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SUMMARY

Nitrogen oxidegNOx = NO + NQ) play a crucial role in the formation of ozone
and has significant impacts on the production of secondary organic and inorganic
aerosts, thus affecting human health, global radiation budgetclimate.Accurate
knowledge of NQemissions igssentiafor relevant scientific researchnd air pollution
control policiesThis thesisevaluates current estimates of anthropogenic and natusal NO
emissions over the United Statesd improvemo de |l 6 s predi cti on of
concentrations bysing a 3D Regional chEmistry anAnsportModel (REAM) and
various types of observatioasd investigate the impact of thunderstorms on surface NO

and Q concentrations.

Thediurnalcycle of NQ is afunctionof emissions, advection, deposition, vertical
mixing, and chemistry. Its observations, therefore, provide useful constraints in our
undestanding of these factors. The REAM simulat@dnalcyclesare evaluatetly
using the DISCOVERAQ campaign measurements, EPA Air Quality System (AQS)
observations, and OMI and GOMIA tropospheric vertical column densities (TVCDSs)
products in July 2011ver the BaltimoréVashington region. The model simulations are
in reasonably good agreement with the observations except that PANDORA measured
NO2 TVCD show much less variation in tkearlymorning and late afternoon than
simulated in the model. High resibn (4 km in the horizontal) model simulations are
also performed to examine the effects of emission distributions. The overestimation of

NO2 concentrations from thekim REAM simulation in contrast to the well reproduction
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of observations by the 36m REAM suggests that the 2011 National Emission Inventory
(NEI2011) provide a good estimate of Némissions atthe36m scal e but
NOx emission distributions at thekin resolution. By analyzing model simulations with
the observations, the thesis shows thatithenalemission profile of NQis different

over the weekend from the weekdays and that weekend emissions are about 1/3 lower

than weekdays.

Observed ozone concentrations can be used to eval@atandvolatile organic
compoundVOC) emissions by using their relationships with ozone concentrations. The
thesis shows that the time when ozoe&clesits daily maximum (peak time) &so
related toNOx andVOC emissionsThroughmodel sensitivity analyses of REAM in July
2011 over the contiguous United States (CONUWS3 foundthat ozone peak values are
more sensitive tdlOx emissions while ozone peak time is more sensitiveQg
emissions in the eastern United StaByssuch relationships artde comparison between
observations and model resuylige findthat the underestimation of stllOx emissions
leads to a low bias of simulated ozone peak value in the South, while thstiovatien
of biogenic isoprene emissions resiit earlier than observed ozone peak time in the
Central, South and Southeast regidrtte simulatedormaldehyde columnsvhich are

higher than satellite measuremertfirmthe latter.

We illustrate thenonlinearrelationships among N@&missions, N@TVCDs, and
NO: surface concentrations using gimulationsof REAM for July 2011 over the
CONUS.Thevariations of NQ surface concentrations amYCDs are generally

consistent and reflegtell anthropogerd NO, emission variations for highNlOyx emission
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regions Forlow-NOx emission regiondjowevernonlineaity in the emissioAlVCD
relationshipmakes it difficult touse satellite observations to infer anthropogenicyNO
emissionchangesTheanalysiss exendedo 20031 2017 Similar variations of NQ

surface measuremerdadcoincident satellite NOTVCDs over urban regionare in

sharp contradb thelargevariation differences between surface and satellite observations
over ruralregions We find acontinuous decrease of anthropogenic¥@issions after

2011 by examining surface and satellite measurenre@®NUSurban regionsbut the

decreasingate is lower by¥% - 46%than the pre2011 period.

By comparing observeatOs (hourly change of @concentrations) anedNOy
with/without lightning eventswe find that generallythunderstorms decreabka®s in the
daytime due to the dominant role of solar radiation reduction reaching the surface and
increase@Oz during the nighttime due to convective daWafts and increased nocturnal
boundary layer mixing. With our adjustment of downdraft mass fluxes (DMFs3duhd
diffusivity coefficientsduring nighttime thunderstorm events which are underestimated
by the Weather Research Forecast (WRF) model, REAM well reproduces the observed
characteristics and produces a bimodal4sosivection lightning N@shape with one
peak near the surface. Seivdtly simulations show that lightning N@ontributes 2.4

3.6 ppb to MDAS in the southeast U.S.
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CHAPTER 1. INTRODUCTION

1.1Overview

Nitrogen oxides (N@= NO. + NO) are among the most important trace gases in the
atmosphere, not only because of their direct detrimental impact on human respiratory
systemgGreenberg et al.2016;Greenberg et a).2017;Heinrich et al, 2013;Weinmayr
et al, 2009] but also their fundamental roles in the formation oihezacid rain, and
fine particles which are unfavorable to human health, ecosystem stabilities, and climate
changg Crouse et al.2015;Fisher et al, 2016;Kampa and Castanag008;Liu et al,
2012a Myhre et al, 2013;Ng et al, 2017;Pandey et a).2005;Peng et al.2016;

Seinfeld and Pandif016;Singh and Agrawalk007] NOy is emitted by both
anthropogenic and natural sources with a global estimate of 48.8 T4 bif which

about 77% are from human activities, including 28.3 Tg Nfgem fossil fuel
combustion and industrial processes, 3.7 Tg Nfsom agriculture activities, and 5.5 Tg
N yr! from biomass and biofuel burnif§einfeld and Pandi2016] Soiland lightning

contribute to the rest 23% of the global N&dnissions.

United States is usually a higOx emission region, especially for urban regions,
suffering from surface €pollutions and photochemical smog raised by N&nce the
regulations of ta Environmental Protection Agency (EPA) on emission standards in the
1990s, U.S. NQemissions have reduced by over 5[ERPA 2018] On the basis of the
2014 National Emission Inventory (NEI2014), 3.85 Tg N and 0.24 Tg N of

anthropogenic and natural NQ@espectively, were emitted from the U.S. in 2014.
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However recent studies excite broad concerns about the accuracy of NEI NO
emissionsAnderson et al[2014], Canty et al[2015], andTravis et al[2016] suggested
that orroad mobile sources in the NEI N®missions inventories were overestimated by
around 50% 70% in 2007 and 2011 through analyses of surface, fijraral satellite
measurementdlcDonald et al[2018] also found the overestimation MEI mobile NQ
emissions compared to their estimates based on fuel consumptions. Conversely,
Dallmann and Harley2010] suggested that emad mobile N@emissions from
NEI2005 were 15% lower than fudkrived onroad NQ emissions. MoreoveGalmon
et al.[2018] examined the N@CO,, CO/CQ, and CO/NQratios during the Wintertime
INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign in February
March 2015 over the northeastern United States and found thagri€sions from
NEI2011 and NEI2014 were in agreement with the aircraft observaéoned

emissions.

On the other handJliyazaki et al[2017]andJiang et al[2018] found that the U.S.
NOx emissions derived from satellite N@opospheric vertical column densities
(TVCDs), including OMI (the Ozone Monitoring Instrument), SCIAMACHY (SCanning
Imaging Absorption SpectroMeter for Atmospheric CHartography), and GOME
(Global Ozone Monitoring Experiment2 onboard METOR), were almost flat from
2010- 2015 and suggested that the decrease gféd@issions was only significant
before 2010. HoweveEPA NG emission trend datasgtSPA 2018]show a catinuous
decrease of NCemissions after 2010. Antljel-based emission estimates in Los
Angeles also showedsteadydecrease of Nemissions after 2000 andsenallimpact

of the Great Recession (from December 2007 to June 2009) parhi€siondecrease



trend[Hassler et al.2016] The ongoing reduction of vehicle exhaust emission factors
[McDonald et al. 2018]was another supporter for the continuous decrease of U,S. NO

emissions.

Consdering the importance of accurate knowledge of BQissions omelevant
scientific researchnd the implementation of air quality policies, it is urgent to evaluate
U.S. NQ emissions comprehensively with more datasets and approaches, which is the

primarygoal of this thesisGhapter 217 Chapter 4).

