Selecting Among Replicated Adaptive Multicast Servers *

Zongming Fei, Mostafa H. Ammar, Ellen W. Zegura
Networking and Telecommunications Group
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
{fei,ammar,ewz}@cc.gatech.edu

GIT-CC-00-18

Abstract

Server replication and multicasting are well-established techniques for increasing capacity of a networked service and improving client performance. In this paper, we consider the combination of these two techniques. Specifically, we investigate the problem of selecting amongst rate-adaptive multicast servers, which adjust their sending rate based on network conditions and/or feedback from clients. Effective server rate adaptation can lead to efficient utilization of network resources and performance improvement perceived by clients. In this initial study of adaptive multicast server selection, we explore some fundamental issues and study the implications of different selection strategies on the performance perceived by clients.

We first define the Static Multicast Selection Problem, in which there are static sets of clients and servers, and one needs to establish a set of multicast trees with one tree for each server. We explore several optimization problems based on different performance measures. We prove that the general problem is NP-hard and then present two interesting special cases with an optimal polynomial-time solution in each case. We design a heuristic for the general case and show that it can improve the performance over some simple strategies. We also consider the Dynamic Multicast Selection Problem, in which clients may join and leave multicast trees already established. We design a heuristic for this dynamic case by which clients can select a tree to join. We investigate the performance of the heuristic through simulation.

*This work is supported in part by research grants from Sprint, and NSF under contract number NCR-9628379 and ANI-9973115.
1 Introduction

With the explosive growth of the Internet, networked services must potentially handle a large number of clients. An increase in service demand often leads to system performance implications: degraded performance as perceived by the client, possible rejection of the request due to server overload, and poor performance observed by other network connections due to hot spots.

To help maintain performance under higher demands, there have been several proposals for multicast service in which a server delivers information to multiple clients simultaneously (e.g., [1, 2, 3]). Through the aggregation of request processing at the server and the aggregation of bandwidth requirements in the network, a multicast service can reduce the load on the server and network and, therefore, improve the performance perceived by the clients.

In a multicast service, one of the key issues is how fast a server should transmit. There are several possible ways that a server rate can be determined. A simple and often-used method is that the sending rate is pre-determined. The problem with this method is obvious. If the rate is set too low, either the quality of streams sent out is poor (in the case of a video multicast service), or it takes a long time to complete a task (in the case of bulk data transfer). If the rate is too high, other problems can occur. In a heterogeneous environment, the bandwidth of some links from the server to clients may be smaller than the server rate. Packets can be lost due to the rate mismatch, and links can be congested. The reception capacities of clients can also be very different from one another. Some fast clients may be capable of processing the packets, while other slower clients cannot.

An alternative to pre-determined rates is that the server rate is adjusted based on feedback from clients. Effective rate adaptation of multicast servers can lead to efficient utilization of network resources and performance improvement perceived by clients. More importantly, it can avoid congesting low capacity links in the network. A simple policy is to set the server rate to the minimum share of bandwidth on all links in the multicast tree. In this paper, we only consider this simple adjustment scheme.

The problem with an adaptive multicast server using the simple adjustment scheme is that the server rate will be very low if there is even a single low bandwidth link in the multicast tree. For example, as shown in Figure 1, clients C1 to C4 connect to the network with different capacity access links, ranging from 28.8 Kbps to 3 Mbps. If there is only one multicast server (e.g., S1), the server will adapt to sending at the rate of the slowest link, i.e., 28.8 Kbps. This jeopardizes the performance of those clients that can potentially receive at a higher rate. Multicast server replication can be introduced to deal with this problem. If we have multiple servers (e.g., S1, S2), we can allocate clients with different capacities to different servers, and they can receive at a higher rate. For example, if we allocate clients C1 and C2 to server S1 and clients C3 and C4 to server S2, then the rate of C3 and C4 can be increased to 1.5 Mbps.

Multicast server replication, however, needs to be coupled with an appropriate server selection mechanism, that will ensure, for example, that C1 and C2 choose S1, while C3 and C4 choose S2. Without effective server selection, the benefits of replication will be lost. This leads to the problem of selecting amongst adaptive multicast servers.

\footnote{We assume a server operates at a single rate, rather than multiple rates (e.g., using layering).}
Figure 1: An example

Server selection has been extensively studied in the unicast environment [4, 5, 6, 7, 8]. In [9], we undertake what we believe is the first study dealing with multicast server selection issues. The main focus in that work was how to minimize the cost for establishing multicast trees, assuming constant performance regardless of the tree configurations.

