Transportation networks inspired by leaf venation algorithms

Fernando Patino-Ramirez¹, Chloe Arson¹

¹ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
E-mail: fp@gatech.edu

Abstract

Biological systems have adapted to environmental constraints and limited resource availability. In the present study, we evaluate the algorithm underlying leaf venation (LV) deployment using graph theory. We compare the traffic balance, travel and cost efficiency of simply-connected LV networks to those of the fan tree and of the spanning tree. We use a Pareto front to show that the total length of leaf venations is close to optimal. Then we apply the LV algorithm to design transportation networks in the city of Atlanta. Results show that leaf-inspired models can perform similarly or better than computer-intensive optimization algorithms in terms of network cost and service performance, which could facilitate the design of engineering transportation networks.

Keywords: optimization, leaf venations, transportation, networks, graph theory, transport efficiency.

1. Introduction

The seemingly simple problem of connecting a central node to a set of spatially scattered points is common to many natural and artificial systems of all scales and levels of complexity. Despite the differences in the mechanisms that drive network deployment, optimality is always sought as the maximum of objective functions under environmental constraints. Performance metrics are defined \textit{a priori} by the modeler. A complex system can be optimized locally or globally, and optima may vary over time due to environmental constraints or internal changes such as ageing, growth and demand and supply. Complex optimization problems have been addressed by nature for millions of years by means of evolution; external stimuli trigger adaptation of organisms (and their organs) to their environment (constraints) and the competition for resources results in increasingly efficient organs, organisms, communities and ecosystems over subsequent generations (1–4).

In closed environments with a limited availability of resources, biological networks constantly adapt to improve their efficiency, robustness or flexibility. Principles of thermodynamics impose some trade-offs: increased efficiency towards a specific function decreases the performance of the network in some other manner. In the case of fully connected graphs, minimization of the total network length results in a simply connected graph, having exactly one unique path between every pair of nodes (5). Conversely, dynamic environments promote the development of robust and resilient networks, capable of overcoming accidents and errors and that have a better evolvability, at the expense of an increased network cost (6–10).

Organs and tissues develop strategies to optimize flow, energy, cost, connectivity and any other characteristic pertinent to their function. For instance, circulatory vessels are shaped to ensure efficiency and resilience (11); neural arbors deploy with minimum distance between cell bodies and synaptic partners and minimum network cost (12); plants optimize flow from roots to leaves while minimizing the total energy cost of their growth (13); root systems follow high
hydraulic gradients (3,4,14) and uptake water as they grow, which makes the soil-root dynamics highly coupled and non-linear (15–17). Remarkable optimization strategies were also noted in relatively low complexity organisms, including fungus (18) and slime mold, a unicellular organism capable of achieving continuous optimization of its foraging path (19,20). Computational algorithms inspired by slime molds were used to aid solving NP-complete problems, such as finding Steiner trees (19,21), and to assist the design of transportation networks (22–24). Communities have been studied extensively through ant colonies, which minimize the local cost of their networks (25) to the expense of reduced robustness (26). Related research focuses on colony organization (27,28), robustness versus efficiency (29) and computational optimization algorithms (30). Other animals exhibit intrinsic optimization strategies (31,32) in their travel and exploration dynamics.

Bio inspiration has been adopted in many disciplines as a vector of innovation. For instance, doctors practice surgeries with a mosquito-inspired needle (33); cod glycoproteins are used in the industry for their antifreeze properties (32); wind turbines were optimized by taking inspiration from the flippers of humpback whales (34) and mussels inspired the fabrication of novel adhesive compounds (35). Engineering and natural networks present similarities both in their global and local optimization objectives. For instance, water networks were designed by solving an NP-complete problem using particle-swarm optimization, with a bird-flock inspired algorithm (36). Internet networks were optimized with an algorithm inspired by slime molds (37). Bus routes were calculated based on ants behavior (38).