As anthropogenic NOemissions continue decreasing on the basis of EPA datasets
[EPA 2018] natural sources play a more and more important role on regulating surface
NOx and Q concentrations, especially over rural regions. Unlike soil 8l@issions which
are emited near the surface and play a similar chemical role as anthropogenic NO
emissions, lightning N© associated with thunderstornets¢ e p convection), p
but <cruci al role in tropospheric chemistr)
l hgni ng tNOei r key i mpiasttr iobnutpioonsutiamtt hree a
effect of cumulus clouds onyx soliarh raadiuarn c ¢
emi ssi aBSgdMNu Rt ri ese20M@F¥Fpaandki 28Chamann and
Huntr,i 88 nfeld, agg@libgndhes pri mary source
NQ[S. Choi 280t1w8dli ch cont?5 %Budfedsdmmeé&r0tldd me 30
over the eastern U220 (A& d et a2tisDIZdhua a aefgt0 2a81D. 4
and about 40% of tota)l irrratché veorntdlde rnn t mioag
upper tropospRpiO@®P a9 nf 5090990Y®rae,we2008H1d31B%

(1524 pbv) of wuppeoveropbeplasiter ®©h&ns u moe K



[Al 1 en e2t@lable.n e2tGiaBlwe20Q07 Wang 2€13&AZhao et a

2009 a]

Updrafts and downdrafts from thunderstor
poll utants i1 n the troposphere. On the one
boundary | ayg volatilesotganit compounds@vOC) and CO, can
transported to upper trDipolkseprheokbdtftalo.asect
et ,akR00@h the other hand, convective downd
and -@&Gcgmcentrations in the wupperlua ogptoselh.e
2010t;t ,et20alWhi ch may aédheécOnesenfAddecindiest al
20 1Rhar al,i 2eBthbgland 20ildAd wev er , t hdee risnipoarcnss
on sur faancdea €NO much small er than on upper tr
Previous studies focused xtam tshefaaakght@NiOb ut i
ignored the <cont [Albluetn, oe K@ h d &,w 20 &l§t. sa n
expected continuous dwemi sase®ncf aandt ar ppog e
| i ghtiing easctaind s e Rirfef d muaauW@BR édtpsaris?2 0 a4 ]
the impacts of t huxaheycOnarems rart i ownrsf avooeu | NO
be more and more significant. Therefore,
thunderstorm dowRandafabBDdonmn mpuofface®euNOunder ¢
i mpact of thundexandr Gwhiocnh siusr ftalcee 9NeOc on d
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1.2 Outline of the thesis

Chaptiemt rloduces the background and mot i v:
t hi ss tobsalsate current estimates of anthropogenic and natusaéiM{3sions over
the United Stateand investigate the effect of thunderstorms on surface @ Q by
using a 3D Regional chEmistry and trAnsport Model (REAM) and various types of

observéions

Chaptexamni nes the diurnadtncegrt reateiodtn ss,@aid NG
profil es,VCDsd iMO Jul y 20 IMa sdcvienrgttone BalCt.i mo
REAM simul ated diurnal cyclkm aomhd wekee&kldas sar
evaluated with surface, aircraft, and sate
A Q Ddriving Information on Surface conditions from Column and Vertically Resolved
Observations Relevant to Air Quality)a mpai gn. We find that REANM
observati oeknns sactalteneb u3dté ,ovecestr mat ess-N@nd T
km scal e, whi ch means NEI 2011 provixde rea
emi ssionkmascahe B6t is uwemibdei ¢ diestod ivieut

4km scal e.

Chapteexrt e3nd ekdm tehwa I3lbaxke mbasobnbBOto the con
St at es ( CONdMnpgrisonshofrsimulaged and observegeak values and peak
time in July 2011. Through REAM sensitivity simulations with differentxN@d VOC
emission scenarios, we find that VOC andxN@issions affect ©peak time oppositely
over the eastern United States andp@ak time provides another independent constraint

on NQ emission evaluations. Comparisons of simulated and obseraeb® values and



peak time show that NEI2011 provides good estimates of anthropogeriem§sions
over the CONUS but soil NCemissions from th&ienger and Levy (YL) scheme are
underestimated, and biogenic isoprene emissions frorvitiael of Emissionof Gases

and Aerosols from Nature (MEGANire overestimated by 27.1% +21.5%.

Chapter 4 investigates the anthropogenic Némission trend from 20032017 by
usingNO» surface measurements and satellite TVCD datasets. By examining the nonlinear
relationships among NCGmissions, N@TVCDs, and NQ surface concentrations using
the REAM simulations for July 2011 over the CONUS and; N@face and coincident
satellite measrements from 20032017, we find that satellite NO'VCDs provide much
better information of anthropogenic N@mission variations over urban than rural regions.
And, NG surface observations, satellite TVCD datasets, and updated ERANNSSions
show onsistent variations from 20032017 over the urban regions of CONUS, which
confirms the continuous decrease of anthropogenicé@issions after 2011 but with the

decreasing rate slowing down by 9%6% than the pr2011 period.

Chapter 5 explores thempacts of thunderstorms and lightning N@h surface @
concentrations t hr qamd ;(dedhaugyachange of N@&nd®@f &NO
concentrations) with/without lightning events during Jurfaugust in 2011. We find that
thunderstorms generallycle e a sien aaChe dayt i mduringthetnighttime.r e a s e
REAM captur es tsindghe dagtime muafaleto refrodusmssthe nighttime
increase characteristics due to underestimated downdraft mass fluxes (DMFs) from the
KaiFmi t schhe(méF)angdc t he missing of mechani ce

thunderstorms during the nightti me. The R



nighttime vertical mi XxXing reproda®&itwel | t
the updated DMFs, REAM prades a bimodal postonvection lightning N@profile with

one peak near the surface in contrast to a previous unimodatqrosction profile

peaking at about-Bm. The adjusted DMFs significantly improve (by about 100%) the

impact of thunderstorms/lightmgy NOx on MDA8 (maximum daily &our average ©
concentrations) over the CONUS, especially in Arizona, Utah, and the southeastern United

States.

Chaptgeirvees a summary of the study and rec



CHAPTER 2. Diurnal cyclesof NO2 during DISCOVER -AQ 2011:
Comprehensive evaluations and implications for N@emissions

2.1 Introduction

Nitrogen oxides (N@= NO + NQ) are among the most important trace gases in the
atmospheras theircrucial role in the formation of 0zor{®s) and secondary aerosol
andtheirinvolved in the chemical transformation of other atmospheric speciels,as
carbon monoxid¢CO) andvolatile organic compounds (VO@¥isher et al, 2016;Liu
et al, 2012aNg et al, 2017;Peng et al.2016;Seinfeld and Pandif2016] NOy is
emitted by both anthropogenic activities and naturalcgsuAnthropogenic sources
account for aboul 7% of the total NQ emissions, and fossil fuel combustion and
industrial processes are themaryanthropogenic sources which contribute to about
75% oftheanthropogenic emissiofSeinfeld and Pandif016]. Other important
anthropogenic sources include agriculture and biomass and biofuel burning. Soils and
lightning are two major natural emitters. Most N®emittedas NO, which is then easily
oxidized to NQ by oxidans, such as ¢ thehydropeoxyl radical (HQ), and alkyl

peroxy radicals (Rg).

The diurnal variations of N®which are controlled by continuous comprehensive
physical and chemical processes, conversely reflect the temporal patterns of these
underlying factors, such as N@missions, lsemistry, deposition, advection, diffusion,
and convection. Therefore, the Bi@urnal cycles can be used to evaluate our

understanding of NErelated chemistry and physics processes, whiclbhéas widely



appliedin researcheg:or exampleJones et al[2000] investigate theliurnalcycles of

NO and NQ andfind that photochemistrinduced snowpzek production may be a
significant contributor to lowering troposphere N@®the AntarcticFrey et al.[2013]
showthe asymmetryfathe diurnal cycle of N@with minimum concentrations at local
noon on the AntarctiPlateauand indicate thagtrong convective mixing in the boundary
layerinduces the minimum N&concentrationat noon Brown et al[2004] analysis the
diurnalpatterns of N@ NOx, N2Os, HNOz, OH, and Q and find that the predominant
nighttime sink of NQthrough the hydrolysis of XDs has an efficiency on par with
daytime photoceémical conversion over the ocean surface off the New England coast
Van Stratum et a[2012] show that entraiment and boundary layer growth in daytime
influence NQ diurnal cyclethe same order as chemical transformations in Spaivid
and Nair[2011]find that thediurnalpattern of NQ at a tropical coastal station in Inds&a
closely associatedith sea breeze and land breeze which affect the availability of NO
through transport. They also think that seasonal monsoon can strongly influence the
magnitude of N@diurnal cycles througtransport The monsoon effect on N@iurnal

cyclesis also observenh China byTu et al.[2007].

