Decentralized Water Infrastructure for Growing Urban Neighborhoods: Environmental, Social, and Financial Implications

ACSP 2018 Conference
Aug 27, 2018

Heonyeong Lee
Ph.D. Student, School of City and Regional Planning,
Georgia Institute of Technology

Nancey Green Leigh, PhD, FAICP
Professor, School of City and Regional Planning,
Georgia Institute of Technology

- Acknowledgement
 This research is funded by NSF Grant #1441208 (RIPS Type2: Participatory Modeling of Complex Urban Infrastructure Systems (Modeling Urban Systems)).
Our thanks to the City of Atlanta, Department of Watershed Management for providing water consumption data used in this research.
Abstract

• Purpose
 • Evaluate financial, environmental, and social impacts of decentralized water technologies (on-site/shared systems) based on multiple neighborhood growth scenarios

• Study Area
 • Bankhead: low-income neighborhood where water affordability is a critical issue

• Methods
 • System dynamics incorporating land-use dynamics, fixture retrofitting, water demand projection, and impacts of decentralized water technologies

• Results
 • Decentralized technologies have potential to reduce potable water demand up to 44%
 • Shared rainwater and graywater systems can be sustainable and economically viable solutions to meet increasing water demand in a growing urban neighborhood
Sustainable Urban Water Management (SUWM)

• Principles of SUWM
 • Incorporate a number of alternative water sources
 • Distribute decentralized treatment plants across urban areas
 • Integrate supply, sewer disposal, and stormwater as components of a system
 • Consider multiple sustainability indicators of system performance

Conventional urban water cycle
(“take, make, waste approach”)

Sustainable urban water cycle
Rainwater & wastewater reuse
Decentralized Urban Water Technologies

• Types of Technology
 • Rainwater harvesting / Graywater reuse / Wastewater recycling

• Scales
 • On-site / Semi-centralized (Shared)

• Benefits
 • Increased efficiency of resource use and reduced ecological footprint
 • 30-60 % decrease in water demand; reduced water treatment and transfer costs
 • Enhanced water security through source diversification and multiscale networks
 • Lower capital intensity and shorter construction time; rapid respond to external shocks
 • Better opportunities to adjust the water system to local conditions
 • Low-tech, low-cost, and flexible service boundary
Study Area

• Challenges in Atlanta Water Management
 • Growing population and urban sprawl
 • 2.5 million more residents within the next 25 years (Atlanta Regional Commission)
 • Lack in diversity of water supply options
 • A single water source, Lake Lanier, supplies over 70% of metropolitan water demand
 • Nation’s highest combined water price
 • $325.52 estimated monthly water bill for a typical four-person family
 • Tristate water wars
 • Inter-state dispute concerning the use of two shared river basins (Alabama & Florida)
 • A century-old infrastructure system
Study Area

- Bankhead Neighborhood
 - Low income & low density neighborhood
 - Old housing stock
 - Abandoned homes & vacant parcels

<table>
<thead>
<tr>
<th></th>
<th>Bankhead</th>
<th>Atlanta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>6,873</td>
<td>455,004</td>
</tr>
<tr>
<td>% Black</td>
<td>80.7%</td>
<td>52.6%</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>20.1%</td>
<td>10.4%</td>
</tr>
<tr>
<td>Median HH income ($)</td>
<td>33,433</td>
<td>60,730</td>
</tr>
<tr>
<td>% Home ownership</td>
<td>26.0%</td>
<td>42.6%</td>
</tr>
<tr>
<td>Vacancy rate</td>
<td>34.2%</td>
<td>18.1%</td>
</tr>
</tbody>
</table>

Data: American Community Survey 5-year Estimates (2012-2016)
Assumption:
New plumbing code that requires all newly constructed residential & commercial units to be equipped with water-conserving technologies
Testing Scenarios