In this study, we evaluate a leaf venation (LV) algorithm for designing bio-inspired infrastructure networks. In Section 2, we describe an algorithm that models the mechanisms that drive LV deployment and we present two reference algorithms for benchmarking. In Section 3, we compare the LV algorithm to the two reference models by means of a set of topological indexes and a Pareto optimality front. In Section 4, we apply the LV algorithm to design a transportation network in the metropolitan area of the city of Atlanta (GA) and to expand the current metropolitan network towards an adjacent suburban county. Section 5 presents our conclusions regarding the potential of using LV algorithms for infrastructure design.

2. Network algorithms

LVs connect the stem to points distributed on the blade of a leaf with minimum length to transport fluids under environmental constraints. Similarly, transportation networks connect areas with high population or high economic activity and are designed to minimize cost and maximize efficiency during construction and service life. Based on this analogy, we propose to apply an LV algorithm to design a transport infrastructure network under the following assumptions: (i) The existence of a single source/sink point connected to an arbitrary number of attraction/service points; (ii) The absence of healing mechanisms that can overcome possible disconnections; (iii) The possibility of discretizing the domain into nodes that need to be connected (called attraction points from now on). In this section, we present leaf venations as simply connected networks embedded in a homogeneous space at steady state and we compare the performance of the LV algorithm to that of two benchmark network algorithms.

2.1 Leaf venation (LV)

Plant leaves grow a vascular system of interconnected veins, which ensure evapotranspiration and mechanical stability (4,39). Leaf venation systems form hierarchical networks, usually starting with a main single vein that grows from the petiole, followed by secondary branches that start from the main vein, and are connected at the same time to smaller veins. The latter, called tertiary veins, create paths that connect every single stoma to primary and secondary veins and therefore permit flow from/to the petiole to the whole leaf blade (40). Additionally, tertiary veins form loops in the network, adding redundancy to the system so that in case a vein is cut, flow paths still exist to reach the entirety of the leaf blade; the existence of loops in the network increases its overall cost (41). Here, we study cost minimization and thus focus on primary and secondary veins. We do not study the mechanical stability of the leaf and focus on the mass transport function of the LV.

Vein development (42) influences the shape and growth of the leaves (43,44). Leaf blade shapes are either simple (with a single unit) or compound (with two or more leaflets). Simple leaves can be entire, if they have a smooth or slightly toothed edge, or lobed, if they have significant indentations that make the contour highly non-convex (44). Marginal growth characterizes leaves that develop outside of the current blade contour whereas diffuse growth refers to blades that stretch themselves to increase area (42). In our study, we focus on simple, entire leaves that experience no growth; thus, we study the case of a relatively unconstrained geometric domain that grows outwards (no stretching of existing veins). This scenario is congruent with transportation infrastructure networks, which are constructed progressively, extending from the previous step of the network.

The most accepted algorithm for modelling vein patterns formation is based on the canalization hypothesis (45), which states that the growth and branching of new veins are controlled by the spatial distribution of a signal distributed
along the leaf blade. This signal is in large part attributed to a growth hormone called auxin. Physical evidence shows that auxin sources can be viewed as attraction points discretely distributed throughout the blade (46) and numerical LV algorithms based on that assumption were validated against biological experiments (44). The diameter of the veins obeys Murrays law, a power law with exponents that depend on plant species (47).

In the present study, we adopt the algorithm proposed by Runions (44). The algorithm is described in Figure 1. In this implementation, the domain and auxin points (attraction points) are fixed at the start of the algorithm, and no new auxin point is added over time. Rectangular domains were used, and the kill distance was set as 0.5% of the largest dimension of the domain. After the LV architecture is obtained, it is transformed into an undirected graph, preserving the source, branching and attraction points and their connectivity, therefore making the edges between nodes straight lines.