Not only are surface NQliurnalcycles concerned, but also the daily variations of
NO: vertical column densities (VCDre investigatedBoersma et al[2008] compare
NO> tropospheric VCD (TVCD) retrieved from OMI (tl@@zone Monitoring Instrument)
and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric
CHartographyarourd the world, and find that the diurnal patterns of different types of
NOx emissions can strongly affect the NO/CD variations between OMI and

SCIAMACHY. They find thastrong afternoon fire activity ressih an increasef NO>



TVCD from 10:00 LT (local time) to 13:30 Ldver tropical biomass burning regions.
Boersma et al2009] further investigate the NOI'VCD change from SCIAMACHY to
OMI in different seasons in Israeli cities and fihdt: 1) there is a slight increase of NO
TVCD from SCIAMACHY to OMI in winter due to increased N@missions from
10:00 LT to 13:30 LT and sufficiently weak photochemicaksR) the TVCD from OMI
are lower than SCIAMACHY in summer due to strong photochemical sink @f AlD
these above researches, however, are limited in observations, and they exploit only
surface or satellite measurements. Comprehensive analys&» dfurnalcycles over

the eastern United States are stilhvailable.

DISCOVERAQ (https://discovesrq.larc.nasa.goy/which stands foDeriving
Information on Surface conditions from Column and Vertically Resolved Observations
Relevant to Air Qualityis afour-year project to enhance the understanding of the
relationship between surface air pollutants and space observations. The first DISCOVER
AQ deploymentvas conductedh the BaltimoreWashington metropolitan region in the
summer of 2011 (Figur2.8a). In this campaign, a NASA-BB aircraft flew spirally
over sixair quality monitoring sitegAldino, Edgewood, Beltsville, Essex, Fairhill, and
Padonia and the Chesapeake Baymsal et al.2014] and accomplished 244 valid
measurements of N@rofiles on 14 flight days in July. Growlmhsed instruments below
the mission spirals were deployed to measure §iface concentrations, NOCD, and
other physical properties of the atmospHénederson et al.2014;A. J. Reed et al.
2015;Sawamura et al2014] Satellite NQ VCD products, OMandGOME-2A (Global
OzoneMonitoring Experiment 2 aboard METOR\), containing VCD information

at13:30LT (OMI) and 9:30 LT (GOME2A), can be used to assess VCD measurements
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fromgroundb ased spectrometer sysihudamous' Pandor a.
measurementsf NO, VCD, surface N@, and vertically resolved distributions of N&s
they evolved throughouhé day, the DISCOVERQ 2011 campaign, therefore, gives us

a chance to evaluate N@iurnal variabilities comprehensively.

Section 22 will describe the above datasets in detaiRégionalchEmistry and
trAnsportModel (REAM), which will alsabeintroducedn section2.2, is applied to
reproduce the N©&measurements during the DISCOVEAR) campaign in July 2011.
Theevaluations ofhe simulatediiurnalcycles of surface N&concentrations, N©
vertical profiles, and N&TVCD will be fully discusseth section2.3 through
comparison with observationSection2.3 will also investigate the differencbstween
NO2 diurnal cycles on weekdays amngekendsand their applications to N@mission
characteristicsMoreover, we will assesbeimpact of NQ emission distributions on
NO: diurnalcycles in sectio2.3 through comparison between al36 resolution
REAM simulation and a-km resolution REAM simulation. Finally, we will summarize

the study irsection2.4.

2.2 Datasets and model description

2.2.1REAM

REAM hasbeen widely appliein many studiegAlkuwari et al, 2013;Cheng et al.
2017;Cheng et al.2018;Y. Choi et al.2008a;Y. Choi et al.2008b;Gu et al, 2014;Gu
et al, 2013;Koo et al, 2012;Liu et al, 2014;Liu et al, 2012b;Yuhang Wang et al.
2007;Q. Yang et a).2011;R. Zhang et al.2017b;R. Zhang et aJ.2018;Y. Zhang et aJ.

2016;C. Zhao and Wan@009;C. Zhao et al.2009a,C. Zhao et al.2010] The model
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has a horizontal resolution 86 km and 30 vertical layers in the troposphere.
Meteorology fields are from a Weather Research and Forecasting (WRF, version 3.6)
model simulation with the Yonsei University (YSU) planetary boundary layer (PBL)
scheme. The WRF simulation is initialized aimhstrained by the NCEP coupled
forecast system model version 2 (CFSv2) produtdtp:(/rda.ucar.edu/datasets/ds09¢.0/
[Saha et a].2011] The chemistry mechanism is based on GEID®&m v11.01 with
updated aerosol uptake of isopeamtrated Fisher et al, 2016] A 2°x2.5°GEQOS -

Chem simulation provides the chemistry boundary conditions and initiations.
Anthropogenic emissions on weekdaye fromthe National Emission Inventory 2011
(NEI2011)from the Pacific Northwest Nati@l Laboratory (PNNL). The diurnal profile
of weekday NQemissions in the DISCOVERQ campaign region (marked as six slate
gray grids in Figur@.8.h is displayed in Figurg.1, while the weekend emissions will
be discusseh section2.3.2. Biogenic VOGmissions are from MEGANv2.10
[Guenther et a).2012]. REAM simulates boundary layer mixity usingeddy

diffusivity coefficients (named exchangeefficients in WRF) K.z m/<), which reflects

the impact of boundary layer stability on turbulent mixigZhang et a].2016]
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Figure 2.1 Relative diurnal profiles of weekday and weekendMfissions in the
DISCOVERAQ campaign region.

222NO, TVCD from space -2A OMI and GOME

The OMI instrument aboard the sapnchronous NASA EOS Aura satellite with an
equatorcrossing time of around 13:45 LT, which was developed by the Finnish
Meteorological Institute and the Netherlands Agency for Aerospace Programs, employs
hyperspectral imging to observe solar backscatter radiation in the visible and ultraviolet
bandgLevelt et al. 2006a;Russell et a).2012] The radiance measurements are used to
derive trace gases concentrations in the atmosphere, sughN&SOHCHO, and S@

OMI has a nadir resolution of 13 km x24 km and provides nearly global coverage in one

day.
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Two widely-used archive of OMI NG VCD products are available: NASA
OMNO2 (v 2.1) (https://disc.gsfc.nasa.gov/Aura/dasédings/OMI/omno2_v003.shtml)
and KNMI DOMINO (v 2.0) (http://www.temis.nl/airpollution/no2.html). Although both
apply a Differential Optical Absorption Sgeascopy (DOAS) algorithm to derive NO
slant column densities, they have significant differences in stratospheric and tropospheric
NO: slant column densities (SCD) separation,.N€rtical profiles, and air mass factor
calculation (AMF)[Boersma et aJ.2011;Bucsela et a).2013;Chance 2002;0etjen et
al., 2013;van der A et a).2010] Both OMNO2 and DOMINO had been extensively
evduated with field measurements and modBlsersma et al.2011;Boersma et a).
2009;Hains et al, 2010;Huijnen et al, 2010;lonov et al, 2008;lrie et al,, 2008;Lamsal
et al, 2014;0etjen et al.2013] The estimated uncertainty of DOMINO TVCD product
is 1.0 x10"° molecules/cri+ 25%[Boersma et a).2011] while theuncertaintyof
OMNO2 TVCD product is from about 30% under clsly conditions to about 60%
under cloudy conditiond.amsal et al.2014;0etjen et al.2013;Tong et al. 2015] In
this study, to reducencertaintieswe only acceptedMCD data witheffectivecloud
fractions less than ®.(corresponding to cloud radiance fractions approximately < 50%).
Besidesthose data affected by row anomaly were excluded

(http://projects.knmi.nl/omi/research/product/rowanontzgkground.php).