<table>
<thead>
<tr>
<th>Growth scenarios</th>
<th>Types of technology</th>
<th>Implementation scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>S#1: Slow growth</td>
<td>Rainwater system (Outdoor-use only)</td>
<td>Individual (on-site)</td>
</tr>
<tr>
<td>S#2: Projected growth</td>
<td>Rainwater system (Outdoor + Indoor use)</td>
<td></td>
</tr>
<tr>
<td>S#3: Rapid growth</td>
<td>Graywater system</td>
<td>Decentralized (shared)</td>
</tr>
<tr>
<td></td>
<td>Combined system</td>
<td></td>
</tr>
</tbody>
</table>

- **Neighborhood Growth Scenarios**

<table>
<thead>
<tr>
<th>Growth scenarios</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S#1: Slow growth</td>
<td>Land-use patterns and the vacancy rate will remain unchanged</td>
</tr>
<tr>
<td>S#2: Projected growth</td>
<td>The vacancy rate will decrease from 34.15% to 4.3%</td>
</tr>
<tr>
<td>S#3: Rapid growth</td>
<td>Benchmarking to another TOD neighborhood (Lindbergh)</td>
</tr>
</tbody>
</table>
Results: Population & Employment Change

Projected Population

Projected Employment

Slow growth Projected growth Rapid growth

Slow growth Projected growth Rapid growth

+11.3% +61.7% +141.8%

+12.2% +63.1% +358.4%
Results: Water Consumption Projection

Estimated Monthly Water Demand

- Slow growth
- Projected growth
- Rapid growth

-7.6% (Annual: -0.15%)
+34.3% (Annual: 0.69%)
+153.5% (Annual: 3.07%)
Results: Effect of Fixture Retrofitting (Water consumption per unit)

Monthly average water consumption in CCF (1CCF = 748 gallon)

- Single family: -19.5%, 6.06 CCF in 2018, 4.97 CCF in 2043, 4.88 CCF in 2068
- Multifamily: -20.7%, 4.42 CCF in 2018, 3.55 CCF in 2043, 3.50 CCF in 2068
- Commercial: -9.4%, 21.73 CCF in 2018, 19.86 CCF in 2043, 19.68 CCF in 2068
Results: Effect of Decentralized Technologies (Reduced water demand)

- Potable water reduction by technologies (Projected growth, on-site)
Results: Effect of Decentralized Technologies (Reduced water demand)

- Comparison between on-site and shared infrastructures (Projected growth, Combined system (RW+GW))
Results: Effect of Decentralized Technologies (Reduced wastewater)

- % wastewater reduction (Projected growth, Graywater (on-site))
Results: Effect of Decentralized Technologies (Reduced water bill)

• Estimated annual water bill (Projected growth, on-site technologies)

![Annual water bill (US$, 2018)](chart)

Water affordability criteria
(3% of household median income)
Results: Financial Implications of Decentralized Technologies

- Cost-Benefit analysis results for on-site technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Single-family unit</th>
<th>Multifamily unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPV (US$)</td>
<td>BC-ratio</td>
</tr>
<tr>
<td>Rainwater (outdoor)</td>
<td>-327</td>
<td>0.93</td>
</tr>
<tr>
<td>Rainwater (indoor)</td>
<td>-1,156</td>
<td>0.87</td>
</tr>
<tr>
<td>Graywater</td>
<td>-2,347</td>
<td>0.77</td>
</tr>
<tr>
<td>Combined</td>
<td>-5,900</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Results: Fiscal Impacts of Decentralized Technologies

- Annual revenue from potable and wastewater bill (Projected growth)
Results: Fiscal Impacts of Decentralized Technologies

- Annual revenue from potable and wastewater bill (Rapid growth)

![Graph showing estimated total water bill and its components from 2018 to 2068]
Conclusion

- Decentralized water infrastructures are an effective solution to sustainable water management for growing urban neighborhoods.
 - Ecological benefits
 - Reduce 16.6 - 47.2% potable water consumption
 - Reduce 31.1 – 45.8% wastewater production
 - Social benefits
 - Greater water accessibility for households and businesses in low-income neighborhoods

- On-site water-conserving technologies may increase fiscal pressure of city’s water department because of reduced service revenues.
 - For a growing city, increased water demand offsets the reduction in per capita water bill
 - Shared infrastructure is a better solution for a city in terms of effectiveness, efficiency, and fiscal control