2.2 Benchmark networks

In the following, let Ti be the network that minimizes each objective function. We benchmark the LV algorithm against a local optimization algorithm (fan tree), for which Ti is defined as the sum of the minimum source-attraction point distances, and a global optimization algorithm (Steiner tree), for which Ti is the minimum total length of the edges in the network. The fan and Steiner trees are constructed to connect a given set of points regardless of whether they are source or attraction points. The fan tree and the Steiner tree results are then used to construct a Pareto optimality front (48).

2.2.1 Fan Network

The total length of a network that minimizes each travel distance from the source node to an attraction point can be expressed as:

\[T_i = \sum_{i}^{n} d_i \]

Where \(d_i \) represents the distance along the edges from the source point to the \(i^{th} \) attraction point, \(i \in \{1, ..., n\} \).

The network that minimizes \(T_i \) is a fan network (FN), i.e. a collection of straight lines from the source to each sink. The FN represents a local optimum for each travel distance from the source. The nodes of the FN are only the source and the attraction point, i.e. there is no branching node.

2.2.2 Steiner Tree

A Steiner tree (ST) is a network that connects a set of points with the minimum total network length (49-51). Additional branching nodes (called Steiner points) can be introduced in the system. The global optimization criterion for STs can be expressed as:

\[T_i = \min \left(\sum_{i}^{m} e_i \right) \]

Where \(e_i \) represents the length of edge \(i \in \{1, ..., m\} \). Note that \(m \) designates the number of node-to-node segments in the Steiner tree, which comprises nodes other than the source or the attraction points (Steiner points).

The basic Euclidean ST problem is in an unconstrained domain without obstacles (51). Subsequent advanced algorithms that proposed to include obstacles and other geometries (54-57) are NP-complete problems, i.e., the running time of the algorithm grows exponentially with the number of nodes (52,53). In order to circumvent the exponential increase of the runtime with the number of nodes, heuristics and alternative algorithms have been developed to
approximate the solution and/or obtain an initial guess of the solution; some of these approaches have taken inspiration from bio-inspired systems such as slime mold growth algorithms (19,21). In the current implementation, we follow the algorithm proposed by Fonseca and collaborators (58) to find the Steiner trees, which are then transformed into undirected graphs for analysis.

2.3 Pareto Efficiency

We analyze the optimality of networks to satisfy: (i) A local criterion, to minimize the sum of the travel distances from the source/sink point to each attraction point along the edges of the network; (ii) A global criterion, to minimize the total network length. The Pareto optimality (48) is an optimality line that indicates the smallest sum of individual distances that can be obtained for a given total network length.

In order to generate the Pareto front, we create solutions that follow a joint optimization objective, which is a linear combination between the two optimization criteria evaluated. The combination of the objectives is controlled by a parameter \(0 \leq \alpha \leq 1\); when \(\alpha = 0\), the objective reduces to the local criterion (Fan Network), while when \(\alpha = 1\), the objective reduces to the global criterion (Steiner Tree).

To do so, we use the available plant-inspired greedy algorithm developed and implemented by Conn and collaborators (13), which constructs near-optimal architectures as shown in (12,13,59). The algorithm starts from a stem protruding from the source node towards the centroid of the attraction points. From there, new branching points (and branches) are iteratively tested, choosing the branch that minimally increases the value of the objective (a function of \(\alpha\)).

A network is considered Pareto optimal for the criteria tested if it lies along the Pareto front. We hypothesize that LV networks optimize one of the optimization criteria tested or a combination of both (along the Pareto front). Nevertheless, LVs are not only optimized for travel distances and cost, but also for other criteria not studied here (13,48) related to mechanical stability, genetics, heat transfer among others.