It is noteworthy that both DOMINO and OMNOZ2 calculatednaass factors (AMF)
by using a prior N@vertical profiles with coarse resolutions: DOMINO used TM4
model results with a resolution of 3°x2Hains et al, 2010] while OMNO2 used
monthly mean values from tli&obal Modeling Initiative (GMI)model with a resolution

of 2°x2.5? The under-sampling ofa prior NQ profilesmay cause misrepresentation on
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the spatial and temporal characteristics of:ldOsatellite pixel scales. Therefore, in this
study, we also updated the OMI retrieval with daily REAM profiles (13:00 0#:00

LT) by using the KNMI algorithm and evaluattdte effect ofa prior profilesonthe
retrieval In theretrieval we removed satellite scenes wétfiectivecloud fractions over

than 0.2 or contaminated by row anomaly.

The GOME?2 instrument embarked on the petabiting MetOpA satellite (known
as GOME-2A) launched on 2006 is an improved version of GGMIEunched in 1995
and has an overpass time of 9:30 LT and a spatial resolution of 80 xZvkmro et
al., 2006;Peters et b, 2012] GOME-2A measures backscattered solar radiation in the
range from 240 nm to 790 nm which is used for VCD retrieval of trace gases, sugh as O
NO2, BrO, and S@[Munro et al, 2006] We used th6&OME-2A NO, VCD product
archivedon http://www.temis.nl/airpollution/no2col/no2colgome2_v2.phipe
algorithm from this product is the same as that for KNMI DOMINBDersma et a.
2004;Boersma et a).2011] GOME-2A derived NQ VCD have been validated with
SCIAMACHY and MAX-DOAS measuremenisrie et al, 2012;Peters et al.2012,;
Richter et al. 2011] The same as DOMINQye ignored pixels witkeffectivecloud
fractions greater than 0.2 and redid the GORFEretrieval with REAM daily NQ

profiles (9:00 LTi 10:00 LT).

223 Groundbased NOVCD measur ements Pandor a

Pandora is a small direct sun spectrometer system, wiealsures sun and sky
radiance from 270 to 530 nm in 0.5 nm steps witr6afield of view and allows the

retrieval of the total VCD of N@with a clearsky precision of about 2.7 x16
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molecules/crhand an nominal accuracy of 2.7 x#®@nolecules/cri[Herman et al.

2009;Lamsal et al.2014] There are 12 Pandora sites available in the Dise&Qer

campaign: six of them were the sameheesP-3B aircraft spiral sitegAldino, Edgewood,

Beltsville, Essex, Fairhill, and Padopiavhile the other six sites were Naval Academy
(Annapolis Maryland) (USNA), University of Maryland College Park (UMCP),

University of Maryland Baltimore County (UMBC), Smithsonian Environmental

Research Ceat (SERC), Oldtown in Baltimore (Oldtown), and Goddard Space Flight

Center (GSFC)In this studywe exclude the USNA site as iteeasurerantsare

conductedn a shi p ( AP a28gbpanditiene pré noiother durfageu r e
observationa(whotgei dPaBdsed on our <cal cul
minimal impacts on the following evaluation of NODVCD and wondt change
conclusions. Alspwe ignoredPandora measurements with solar zenith angles (SZA)
greaterthan 80¢ Besideswe ignored any hour with less than three valid measurements
availableto reducethe uncertainties of the hourly average® tothe significant

varations of Pandora observations

It shouldbe notedhat Pandora measured total NCD, and we need to subt
stratosphere N&VCD from the total VCD to geTVCD. Stratosphere NOVCD shows
clear diurnal cycles with aincreasd trend during daytime due to the photolysis eON
[Brohede et a).2007;Dirksen et al, 2011;Kurzeja 1975;Peters et al.2012;Sen et al.
1998] Figure2.9shows the stratospheric N&CD variations from 5:00 20:00 LT in
mid-latitude regions (46°N, 117.5°W) in tha&JSin July 2011 from the GMI model
[Spinei et al.2014] as well as coincident satellite stratosphericNGD (Figure2.9a)

and satellite stratospherid¥VCD in the DISCOVERAQ campaign region (about
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39.5°N, 76°W) (Figure 2.9b). The significant increase of stratospheric2N@D from
GOME-2A to OMI (Figures2.9a and2.9b) is consistent with the increasing trend in the
daytimefrom the GMI modelAs GOME-2A and OMI only provide stratospheric NO
VCD at 9:30 LT and 13:30 LT, the DISCOVERQ campaign regiof39.5°N) has a
latitude close to the GMI regiqd6°N) , and satellite stratospheric N®CD show
differences of fewer than 0.5 x10molecules/cribetween the DISCOVERQ region
and the GMI regionye used the GMI stratospheric W&CD in Figure2.9to calculate
the Pandora NOTVCD in this studyThestratospheric N©@VCD discrepanciebetween
the GMlestimates and sdliee p r 0 d u ¢ tclrangett® paftern of Pandora NOVCD

di ur nal variations and wonot affect our co

2.2.4 Surface N@Qand Q measurements

The principle to measure N@ basedn the chemiluminescence of electronically
excited NQ" which results from the reaction of NO with,@nd the strengtbf the
chemiluminescence frothe decay of N& to NO; is proportional to the number of NO
molecules present before reaction with[O. Reed et al2016] We can measure NO
concentration®y this methody converting NQ to NO first. Two widely used
approaches to convert N@ NO are catalytic reactions (typically on the surface of
heated molybdenum oxide (M@Osubstrate) and photolytic procesflieasmsal et al.
2015;C. Reed eal., 2016] However, for the catalytic method, not only Nt also
NO; (nonNOy active nitrogen compounds, such as PAN, HNgdganic nitrate
compounds, etc.) can be reduced to NO on the heated surface, which thus causes the
overestimation of N@ The magnitude of the overestimation depends on not only the

relative fraction of N@to the total active nitrogen compounds but also the reduction
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efficiency ofNO; to NO, both of which are highly uncertain for different ambient and
experiment conditiondVhile for the photolytic approach, it employs broadband
photolysis of ambient N£and eliminates the reduction §, to NO, therefore offers

right NO2> measurements with better accurflcgmsal et al.2015]

TheEPA AQS (Air Quality System) monitoring network provides hourly Nd
Os measurements over the United Staldwreare 11 NQ monitoring sitesn the
DISCOVERAQ campagn region including those from AQS network and those
deployed in the campaigNine of them measure Ny using the EPAlesignated N©
chemiluminescence automated Federal Reference Method (FRM) which applied catalysts
to convert NQto NO. The othetwo sites (Edgewood and Padonia) containg NO
measurements from both the catalgpproach and the photolytic method. FRM
measured N@shouldbe first convertedo true NQ because of the overestimation of

NO2 caused by the reduction NfO; to NO.

Four types of stationary FRM instrumemisreavailablein the above 11 monitoring
sites during the campaign: Thermo Electron 42®0y analyzer, Thermo Model 42C
NOy analyzer, Thermo Model 421 NOy analyzer, and Ecotech Model 9841/9843 T
NOy.Besi des, a mobile platform °~ N&IWhWWE (httop
stands for Nittany Atmospheric Trailer and Integrated Validation Experimengle@s
deployed to measure NO and N@IOy = NO, + NOx) through a Thermo Electron 42C
Y NOy analyzer
(http://www.agriculturedefensecoalition.org/sites/default/fpeés/33A_2006_NASA_N

ATIVE_Battelle_ NATIVE_Schedule_2006.pdh the Edgewood site. The photolytic
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measurements of Ndn Edgewood and Padonia wdrem Teledyne APl model 200eup
photolytic NQ analyzersWe used the ratios of NGrom the photolytic analyar to NQ

from the coincident FRM analyzers to convert FRMJN®true NQ in other monitoring

sites. Figure.2 shows the monthly averaged diurnal cycles of these ratios for different
FRM instruments during the campaign. TTagoswere lowest at noon and highest in the
early morning (Figur@.2), which indicates thkigh fraction of NQ to the total active

nitrogen compounds at noon due to strong photochemistry reactions and the low fraction

in the early morning due to high N®missions and weak chemistry productiorNg..