In this paper, we investigate the selection problem for adaptive multicast servers. Some fundamental issues include: 1) finding appropriate performance measures in the adaptive multicast server selection environment, and 2) studying the implications of different selection strategies on these performance measures. We first define the Static Multicast Selection Problem, in which there are static sets of clients and servers, and one needs to establish a set of multicast trees with one tree for each server. We explore several optimization problems based on different performance measures, with the goal to maximize some function of client rates and minimize the bandwidth used by multicast trees. We prove that the general problem is NP-hard by transforming the 3-SAT problem to it and then present two interesting special cases with an optimal polynomial-time solution in each case. We design a heuristic for the general case and show that it can improve the performance over some simple strategies.

We also consider the Dynamic Multicast Selection Problem, in which clients may join and leave multicast trees already established, and one needs heuristics to graft and prune the multicast trees. We design a heuristic for this dynamic case and demonstrate by simulations that it can outperform commonly used Shortest or Widest heuristics.

The rest of the paper is structured as follows. Section 2 defines the Static Multicast Server Selection Problem and analyzes the complexity of the problem. Two special cases are presented in Section 3 and Section 4. Solutions to the general static problem are given in Section 5. We define the Dynamic Selection Problem and give a solution in Section 6. Section 7 concludes the paper.
2 Static Multicast Server Selection Problem

2.1 Problem Description

We use a conventional model where a network is represented by a graph $G = (V, E)$, where V denotes the set of nodes (representing hosts and routers) and E denotes the set of edges (representing logical connectivity). Edge $e \in E$ is of the form (v_i, v_j), where $v_i, v_j \in V$.

We consider a single service delivered by a set of n servers $S = \{s_1, \ldots, s_n\}$ to a static set of m clients $C = \{c_1, \ldots, c_m\}$. An allocation of clients to servers is a function $\phi : C \rightarrow S$. We denote the set of clients allocated to server s_i as $\Omega_i = \{c_j : \phi(c_j) = s_i\}$. We aim at establishing n multicast trees $T_i = (V_i, E_i), (V_i \subseteq V, E_i \subseteq E, 1 \leq i \leq n)$, such that $s_i \in V_i$ and $\forall c_j \in C (\phi(c_j) = s_i \Rightarrow c_j \in V_i)$. Note that any node (including a client) may exist in multiple trees. However, for each c_j, there exists a unique s_i such that $\phi(c_j) = s_i$.

Let R^+ denote the set of positive real numbers. Assume a bandwidth function $B : E \rightarrow R^+$ defined on E with $B(e_i) = b_i$. The bandwidth function can be considered as the residual bandwidth currently available on the link for the service delivered by the set of replicated servers S. For adaptive multicast servers, the sending rate is determined by the minimum share of bandwidth on all links. Because a link can exist in multiple trees, a server’s share of bandwidth and, therefore, its rate depends on how we allocate the bandwidth of shared links.

Assume the rate of server s_i is r_i. The rate of all clients selecting this server will be r_i. So the performance of these clients can be expressed as $f(r_i, \Omega_i)$, where Ω_i is the set of clients selecting s_i and f is some function of this set and r_i. The average performance of all the clients can be expressed as $P = \frac{1}{m} \sum_{i=1}^{n} f(r_i, \Omega_i)$, where m is the number of clients.

We focus on two particular functions $f(\cdot)$. If $f(r_i, \Omega_i) = r_i|\Omega_i|$, then P is the average rate of the clients. Our other specific interest measures fairness across clients. Specifically, We use the concept of the inter-receiver fairness defined in [10]. We define the isolated rate of a client to be the maximal rate that a client can receive if there are no other clients. If the isolated rate of client c_j is r_j^*, a simplified version of inter-receiver fairness (or fairness for short) is defined as $\frac{1}{m} \sum_{j=1}^{m} y_j / r_j^*$, where y_j is the actual rate client c_j achieves. P is the inter-receiver fairness if we define $f(r_i, \Omega_i) = \sum_{c_j \in \Omega_i} r_i / r_j^*$.

In a tree, each link carries the same bandwidth as the server rate. So the total bandwidth used by a tree is the server rate multiplied by the number of links in the tree. For tree $T_i = (V_i, E_i)$, the bandwidth used is $r_i|E_i|$. The average bandwidth used by one client is $B = \frac{1}{m} \sum_{i=1}^{n} r_i|E_i|$. We want to maximize some function of P and B, representing a tradeoff between performance and cost. One interesting function is $\alpha P - \beta B$, where α and β convert performance and bandwidth measures into common benefit and cost units. Another possibility is to maximize $\frac{P}{B}$, the performance per unit bandwidth. Any optimization is subject to the constraint that the total bandwidth used at each link does not exceed the link capacity. That is, for all links e_j:

$$\sum_{e_j \in E_i} r_i \leq b_j$$

(1)
In some applications, it is also possible to impose some constraints on the minimal acceptable rate of clients and servers. For example, we may require that \(r_i \geq \delta \) in some cases.