3. Evaluation of optimality

3.1 Arbitrary networks evaluation

In order to analyze the underlying optimization mechanisms of leaf-inspired algorithms, we generated networks that connect a source to randomly distributed sets of attraction points in a 2D rectangular domain. The source node (petiole of the leaf) was placed at the bottom center of the domain (coordinates [0,0]). We tested 50 replicates of 10 attraction points (auxin points), and 50 replicates of 15 attraction points. The coordinates of the attraction points were uniformly distributed, in the range \([-50,50]\) along the X-axis, and in the range \([30,200]\) along the Y-axis. The Y range was set to start from 30, to create a distance between the source node ([(0,0)]) and the rest of the nodes, and therefore, enhance the tree-like structure of the resulting networks. The networks obtained are characterized as undirected graphs, in which the nodes correspond to the input points plus the set of branching points generated by each one of the algorithms. Figure 2 shows an example of the obtained networks for a set of 10 attraction points.

![Figure 2. Example network topologies: Fan Network (FN), Leaf Venation (LV) and Steiner Tree (ST). Results for a set of 10 random attraction points.](image)

3.2 Pareto Optimality

For each of the 100 sets of attraction points (called replicates in the following), we generate the LV, the FN, and the ST. For each network, the sum of individual travel distances from the source to each attraction point along the edges of the graph (local index) and the total network length (global index) are calculated. To aid visualization, we normalize the indexes according to the optimal bounds. The FN exhibits the lowest sum of individual travel distances and therefore its local index is mapped 0 and its global index set as 1; conversely, the ST exhibits the lowest total network length and therefore its global index is mapped to 0 and its local index set to 1. Then, the indexes of the LV are mapped based on the global and local bounds. Figure 3 shows the results. The shaded region encloses the Pareto fronts of all the replicates, which are also normalized. Contiguous boxplots show the variability of the sum of the individual travel distances and of the total network length among the 100 LV networks.
The total network length of the LV networks is close to the theoretical minimum (median value of 0.04) with a small variability (maximum value 0.11 and minimum value of 0.01). On the other hand, the sum of travel distances from the source shows high variability, ranging from 0.51 to 2.31 with a median of 1.27. This result suggests that the LV algorithm seeks to minimize the global network length but does not optimize the sum of individual distances to the source.

A common metric to find the load distribution in a graph is the node betweenness centrality (62); it is defined as the number of times a given node is part of the shortest path between two other nodes of the network, normalized by the number of nodes in the graph. In the current analysis, we use a slightly modified metric of load balance: we compute the load in the edges rather than the nodes, and we consider the traffic between every pairwise combination from the set of source and attraction nodes (excluding the branching/Steiner points). That way, the load balance only stems from the set of nodes that is common to all networks. For each of the algorithms evaluated in the benchmark, we plot the mean value of load balance and the interquartile range (IQR), a measure of dispersion that corresponds to the difference between the 25th and 75th percentiles of the data. Results are shown in Figure 4.

For the current assumption of homogeneous and fixed edge capacity, we find that the LV and ST solutions have similar values of edge congestion, with median mean values of 0.31 and 0.37 respectively. Nevertheless, the traffic load is more evenly distributed in LVs than in STs: the IQR medians are 0.24 and 0.33 for LV and ST, respectively. On the other hand, the FN solutions outperform the STs and LVs, with a smaller median mean load (0.25) and a perfect load balance (IQR=0) - since all the edges are used the same number of times.
These results suggest that longer networks are more likely to balance traffic, since resources are not limited. But as the total network length decreases, the load is concentrated in certain edges, causing increased edge congestion.

3.2.2 Travel path efficiency

Besides load balance, the efficiency of traffic or flow during service life depends on the travel distance between pairs of nodes. We define travel path efficiency as the ratio between the travel distance between two nodes in a network and their Euclidean distance in the 2D domain.

We first evaluate the paths from the source node to each attraction point, as shown in Figure 5. We then analyze the path efficiency between every pair of nodes (excluding branching points), as shown in Figure 6.