For each N@monitoring site, as longsphotolytic measurements were available,
we used the photolytic measurementshére were no photolytic measurements
scaled the FRM measurements by the ratios ofdhesponding instruments in Figure
2.2. Thermo Model 42l NOy analyzemwas useanly in Padonia where photolytic
measurements were available, so we didno

421-Y NOy analyzer in this study.

19

t



1.0 L 1 |
0.8 B
5
S 0.6 A S
L
g
f_g 0.4 .
w
ECO
0.2 Ca2 -
CY42
0.0 +—m"m——r—r——

0 4 8 12 16 20 24
Local Time / hr

Figure 2.2 Hourly ratios of NQ from different FRM instruments to NGrom the

Teledyne API model 200 eup photolytic N®@nal yzer in 2011 Jul y.
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Besides, 19 surfaces@onitoring sites were available in the DISCOVVAR)
campaign region. These monitoring sites measytey@ Federal Equivalent Method
(FEM) with an uncertainty of 5 ppland the FEMs basedn the UV absorption of ©
(https://www.arb.ca.gov/aagm/gafgqenual/vol4/chapter603.pdfThe locations of N©

and Q monitoring sitesare displayedh Figure2.8.h

2.2.5 Aircraft measurements of NO

In this study, we usedhé NO> mixing ratiosmeasuredby the National Center for

Atmospheric Research (NCAR)channel chemiluminescence instrumentB
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onboard the BB aircraft.Theinstrumenthas a NQ@ measurement wertainty of 10%
15%and a 1 scond onesigmadetection limit of30 pptv (https://discover

ag.larc.nasa.gov/pdf/2010STM/Weinheimer20101005_DISCOVERAQ_AJW.pdf

NO> measurements from aircraft spirals provigavith NO» vertical profiles. Figure
28bshows the | ocations of the aircraft
Chesapeake Bagbservationss itis overthe ocean. Only six vertical profiles are
available from the Chesapeake Bay measuremamisheir contributions to the
averaged ertical profiles are minimaFinally, wegot 238 vertical profiles in the

daytimeandno data during the nighttime in July 2011.

The aircraftmeasurements generatigvered altitudes from about 460in the
boundary layer to 83 km in the free tropospheiVe binned these measurements to
REAM levels.In order tomake up the missing observations betweersthmtaceand 400
m, we did quadratic polynomial fittindpy using aircraft data below 1 kamd surface
measurements from coincident grotlmased instrum@s. As shown in Figured5.a and
2.5b in sectior2.3.1.2 and sectio.3.2, thefitting valuesare inreasonald agreement

with the corresponding aircraft observations.

2.3 Results and discussion

Industrial activities and traffiayhich are the dominardanthropogenic NOemissions
over the United States, are reduced during weekends, which lesigsificanty lower
(20%- 50%) NQ emissions on weekends than on weekdBgsrle et al, 2003;

Boersma et a).2009;Y. Choi et al.2012;DenBleyker et al.Kaynak et al.2009] The
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temporal characteristics of traffic on weekends are also different from weekdays,
especially in urban regions: weekday traffic shows clear morning and afternoen rush
hour peaks, while weekend ftia is roughly evenly distributed in the daytime
[DenBleyker et a). Therefore, it is necessary to separate weekdays from weekends for
our analyses and evaluations of Nfurnal variations. We will first discuss weekday

NO: diurnalcycles in sectio2.3.1.

2.3.1 Weekday diurnal cycles of NO

2.3.1.1 Effect of verticahixing in the boundary layer on diurnal variations of surface
NGOz and &

Figures2.3.a and2.3.b displays the observed and simulat@dnalcycles of surface
NO2 and Q concentrations on weekdays in July 2011 in the DISCOMERcampaign
region. REAMwith raw kz; significantly overestimates N@nd underestimatedsO
during the nighttime, although it captures the basic patterns dfuh®alcycles of
surface NQGand Q@' a p e g@akd aoninim@n of N@around noontime (Figures
2.3.a and2.3.b). NGO and Q have differenvertical profiles in the lower troposphere
during the nighttime: N@has a negative gradient relative to altitude while it is positive
for Og, whichis due to their different sources and sinks..M@inly comes from NQ
emissions which isoncentrated near the surface.i©produced only in the daytime
through the photochemistry of VOC and N@t night G is removed mainly by
reactions with NO (@+ N O 2¥ N@) and NQ (NO2+ Oz Y  Nz@ O) and dry
deposition, both of which happeneduoantly near the surface, s@ 9 consumed most
near the surface, which induces the lowest@hcentrations near the grounertical
mixing can undermine these vertical gradients through mixingdoglcentration gases
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with low-concentration gases, vahi will decrease N&concentrationbut increase ©
concentrationsiear the surface. Therefore, the overestimation of &fd the
underestimation of ©during the nighttimenay bethe result of too weak vertical mixing

in REAM.

During the DiscoveAQ campagn, vertical wind velocities in REAM was almost 0
at night and have little impact on vertical mixing. The nighttime vertical misimgainly
attributed taurbulencewnhich is simulated b¥ k:;is a function of PBL height (PBLH,
whichwas referredhs mixing depth as described in http://wiki.seas.harvard.edu/geos
chem/index.php/Boundary_layer_mixing) in the YSU sch@reng et al, 2006;Hu et
al., 2013;Shin and Hong2011] However, it had been noticed that YSU scheme in WRF
might underestimate nighttime vertical mixing or PB[Bteuer et al. 2014;Hu et al,
2012] which is consistent witFigure2.4 showingthatk,-determined mixing depth
from WRF are significantly lower than Lidar observations in the late afternoon and at
night at the UMBC site. The Lidar mixirdgpths were deriveldlom the Elastic Lidar
Facility (ELF) attenuated backatter signals by using the covariance wavelet transform
method and had been validated against radiosonde measurements, Radar wind profiler

observations, and Sigma Space mmmcropulse lidar datfCompton et a).2013]

Therefore, waipdatek.;in REAM (the methods describedn the supplement),
which significantly improves the PBLHSs in the late afternoon and at night (F2gtire
ThenNO:z concentrations decreasignificantly, andOs concentrationgncrease

significantlyduring the nighttime for the REAM simulation with upeldk.. (Figures
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Figure 2.3 Diurnal cycles of surface Ndja, ¢) and ®@(b, d) on weekdays (a, b) and

weekends (c, d) during the DISCOVERQ campaign in the <campaig
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Thediurnalcycles of surface N&in Figure2.3.aareconsistent with our current
knowledge of chemistry and physics mechanisms and are in good agreement with
previous research¢dnderson et aJ.2014;David and Nair 2011;Gaur et al, 2014;

Reddy et a).2012] As shown in Figur@.3.a, surfaceNO; peaks in the morning (about
6:007 7:00 LT) and again at early night (20:0@3:00 LT). Each peak is caused mainly
by a low NQ loss rate and relatively weak vertical mixing. The high emissions from the
early morning and evening ru$tours are alsoontributors to the two peaks. Daytime
surface NQ concentrations are relatively lower compared to nighttime, angd NO
concentrations reach a minimum around noontime. This is becaube,one handthe

sink of NG through the reaction of NGind OHbecome stronger as solar radiation

increasesn thedaytime which becomes strongest around noontime; on the other hand,

25



vertical mixingstrengthesas solar radiation become strongausing a thickePBLH,

and vertical mixing transfers nesurface NQinto higher altitudes. During the

nighttime, surface N@concentrations have less significant variations compared to
daytime,andthe nighttime peak is weak. This nighttime patt@as mainly controlledby

the following 3 factors: (1) N©emissions are decreasing during the nighttime until they
reach a minimum at around 4:00 LT in the next day (Figurg (2) PBLHis reduced
(Figure2.4), andvertical mixing becomes weaker, which causes the accumulation of NO
near the surfacé€3) N2Os hydrolysis is the main sink path of N@ night. Before the
nighttime peakweakN20s hydrolysis and vertical mixing cause the rising of surface
NOz, and the decrease of N@missiongannotoffset this effect until at the nighttime
peak when the abovef&ctors were completely balanced. After the nighttime peak, as
N20s hydrolysis increases to its maximum and keeps almost constant, gradually
decreasing NPemissions and slowly weakened vertical mixing resulted in the slight
variation of surface N@concentrations and steadgcreasing @concentrations (Figures

2.3.a and2.3.b).

