aptanvarsh
thetarget could displace the central complementary sequence to enable sighaligg
binding activity.Secondarystructure conservation in the template shouldhoeightfully
introducedsinceselt-complementarity of the fixed regions malgooccurto affect target

aptamer bindindg.60, 136, 137

1.4.2.2 Synthetic Nucleic Acid Modification

While DNA and RNA possessnatural diversity as aptamer nchdates synthetic
modification of nucleic acids embodies the opportunity to derive new aptamer spigties
potential for higher affinity andlegree ofspecificity. Previously the main barrier to
implementation of synthetic nucleic acid modifications weslack ofcompatibility with

DNA and RNA polymerases, but recent advancements have enabled discovery of

compatible modifications with identification of compatible polymerases for these
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techniqgue$139 There are several key locations for possible chemical modification of

nucleic acids: the backbone, the sugar, and bases.

There are currently three major possible modifications of the backbone: phdbpraiey
boranophosphate, and phosphonate, as showkigure 1.41(a). Successful SELEX
identification of aptamers has been performed with phosphorotfid&t#43 and
boranophosphate backborjéd4 A recent literature search for aptamers with
phosphonate babonedid not yield any examplebut other phosphonageoups attached

to aptamer3' endhas been explored as a method to inmbittrophil elastasel 45 146
Benefits of using phosphorothioate backboimetude enhanceduclease resistandet]]

and immunogenicity147] Additionally, phosphorothioate backbones can potentially
allow for higher affinity binding through formation afdditionalunique structuresot
possible with DNA and RNA140, 143 For proteins exhibiting cysteine residuasother
biomolecules with thiol or sulfate chemistdisulfide bond formation is also possible with

a phosphorothioat@.g. hearin)[141] Boranophosphate backbones in aptamers have the
potential advantage of hydrophobic, sterospecific, and polar properties compared to the
phosphate backbones which could enhance affinity; howSELEX for some targets
with this chemistry heproven difficulf144] Despite potential challengebgtShaw group

has previously reported successful identification of an boranophespipamer to

ATP[14§
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(a) Alternatives for the phosphodiester backbone:
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Figure 1.41 Chemical modifications to DNA tolerated by polymerases where (a)
backbone modifications (b) sugar modifications and (c) uracil modifications are shown.
Taken from Ref[139

Many sugar modifications are possible to create xamdeic acids (XNAs) where X
denotes the modificatiph49 as only partially showmn Figure 1.41(b). The XNA of
greatest interest for the purposes of this review is LNA with theefhylene andas
previously been discussed as an oligonucleotide in section 1.1.2.2. While LNA does hold
great promise in SELEX, LNA has most commonly been used as a modification post
selection or integrated into only the fixed regions during selefig. Thus far,
implementation of LNA in the random region during selectias only been achieved by

Kasaharaet al. who reported a chimera LNA aptamer for thrombin witkgaf ~20 nM.

[15Q

The final candidate portion of nucleic acidsr modification are the basgsesent As
shownin Figure 1.4.1(c), the uracil base contains acarbon thaican be chemically

modified while stillcapable of recognitioby polymerasessed for PCR139 The number
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of potential modifications to bases and synthbases for SELEX are numerous; with 24
different base chemistry modificationeported and of which 12 chemical base
modifications are reported to be polymerase compdtitii#. To date, SELEX using these
modified oligonucleotides has not been reépdrhowever, His large number of base
modification possibilities along withraccompanying variation ichemical and physical

propertiegpose strongotential for customizing a library to a particular target.

1.4.2.3 PostSELEX Primary Structure Modification

Thelast scheme for optimization of aptamers for a specific tangetves postSELEX
primary structure modification. This modificati@ehemecan be described as belonging

to one of four categories: truncati¢of base segment(s)leletion(of individual baes)
insertion/extension. These methods are commonly employed to attempt to reduce an
aptamer sequence to only its essential binding structure, elicit binding motif information,
and generate higher affinitjor a targetor greater chemicalstability in hasher
environments (e.dgn vivo). Characterization binding of VEGF aptamers have effectively
used each of thesgproacheslruncation of VEGF aptamers has been successfully used
to identify shorter sequences that still possessed high affinity to We[@E4, 120
Individual base deletiom VEGF aptamers has enabled identification of minimal aptamer
structurg{117] Extension of VEGF aptamers has besmployedto stabilize secondary
structure formationto promote higher targeaffinity.[119 Finally, baseinsertion of
positional mutations has also enabled high affinity in VEGF aptarfie5g] Though
success has been reported, the candidate parameter space (e.g. which base to alter, etc.) is

often very large and interdependeltoreover becausgostSELEX modification only
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occurs afteaptamers have been selegtétlas only minimal utility in adapting the SELEX

process to other target species.