![Figure 5. Travel path efficiency, paths from the source node to the attraction points.](image)

![Figure 6. Travel path efficiency, paths joining pairs of attraction points.](image)

By definition, the FN algorithm exhibits perfect path efficiency from the source, where every path has an efficiency of 1 (no dispersion). The LV algorithm outperforms ST both in terms of mean value and dispersion: LV median mean efficiency and IQR are 1.15 and 0.12, against 1.27 and 0.21 for the STs. Path efficiency among pairs of nodes cannot be optimal for simply connected graphs because edges are used in multiple paths. Not surprisingly, FNs have the lowest performance in this index, with median mean values from 3.38 to 10.34, because the load has to travel through the source to reach the destination node. The ST algorithm outperforms LV: the median mean value is 1.59 for LVs and 1.34 for STs, and the median IQR is 0.59 for LVs and 0.29 for STs.

4. Proof of concept: transportation networks in Atlanta, GA

Urban transportation networks are designed at minimum length (or cost) for optimal path efficiency and traffic balance, under land use and budget constraints. Here, we compare the performance of the LV algorithm to that of the ST for designing transportation networks in the city of Atlanta (GA), for which the population density map is available from the census of 2010 (60).

4.1 Atlanta metropolitan area

We start by studying the five most populated counties of the metropolitan area of the city (Fulton, Gwinnett, Cobb, DeKalb and Clayton), and we compare LV and ST networks with a uniform-fixed edge capacity. The metropolitan area of Atlanta spans radially from an economic and geographic center. The natural center of the city (and the most densely
The attractions points are population centroids. We use a weighted k-means algorithm to calculate the position of fifteen attraction points. Each attraction point is the weighted centroid of the region that contains the population that lives closer to that attraction point than to any other attraction point. Figure 7 shows the distribution of the density of population by census tract, shown as shaded regions, and the attraction points. For context, we also show the actual metro system of the city: the MARTA railway. The LV and ST networks are shown in Figure 8 and Figure 9, respectively. The FN was computed as well to calculate the Pareto optimality line.

4.1.1 Pareto optimality

Following the same strategy as that described in Section 3.2, we build the Pareto front that spans between the FN and the ST as shown in Figure 10.
Results before normalization show that the FN and LV networks are respectively 106.7% and 10.53% longer than the Steiner tree. The sum of distances from the source is 14.86% larger in the LV than in the FN and 25.10% larger in the ST than in the FN. The LV thus outperforms the ST for individual travel distances. The LV algorithm proves to be close to optimal, at a small distance from the Pareto front, with a high performance with respect to individual travel distances at the expense of network slightly longer than optimal.

4.1.2 Load balance and travel path efficiency

We measure the load balance following the method explained in Section 3.2.1, except that the travel path between every pair of nodes is weighted according to the population associated to the nodes connected. Every edge that is a part of a travel path is assigned half of the total population represented by the two nodes that it connects. The total assigned population of an edge is the sum of the population assigned to that edge for all the paths that the edge is part of. The source node is assigned a weight of zero. Once the total congestion is calculated, the values are normalized by the total population. Figure 11 shows the load balance of the networks. The LV network shows a lower mean and interquartile range compared to the ST, suggesting that the edge load is slightly more homogeneous in the LV.

The travel path efficiency is evaluated as explained in Section 3.2.2. Figure 12 shows the boxplots with the distribution of the path efficiency of the networks for both conditions. Additionally, Table 1 summarizes the mean and IQR values. The distribution of the path efficiency from the source shows a small difference between the networks, with the LV exhibiting a better travel efficiency than the ST. On the other hand, the distributions of path ratio from all the centroids (attraction points and source) are similar for both networks, the LV performing slightly better than the ST.

<table>
<thead>
<tr>
<th>Path Ratio</th>
<th>From Source</th>
<th>All Centroids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>IQR</td>
</tr>
<tr>
<td>Leaf Venation</td>
<td>1.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Steiner Tree</td>
<td>1.32</td>
<td>0.26</td>
</tr>
</tbody>
</table>

4.1.3 Population Served: Buffer method.
We now assess the networks in terms of the population that they serve. We use the Geographic Information System (GIS) to calculate the total number of inhabitants (based on census tracts) that are within a distance of 2 km (walking distance) from the networks. The area bounded by the offset distance from the network is known as the buffer region. The buffer method is commonly used to evaluate transportation and service networks (64,65).