2.3.1.2 Diurnal variations of Nevertical profiles

Figures2.5.a and2.5.c display the temporal variations of observed and simulated
NO:2 vertical profiles in the daytime efeekdays during the DISCOVERQ campaign.
REAM well reproduces the observed characteristics of Wittical profiles in the
daytime whicharedominated byertical mixing and OH concentrations. In the early
morning (6:00 a.nt 8:00 a.m.)kzis little and vertical mixing is weak, so NOwhich is
mainly from surface NQsources, is concentrated in the surface layer. Also, OH

concentrations induced by solar radiatsoe deficientandNO- sink path through the
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reaction of NQ and OHis suppresseds aresult, NQ mixing ratios in the lower layers
are significarly higher than those from 9:00 a.m5:00 p.m After 8:00 a.m., as vertical
mixing becomes stronger, N@ixing ratios below about 500 m are significantly
reduced, while those above the heigiet @onversely increasethis decreased gradient

is primarily attributed to stronger vertical mixing, although enhanced OH concentrations
is also a factorThe effect of OH concentrations is reflected by a comparison between
12:.00 p.m.i 2:00 p.m. and 3:0p.m.7 5:00 p.m.: NQ vertical profiles during these two
periods are similar in shape but the profile of 3:00 [.8100 p.m. has higher NO

mixing ratios than that of 12:00 p.in2:00 p.m. This is because OH concentrations from
3:00 p.mi 5:00 p.m. a& lower than those from 12:00 p.m2:00 p.m., which inhibits

the sink of NQ. From 3:00 p.m. to 5:00 p.m., we find a tiny tail in the REAM profile but
not in the aircraft fitting profile (Figured5.a and2.5.c). One possible reason is the
biases of theurface NQ observations due to the uncertainties of scaling FRM
measurements in gan 2.2.4, as aircraft measured N@ixing ratios from 400 mto 1

km show a tail trend but the surface Ngbservation, which is even lower than the 400 m
aircraftmeasuremenbreaks the trend\nother possible reasontise relatively weak
vertical mixing in the late afternoon in REAM, whialaybe still notstrong enough to

fully mix low-layer airwith high-layer aireven though we have updatedin REAM

(Figure2.4).
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Figure 2.5 Diurnal variations of N@vertical profiles on weekdays (a, ¢) and weekends
(b, d) from the aircraft (a, b) and REAM (c, d) during the DISCOMKR campaign.

2.3.1.3 Diurnal cycles of NOTVCD

We find that four Pandora sites during the camphagitheir instruments located
significantly above the ground surface: UMCP, about 20 m; UMBC, about 30 m; SERC,
about 40 m; GSFC, about 30 m. While for all other Pandora sites, the instruments were
only éout 1.5 m high. In the morning, a large quantity of.¥@ys in the neaisurface
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layers (Figure2.5.a and2.5.c). As shown in Figur@.10a, according to the REAM

results, about 5%20% NGO are missing in the Pandora TVCD observations at 6:00 a.m.

at hefour mertioneds i t es. Consequentl vy, wbelowtendt i gn:
instruments for the four Pandora sitége add the missing N&xo the original Pandora

TVCD and find that the TVCD averages from all the 11 Pandoraisite=aseabout 0.3

x10'® molecules / crhin the early morning and are almost the same as before in the

midday and the afternoon (Figu2elOb). After the averaging, the missing part of NO

below instruments is not a big issue for our following analyses but map important

factor for singlesite Pandora comparisons in future researches.

The diurnal variations of NOTVCD from satellites, updated Pandora, REAM, and
the aircraft on weekdaywe shownn Figure2.6.a. We calculataircraftderived TVCD

by using guation 2.1):

- a Caircraft (t)3 fREAM (t) S\/REAM(t)

TVC Daircraft ( t) A?
EAM

(2.1),

wheret stands for timegaircrat (V/V) stands for the N@©mixing ratio at each level from the
fitted aircraft vertical profile at timg J ream (Molecules / cA) is the density of air from
REAM at the corresponding levalzeav (cn¥) stands for theelevantair volume of
REAM; Aream (cn?) is the surface area of REAM grids. In the calculation, we only use
NO: below 3.63 km because few aircraft measurements ailalaieaabove this height in
the campaign. According to the REAM results, 84% of troposphericakiocated
below 3.63 km which is consistent with the GMI model with 8530% tropospheric

NO2 concentrated below 5 kfhamsal et al.2014] Therefore, our calculated aircraft

NO2 VCD roughly represent NOT'VCD.
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Figure 2.6 Diurnal variations of NQTVCD on weekdays (a) and weekends (b) during

the DISCOVERAQ campai gn. APandorao rweHlicers to up:«
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with REAM daily vertical profiles.

As shown in Figur@.6.a, although Pandora, aircraft, and satellite products only
provide daytime TVCD measurements, they are generally in reasonable agreement with
REAM. Both GOME2A and OMI products are very close to REAM, Pandora, and
aircraft TVCD except that NASAlerived OM TVCD are some lower than other datasets
(still within uncertainties) which may be partly due to biased a prior vertical profiles from
the GMI model in the NASA retrieval in the campa[tyamsal et al.2014] TVCD

derived by using REAM Néwvertical profilesarequite comparale to those from KNMI,
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which indicated that the TM4 model from KNMI providezhsonablestimates o& prior

NO: vertical profileson weekday#n the campaign region in summer.

We find evidentdecreases from GOMEA to OMI in Figure2.6.a, which is
consstent with Pandora and REAM, while aircraft observations roughly capture this
feature but show large variations because of the limitations of aircraft measurements and
the uncertainties of the procedures we apply on the Tagdrendng feature is also
consistenwith the decreasing N/CD from SCIAMACHY to OMI in summer
[Boersma et al.2008;Boersma et a).2009]as SCIAMACHY and GOME2A have
close overpass time (SCIAMACHY, 1@QT; GOME2A, 9:30 LT). Enhanced OH
concentrations from photochemistry dominantly induce the decreasin@WCD from
GOME-2A to OMI by increasing the sink of N@hrough the reaction between OH and

NO:..

Between 7:00 LT and 9:00 LT, FiguPes.a showsalmost constantVCD for
REAM and Pandora, which is due to the balance between increasingnN§3ions and
enhancedOH el at ed sink ' horizontal advection
balancebut not as important as the previous two factdfs.findin Figure2.6athat
Pandora TVCLhaveentirely different characteristics from REAM and aircraft derived
TVCD during 5:00 LTi 7:00 LT and 14:00 LT 18:00 LT. During 5:00 LT 7:00 LT,
Pandora hsan increasing trendvhile REAM and aircaft derived TVCDdecrease
significantly from 5:00 LT to 7:00 LTFrom 14:00 LT to 18:00 LT, Pandora TVCDJsa
little variations, but REAMand aircraft derived VCD riseremarkablyBased on our

current knowledge, as shown in Figrd1, as OH concentratiortecreassignficantly
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and NQ emissions change little in the late afternoon,NWCD should increase
sufficiently[Boersma et a).2008;Boersma et a].2009] On the other hand, from 5:00
LT to 7:00 LT, although N@emissions increase, the chemistry sinks of MCrease
more (Figure2.11) and NO2 TVCD should reduc8o we suggest th&andora may not
well capture the characteristics of NOVCD during these two periods due to the
following three factors. (1) Pandoraagpretty small instrument and is sensitive to local
conditions, which may misrepresent the properties of the 36 kmgridn R E A M
similar to the effect of buildings on local surface solar flpBesZhaoet al, 2016] (2)
SZAs in the early morning and the late afternaogrelatively larger which rmy enhance
the uncertainties of Panddiderman et al.2009] even though whave excluded
Pandora measurements with SZA >.§38) Pandora h&few observations in the early

morning, which may misrepresent the TVCD trend during that period.