1.5 Characterization of Aptamer Target Binding

A key gquestion that remains to be explored in literature is the asateof binding of
aptamers to their targeSince aptamers evolve from different libraries in various
conditions for unique targetsxd SELEX protocols are not uniformly implemented across

the community there is no singular answer. To address this issue, several rhadels

been developed along with techniques and methods to characterize an aptamer binding to
its targetin addition to evaluatinthe aptamer sequence gmwddictedsecondary structure.

The following sectionswill cover models for aptamer target bindiigtermination of the

equilibrium dissociation constant, and motif discovery.

1.5.1 Models for Aptamer Target Binding

Sinceaptamerswhether natural or modified oligonucleotj@ee a relatively new class of
biomacromolecules, initial models for their interactiwith other species have bdmsed

on previous models for other molecular interactions. The first and still most prevalent
simplistic model used to describe aptathea r get compl ex f or mati on
model whi ch der i vedarly descrptiohsnof enzyrReubst@ate e r 6 s
interactions and has also been used to describe andgmdidgen binding[153 154 The

lock and key model assumes that an aptamer is specific to molecules of a certain shape, as
in the analogy of the molecutepresenting thiock and the aptameepresentinghe key

that fitsin the specific binding pocket of its matobilock. While the analogy isimpleto

envision it maynot completelydescribehe mechanism for aptamer target binding.
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Shortly after coining the term apteamer,

structure of ssDNA as playing an essential mlin binding to its target[155 This
description with laterconfirmation by otherdormally led to the model used to describe
most aptametargetsystems.As shown inFigure 1.51, the conformationstate of the

aptamer results in its recognitiddased binding of itearget[45]

RNA or ssDNA Defined Aptamer-Target
(<100nt) Three-dimensional Complex
Structure

Folding SR Molecular Recognition /~
—_— o —_—

Binding

ey
)

Figure 1.51. lllustration of the conformational selection for aptaitagget complex
formation. Adapted from Ref45]

While this modeis popular someaptameisystemdave been shown to deviate from this
binding mechanism [49, 156 Structureswitching aptamersn which conformational
changes occur in aptamers upon target binding, for exampldd notbe possible under
this model[13§ Thus, an alternativpathway for aptamer binding is silaxi to a theory
that was first proposed by Koshland in 1958 for enzymasyely annduced fit.[49-51,

154 Under this model, multiplgpotential pathways for aptamer target binding can be
diagrammed similarly tthe interactions between an enzyme andutsstrate, as shown in

Figurel.52.[157-159
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FromFigurel.5.2, two possible pathways for aptamer binding caoliserved, namely

one for conformationaelection and anotherrfomduced fit. For conformational selection,

an aptamer first folds into its seldbmplementary structure, forming a defined three
dimensional structure (though it tgpically representedsa twodimensional secondary
structurg to enable recognitioandbinding to its target. In the induced fit pathway, the
aptamer firsencountergs target and thedynamicallyfolds to bind withthe targetWhile

these binding pathways may seem exclusive, it may be possib&efoents ofboth
pathwaysto occur, ageportedin noncovalent proteirprotein interactions[16(0 For
simplicity, the shown binding model only assumes conformational selection and induced

fit of the aptamespecieswhile the targdi structure is assumed to be static

To more deeply understanthe nature ofaptameitarget binding, it isimportant to
acknowledge thesearious aptameitarget binding modelso probe into theorigins of

affinity generation as well as the roleasfymotifs in binding.Despite the proposal of this
newer inducedfit model, mostpublicationsstill presumet hé oék and Kkeyo

sufficiently descritesaptamer binding equilibria and kinetics
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Figure 1.5.2. Reaction pathwaykor four species:A*) is the unfolded aptameridi) is

the selffolded aptamer,A*T) is the unfolded aptamearget complex, andAeiT) is the
self-folded aptametarget complex. Red arrows represent induced fit pathways while green
arrows represempnformational selectiopathways Schematic adapted for aptamers from

[159

1.5.2 Determination of K
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