Figure 13 presents the total population inside the buffer, the buffer area and the networks length. The three buffer variables exhibit similar trends: the FN reaches the largest population, covers the largest area and has the highest network length. The LV is in second place and the ST is last. Interestingly, the values for the LV metrics are consistently about 10% higher than the ones of the ST. Figure 14 shows similar indexes, this time normalized by network length or buffer area. The population served per unit length shows that the most efficient networks are the ST (5,317 hab/km) followed closely by the LV (5,248 hab/km – 1.3% difference); the FN reached 3,687 hab/km – 30.7% difference. The area of the domain served by unit length of network is 4.03 km²/m for the ST, 3.99 km²/m for the LV (1% difference) and 2.82 km²/m for the FN (30.1% difference).

Lastly, the population density inside the buffer areas was very uniform along the networks, with an average of 1,313 hab/ km² and less than 1% difference among networks. These results suggest that even though the resource concentration of the domain is the same for all the networks, the ST and the LV cover it more efficiently, both in term of area covered and population served. The LV reached 10% more area and population than the ST, at the price of an increase in network length of 10%.

4.2 Gwinnett County

Gwinnett county is the second most populated county of the metropolitan area of Atlanta and is still not served by any railway to this date. We model the expansion of the MARTA railway network with the LV and the ST algorithms. By contrast with the modelling exercise presented for the whole Atlanta metropolitan area, the network expansion spans from a source node that may have a considerable effect on the overall urban network. Additionally, the edge capacity is not fixed or uniform.

We first discretize the population map of Gwinnett county by calculating the position of five weighted population centroids with a weighted k-means algorithm. The source node is represented by the current MARTA station that is the closest to Gwinnett county. The resulting LV and ST networks are shown in Figure 15 and Figure 16, respectively.
Figure 15. LV network deployed from the MARTA railway to five population centroids in Gwinnett county.

Figure 16. ST network deployed from the MARTA railway to five population centroids in Gwinnett County.

The total length of the LV is 6.1% higher than that of the ST (LV: 50.05 km; ST: 47.18 km). Regarding the population served, the LV reaches 10% more inhabitants than the ST (LV: 254,594 hab; ST: 231,496 hab). The area covered by the LV is 4.23% higher than the ST. Table 2 summarizes the normalized indexes of population/area. We observe that even though both networks cover a similar area per unit length of network, the LV is more efficient, both in terms of population per unit length of network and in terms of total population reached. This is because the LV passes through regions with an increased density of population.

Table 2. Population and area reached by the LV and ST networks in Gwinnett County

<table>
<thead>
<tr>
<th>Network</th>
<th>Population per unit length [hab/km]</th>
<th>Area per unit length [km²/m]</th>
<th>Population Density [hab/km²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>4906.1</td>
<td>4.22</td>
<td>1160</td>
</tr>
<tr>
<td>LV</td>
<td>5086.6</td>
<td>4.15</td>
<td>1225</td>
</tr>
</tbody>
</table>

By contrast with the cases simulated in Subsection 3.2.1 and 4.1.2, in which networks have edges of homogeneous capacity, we now consider that edge capacity is a design variable, and that, according to Section 3.2.1, edge capacity should be proportional to its traffic load. We assume that the cost of each edge of the network is proportional to the product of its length by the load going through it (e.g. number of lanes multiplied by the length of the road). The total cost of the network is calculated as:

\[
Cost = \sum_{i} n_{g} \cdot C_{i} \cdot L_{i}
\]