REAM nighttime TVCD are relativellargerthan its daytime TVCD, whicls
mainly attributedo less NQ sink. Although nighttime N@emissionsare significantly
lower than daytime, the nighttingink through chemistry is muctmallerthan the
daytime (Figure.1]). It seems to be inconsistent witkai et al[2014] andBrown et al.
[2004] which suggest that the contribution of nocturnal chemistry to fd@oval in a 24
period can reach up to about 60%. However, in their studies, onlgiNK> near the
surface were considered,dcathesinksin the higher portion of the PBik missingin their
calculations, which igital in the daytime because wtll-mixed PBL. Based on the
REAM simulation, NOs hydrolysis and the reaction of N@nd OH are the dominant

sink paths for N@at nigh and in the daytime, respectively.® hydrolysisaccouns for
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about half of the total nighttimgnk of NOx, while the reaction of N©and OH

contributes to approximately 50% of tiwaoledaytime NQ sink.

TVCD diurnal variations also reflect the function of vertical mixing. Figlre
shows the daytime NQ/CD variations at different heights, and aircrdéirived datasets
and coincident REAM datasets are quite compar&@sshown in Figure.7, theentire
TVCD displaya U® pattern from 5:00 LT to 17:00 LT
m have a significant increasing trend during the period. The TVCD below 4b0wa
decreamg trendfrom 5:00 LT to 13:00 LT, almost no variations from 13:00 LT to 16:00
LT, and a sharp increase from 16:00 LT to 17:00 LT. As analyzed above, as vertical
mixing become stronger after sunrise, kB> air in the lower layers is mixed with
low-NO: air in the upper layers, which enhances the biahtent in the upper layers but
reduces it in the lower layers. This effect is so strong above 400 m that even thopigh NO
chemistry sinks increase from sunrise to noontime, the TN@D above 400 narestill
increasing Conversely, the TVCD below 400 m decrease remarkably during this period
due to both the vertical mixing effect and the increasing &f@mistry sinks. From
13: 00 LT to 17:00 LT, vVver tki;areatly reachestomigh doe s
ranges, and reduced chemistry sinks dominate the increasing trend of the TVCD above
400 m, which is most significant from 16:00 LT to 17:00 Ihe VCDbelow 400m are
almost the same from 13:00 LT to 16:00 LT, indicating the lealdetween vertical
mixing, horizontal advectiorghemistrysinks, drydepostions and NQ emissionsThe
sharp jump of the TVCD below 400 m from 16:00LT7:00 LT is also due to the

dramaticallyreduced OH concentrations and chemistry sinks.
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Figure 2 7 Hourly variations of NQTVCD at di fferent heights.
measurements derived NOVCD, and AREAMO denotes coinci
TVCD.

2.3.14 Applications to N@emissions

As the REAM simulatiornis in reasonable agreement with the observed diurnal
cycles of surface N&£and Q, NO. vertical profile, NQ TVCD, we suggest that
NEI2011providesareasonablestimate of N@emissions. It is consistent wigalmon et
al. [2018] which found NEI 2011 and NEI 2014 were in agreement with aircraft
observatiorderived NQ emissions, which is again confirmed through the investigation
of observed and NEI NACO,, CO/NQ,, and CO/CQratios, duringlie Wintertime
INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign in February
T March 2015 around the Washington, DEaltimore area. However, our evaluation of

NEI NOx emissions iglifferent fromTravis et al[2016] andAnderson et al[2014].
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Travis et al[2016] compared the GEQShem simulation results with observations of
NOx and its oxidation products from the SEARS campaigmitrate wet deposition

fluxes fromthe National Acid Deposition Program (NADP) netwaakd NQ TVCD

from OMI, and found that NEI2011 overestimates mobile and industrigleN@ssions

by 30%- 60%.The GEOSChem used byravis et al[2016] had almost the same
chemistry mechanism as REAMd had a horizontal resolution of (?26.3125°which

is also close to REAM (36 km x36 km). We attribute the discrepancies befwaeis et

al. [2016]and our study to theegion discrepancies of N@missions and uncertainties

of measurement&nderson et al[2014] evaluated NEI2011 emissions with the observed
concentratiomatios of CO to N@Qand CO to NQfrom thesameDISCOVERAQ
campaigrand found that NEI overestimat®x emissions by 51%70% in Marylandn

the summer of 2011. Besides the uncertaintiegsaokfering concentrations ratios of
CO/NQ, or CO/NQ to emission ratios of CO/NQlue to different lifetimes of CO, and
NOx and NQ, and theneglectof transport effect, the observed concentration ratios
reflect | ocal conditions more. Wi th a hori
high-resolutionlocal emissions accurately. Therefore, we conduct a REAM simulation
experiment with a horizontal resolution of 4 km in Sect2d 3, which will show

consistent results witAndersoret al.[2014].

2.3.2 Weekend diurnal cycles of NO

Because of the absence of weekend emissions in our NEI2011, we build up weekend
emission inventories based on previous reseaf@®de et al, 2003;Boersma et aJ.
2009;Y. Choi et al.2012;DenBleyker et al. Kaynak et al.2009]which find that

weekend N@emissions are 20%50% lower than weekday emissions and weekend
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NOxemi ssi on diurnal cycle is different from

NOx emissions 1/3 lower than weekday emissions and leseighvariationson

weekends than on weekdays (Figark).

Figures2.3.c,2.3.d,2.5.b, 25.d, and2.6.b showthe weekend diurnal cycles of NO
The improvement of,; alsotakes effect on weekendiurnal cycles (Figure2.3.c and
2.3.d). Generally, the REAM simulation is comparable to observations on weekends. The
diurnalcycles of surface N£and Q concentrations on weekends (FiguPesc and
2.3.d) have the same patterns as those on weekdays (FigBieeand2.3.b). However,
weekend surface N&oncentrations are significantly lower than weekday concentrations
in the daytime and comparable to weekday concentrations during the nighttime, which
reflects the significant differardaytime NQ emissiondut similar nighttime N
emissiondetween weekdays and weeke(éigure2.1). Although the number of
weekend aircraft observations are limited, the impact of vertical mixing orvéi@cal
profilesis clearly showron the transition from 9:00 a.fm.11:00 a.m. to 12:00 p.ri.
2:00 p.m. in Figure2.5.b and2.5.d. Theenhanced N@mixing ratios during 3:00 p.ni.
5:00 p.m. due tdecreasingpghotochemistry sinks is also shown on weekends but not as
much as on weekdays because of lowy E@issions on weekends. For weekend TVCD,
theyshowa similar diurnal pattern as weekdays but witimificanty lower magnitudes
(Figure2.6.b). REAM TVCD onweekends are quite comparable to satellite products,
Pandora, and aircraft observations in most time except that, as on weekdays, Pandora
TVCD havemuchlessvariationin the early morning and late afternoon than REAM and
aircraft datasets which can be &iped by the same reasons as on weekdays. Besides,

KNMI derived GOME2A TVCD at 9:30 a.maremuch larger than other datasets which
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might be due to biased N@ priorprofiles from the TM4 model on weekendsthe
GOME-2A retrieval by using REAM profileshows comparable NO'VCD to Pandora,

