Understanding the role of glaze layer with multiple surface characterization techniques aligned by computer vision algorithms

Chuchu Zhang, Richard W. Neu

Motivation
- Materials selection for low friction, low wear in high temperature applications is difficult.
- "Glaze layer" may form spontaneously at the contact interfaces and largely reduces friction and wear.
- Study distribution of glaze layer is challenging:
 - "Shiny, smooth, highly oxidized, superficial layer"
 - No hardware can do-it-all at high resolution.

Computer vision algorithms
- Homography transformation
 - translate between two individual 2D images of same planar object
 \[
 \begin{bmatrix}
 x_1 \\
 y_1 \\
 1
 \end{bmatrix}
 = H_t
 \begin{bmatrix}
 x_2 \\
 y_2 \\
 1
 \end{bmatrix}
 \]
- HSV color space
 - Segment essential information: true color[H] and brightness[V]

Image alignment workflow
- Input
- Rough match
- Precise match
- Tentative \(H_t \)
- Error < \epsilon
 - Yes
 - No
- \(H_t = H_t \)
- Align OM to height map with \(H_t \)
- Edge trim
- Final output pair
- Pixel-to-pixel matched OM-Height map pair
 - Sub pixel error, resolution up to 0.73\(\mu \)m

Glaze layer identification workflow
- H-V criterion:
 \[
 \begin{cases}
 H_{\text{max}} \geq H_i \
 V_i \geq V_{\text{min}}
 \end{cases}
 \]
 - H-V criterion validation

Applications
- Height analysis:
 - Glaze layer is always higher than non-glaze layer
 - Glaze layer is more likely to be in contact, strong evidence to sintering theory
 - May reduce real contact area
- Coverage analysis:
 - 36% threshold
 - Glaze coverage increase with temperature
 - 3 stages of coverage increasing
 - Materials selection for low friction, low wear in high temperature applications is difficult.
 - "Glaze layer" may form spontaneously at the contact interfaces and largely reduces friction and wear.
 - Study distribution of glaze layer is challenging:
 - "Shinny, smooth, highly oxidized, superficial layer"
 - No hardware can do-it-all at high resolution.

Significance
- Open-source workflow that enable multi-spectrum analysis without upgrading existing hardware, easily transferable to all other applications in academia and industry.
- Quantitative criterion that enables fast, accurate, and automatic glaze layer identification and reveal new knowledge.