Where \(C_{i}\) is the traffic through the edge (i.e. the edge load, calculated as explained in Subsection 4.1.2), \(L_{i}\) the segment length and \(n_{g}\) is the number of network edges. We study the change in traffic distribution and network cost as a function of the weight (population) of the source node \(W_{0}\). The influence of the source node on the network is proportional to its weight. We vary the weight of the source node from zero (similar to section 4.1.2) to a maximum value corresponding to the population of the four adjacent counties to Gwinnett. The population of the adjacent counties is 2,749,889, about 3.1 times the population of Gwinnett County (889,954). Figure 17 shows the traffic distribution for three different \(W_{0}\) values: zero, Gwinnett’s population, and the population of the adjacent counties. Networks are relatively independent from the rest of the railway system for homogeneous traffic loads, while for a concentrated load, the traffic is routed to a main vein in the neighborhood of the source node.
is consistent with the natural transport function of a leaf. These improvements on traffic distribution and path efficiency are achieved at the expense of an increase in total network length. This evolutionary trade-off can be studied using Pareto optimality in future studies.

The length of LV networks of uniform edge traffic capacity spanning from the center of the city of Atlanta towards a set of 15 population centroids around its metropolitan area was 10% higher than the theoretical minimum, with travel distances in average 16% higher than the Euclidean distance for paths connecting the source node to the attraction points (vs 32% for the ST). Distances between attraction nodes were in average 43% higher than the Euclidean distance (vs 45% for the ST). LV networks thus outperform STs for transportation to and from a central node, while keeping the total network length and travel distances close to the optimal solution. Additionally, LV networks are as efficient as ST in terms of area and population reached per unit of network length.

A simplified problem of railway expansion was solved with the LV and ST algorithms, in which the capacity of the edges was proportional to their construction cost. Both networks reached a similar population per unit of network length (3.5% more population with the LV than the ST). The relative weights of the population centroids highly influenced the distribution of edges thickness of the network. The traffic load was higher for edges adjacent to the source node at which the railroad expansion was initiated. The network cost per unit of network length was always lower for LVs than STs. The cost difference increased with the weight of the central (source) node. This means that even though LVs exhibit a higher network length, their total cost is lower than that of ST for centralized networks. This is an interesting result for the development of Atlanta, GA and for the enhancement of the transportation networks in many other cities in the world, like New-York (NY) or Paris (France).

We conclude that leaf venation algorithms can efficiently assist the design of engineered transportation networks. Nevertheless, our study was restricted to transport optimization and actual engineering design must consider other constraints including interference with current infrastructure, construction methods and operation limitations. We propose that leaf venation - inspired networks can be used to establish an initial design that can be refined based on environmental and engineering constraints. The advantage of using LV algorithms is that they achieve polynomial runtime instead of ST algorithms which are NP-complete. LVs are thus particularly suitable for determining initial network guesses that can then be iteratively optimized.

5. Conclusion

Our simulation results show that the total length of LV networks is in average 10% larger than that of the minimum spanning tree (ST). Traffic distribution is slightly better in LVs than in STs, arguably because of LVs have a larger total network length. Additionally, LVs exhibit higher efficiency building paths from the petiole (source node) to auxin points (attraction points) than between pairs of auxin points, which
Conclusions of this study can be extended to multiple-connected networks in which secondary edges form loops. Network redundancy increases robustness at the expense of network cost. Additionally, LV algorithms can be used on continuous domains leveraging the assumption of discrete attraction points presented in this study. Lastly, there is an opportunity to expand LV algorithms to account for extra constraints; for instance, LV algorithms could be used to optimize routing or transport algorithms where the cost of the network is a complex function considering land cost, edge capacity and network tortuosity, rather than just a function of the network length.

Acknowledgements

This work was supported by the U.S. National Science Foundation, under grant CMMI#1552368: “CAREER: Multiphysics Damage and Healing of Rocks for Performance Foundation, under grant CMMI#1552368: “CAREER: Research and Education Approach.”

References

27. van Wilgenburg E, Elgar MA. Colony structure and spatial distribution of food resources in the polydomous meat ant Iridomyrmex purpureus.