REAM and aircraft datasets

2.3.3 The effect of model resolutisnn NO, diurnal cycles

NEI2011 hasan initialresolutionof 4 km, which gives us a chance to evaluate the
impactof model resolutions on NQliurnalcycles. By using the-m emission
inventories, we set up akin REAM with boundary and initial concentrations from the
above 3&km REAM simulation. Figur@.12shows the N@emissiondiurnalcycles in
the 4km DISCOVERAQ campaign region (it is differefiiom the above 3&m region
as now the 11 Pandora sites are in 11 grids of-fre REAM and theyxomposehe 4
km DISCOVERAQ campaign region). Figur&s13i 2.15comparehe observed and
simulateddiurnalcycles of surface NE&concentrations, N@vertical profiles, and N@
TVCD for the 4km REAM. The NQ surface concentrations and TVCD are significantly
higher than observations, although they are still comparable within uncertainties and they
have similar diurnal shapes (Figu243and2.15. And the4-km REAM NGQ; surface
concentrations and TVCD are also higher than thkrBGREAM results around
noontime. We find the NgCemission rate in the-dm DISCOVERAQ region is about
34% higher than that in the &6n DISCOVERAQ region, which may be the main
reason for the high N@surface concentrations and TVCD in th&kd REAM. If we re
grid the 4km REAM results into the grids of the -B6n REAM, the regridded surface
NO2 and TVCD will be close to the 3ém REAM results (Figur2.16). Therefore, the
NEI2011 may not well reveal the spatial distributions of N€dnissions at 4 km scale, but

it provided good estimates at 36 km scale. The distribution issue ferdsghution NQ
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emissioninventoriess corroborated by comparison of the Nébnission inventory

derived from the CONsolidated Community Emissions Processor Tool, Motor Vehicle
(CONCEPT MV) v2.1 and that estimated by the Sparse Matrix Operator Kernel
Emissions (SMOKE) v3.0 model with the Motor Vehicle Emissions Simulator (MOVES)
v2010a[DenBleyker et al. CONCEPT with finer vehicle activity information as input
produced a widespread butessconcentrated running exhaust Nénissions compared

to MOVES in the Denver urban area in July 20D8nBleyker et a. This may be why
Anderson et al2014] show different results from our d8n simulations, as described in
section2.3.1.4. In heir study, they use isitu observations and a nested CMAQ with the
highest resolution of 1.33 km which pretty much represents potentiallybiagkd local
conditions. It is very hard to build up a reliable emission inventories for the whole United
States with such a high resolution with current available datasets as the significant
inhomogeneity of N@emissiongMarr et al,, 2013] but we can still expect significant
improvements of the temporapatial distributions of NOemissions in the near future as

GPShbased information start to be used in the NEI estsj@tenBleyker et a].2017]

Besides, although theldn REAM captures the evolution characteristics obNO
vertical profiles in the daytime (FiguB14), its vertical mixing is too strong in the late
afternoon, and the atmosphere is almost conlgletexed in the boundary layer from
15: 00 LT to 18: 00 LT. We donodt fikmd signif
WRF simulation and the 3ém WRF simulation but we notice that vertical velocitie$ (
in the late afternoon are much larger in tHedsimulation than the 38m simulation,
which may be the reason able to explain the fully mixed boundary layer based on our

sensitivity test. As the phenomenon is most significant in the late afternoon, it may be
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related tadeep/shallow convectioMVe suggeasthat deactivating convection at thédeh
scale may be not a good choice and appropriate convection parameterization may be still

necessary for-km simulationgo stablenize the atmosphé¢eheng et al.2016]

2.4 Conclusion

This study evaluated the simulated diurnal cycles of surface NIG vertical
profiles, and NQTVCD from REAM with observations from air quality monitoring
sites, aircraft, Pandora, OMI, and GOME during the DiscoveAQ 2011 campaign. In
the REAM simulation, wénd the boundary layer heights from the WRF simulation are
significantly lower than EF Lidar measurements after sunset. We incr&ase the late
afternoon and during the nighttime, which significantly improves the comparison of
PBLH between REAM with observations and eliminates the discrepancies of surface

NO, and Q concentrations beteen REAM and observations.

Our 36km REAM simulation well reproduces the observed diurnal cycles of surface
NOz, NO; vertical profiles, and N©TVCD on both weekdays and weekends. However,
1), we find Pandora TVCD show much less variation than airdesifted and REAM
simulated TVCD, which may be due to the uncertainties of Pandora measurements with
large SZAs and the strong sensitivity of Pandora to local conditions. 2), the weekday
OMI NO2 TVCD derived by NASA are somewhat lower than the KNMI OMI praduc
aircraftderived TVCD, Pandora, and REAM results, which may be causaddncurate
a prior vertical profilesisedin the NASA retrieval 3), the weekend OMI NOT'VCD
derived by KNMI are larger than those from Pandora, aircraft, REAM, and the OMI

retireval with REAM NG vertical profiles, which indicates the TM4 model for the
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KNMI retrieval may provide biased estimates of the a priop M&tical profiles in the
weekend morning. Besides, we find that observed ¢¢@centrations in the boudary
layer and NQ TVCD on weekends are significantly lower than on weekdays. To
reproduce the weekend observations, REAM should haveeN@sions onghird lower
on weekends than on weekdays and less daytime variation on wedéhkanan

weekdays.

We finally investigate the impact of model resolutions orp NiQrnal cycles by
comparing a REAM simulation with a resolution of 36 km and another REAM simulation
with a resolution of 4 km. There are no significant differences forltheacteristics of
NO: diurnal cycles, but we find theldn simulation results are significantly higher than
observations and the 3&n model results. And if we fgrid the 4km simulation results
into the 36km model grids, the rgridded 4km results areomparable to the 3@m
REAM results. Therefore, the NEI2011 may not well capture the distributions of NO
emissions at 4 km scale but provide good estimates gfeN®sions at 36 km scale. In
addition, we find that the effect of vertical wind velocitiesiot ignorable in the-km
simulation, which are large enough to completely mix the boundary layer in the late
afternoon which is inconsistent with aircraft observations. Tk 4imulation need

more improvement and is the aim of future researches.

In summary, the evaluation generally comfirms our current understanding,of NO
chemistry and physcis in mesoscale chemistry and transport model and provide useful

results for advanced model development.
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2.5 Supporting materials

2.5.1Methodto update eddy difsivity coefficients gk m/<)

Generally k- decreasesince late afternoon when solar radiati®neduced
significantly. The decreasing rate fisost significahfrom sursetto around 21:00 LT, and
thenk;, decreases relatively slowlin the boundary layer in our WRF simulatidg,
decrease faster at high altitudes than near the surfakgbuda n 6t be reduced t
values than its threshold in each model layer (we determine the planetary boundary layer
height based on these thineds in this study). An#.in urban regions decreases more
slowly than inrural regionsBesideskzhas a ACO0O shape of vertica
boundary layer with lovk., values near the surface and at the upper levels of the
boundary layerin orderto keep the above characteristickgfand slow down the
decreasing rate d¢.since late afternoon, we upd&tein the boundary layer by using

the following equations.

whenk,( )2 0.01m/ §,
o (t+ B1) max{k,(t)+a ()" WREK(t 4] (2.2
whenk,(t )<0.01m/ §,

k,(t+ BI) max(k,(t]) WRFk(t 1D 2.3

Whereldenot es model vertical |l evel s | @ss than
is the current time, whilepis an updating time step (= théurs); Uis a coefficient
dependent omodel levelsf is a coefficient dependent on tintef- is a coefficient

related to land types, aritf is 1 for urban regions and 2 for other land typWRF k- is
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the originalkz;from the WRF simulatiorEquations 2.2) and (23) calculatek;, at next
time step with currerit.z Theequationsare only active wheh> 15:00 LT and < 5:00
LT which is intended to update;in the late afternoon and at nigfithe updated,,
values are decreasing more slowly than the original WRF values siecaftarnoon and

satisfy the characteristics described above.

2.5.1 Supporting figures

/

Figure 2.8 (a), the location of the DISCOVERQ campaign; (b)locationsof surface

and aircraft observations during the campaign. Gray in (a) and slate gray and light gray

(b) aretheland surface andwhite denotesvater. We mark the DISCOVERQ

campaign region as tlsex slate gray gridsin (bWWe excl ude i Risstudyor a ( w)
as it is ashippingsite over the water
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