Other definitions of \(f(\cdot) \) are possible and they may result in some other interesting performance measures for \(P \). In this paper, we will focus on the two measures described above, the average rate of clients and the inter-receiver fairness of clients. Before we go to the details for solving the problem, we first take a look at its complexity.

2.2 Complexity of the Problem

We are interested in knowing whether there is an efficient solution to optimize a function of \(P \) and \(B \). The problem of optimizing \(\alpha P - \beta B \) is NP-hard by the following argument. Consider a graph in which the bandwidth of all the edges in the graph is 1.0 and assume there is only one server. Then the value of \(\alpha P \) is some fixed value because the rate of the server is 1.0 and so are the rates of all the clients. With a given \(\beta > 0 \), the goal is reduced to minimizing \(B \). This is a Steiner tree problem with all edges of length 1.0, which is NP-hard [11]. Since a special case of the general problem is NP-hard, the original problem is also NP-hard.

Even if we do not consider the goal of minimizing the bandwidth used, i.e., let \(\beta = 0 \), the problem of maximizing \(P \) is still NP-hard when \(P \) is the average rate of clients. The 3-SAT problem [11] can be transformed to this problem in a directed graph.

Theorem. Given a network \(G = (V, E) \), a bandwidth function \(B \) defined on \(E \), \(n \) multicast servers \(s_1, \ldots, s_n \in V \), \(m \) clients \(c_1, \ldots, c_m \in V \), the following problem is NP-hard: Is there an allocation of clients to servers with server \(s_i \) operating at rate \(r_i \) such that the total rate of all the clients is greater or equal to \(R \), subject to the link capacity constraint in equation (1)?

Proof. See Appendix A.

2.3 Approaches to Solving the Static Problem

Since the general static multicast server selection problem is NP-hard, we are unlikely to be able to find an efficient algorithm that gives an optimal solution. Before we explore heuristic solutions to the general problem, we are interested in finding some simplified versions of the problem that may arise in practical situations and can be solved efficiently.

We mentioned that the problem consists of two parts. One is selection, which chooses a server (and path) for each client. Another is the rate allocation for servers. If two or more multicast trees share a link, the rate of each server is determined by how we split the bandwidth of the shared link.

Based on the above observations, we can formulate two simplified versions of the problem. In the first special case, we consider a situation where the bottleneck for each client is the unshared access link directly connected to it. The rate of this link can be assumed to be the maximal possible rate for each client. We assume that the other network links have enough bandwidth to support an arbitrary allocation, therefore, we do not need to consider the rate
allocation. After each client chooses a server, the server rate is set to be the lowest rate of all the clients selecting it. We give an optimal solution to this selection problem in the next section.

In the other special case, we assume that all the clients have selected a server and a path to the server. We are interested in the problem of bandwidth allocation on the shared links so as to maximize either the average rate of all the clients or the inter-receiver fairness. We will give an optimal algorithm in Section 4.

3 Special Case I: Selection Only

In this special case we assume that each client’s access link presents the bandwidth bottleneck. Other network links have abundant bandwidth. For example, in Figure 2, client C1 has a bottleneck at access link L1 with 1 Kbps and client C6 has a bottleneck at access link L6 with 100 Kbps. The server selection problem reduces to determining a grouping of clients and an allocation of a server to each group.

Assume client c_j $(1 \leq j \leq m)$ can receive at rate r_j^*, which is the isolated rate of client j, as defined in Section 2. The rate of each server is the minimum rate of all the clients selecting the server. If we order the clients such that $r_j^* \leq r_{j+1}^*$ $(1 \leq j \leq m - 1)$, we can formulate the problem as follows: Given m clients with rates r_j^* $(1 \leq j \leq m)$ in increasing order, select n rates from them as server rates. Assume that the n indices marking the selected rates are k_i $(1 \leq i \leq n)$. We let $k_1 = 1$ because we assume that each server must adapt to the lowest rate of clients selecting it and every client must select one of the servers. In other words, we have a constraint $(r_i \geq r_j^*)$ on the minimum rate of clients and servers. If we define $k_{n+1} = m + 1$, we can let client $k_i \leq j < k_{i+1}$ select server i and its effective rate is $r_{k_i}^*$. This completely determines the function ϕ. Thus the selection problem reduces to picking the n server rates (indices) amongst the m client rates.
We have identified two goals:

1) Maximize the average rate of clients: \(\frac{1}{m} \sum_{j=1}^{m} r_{\phi(j)} \). For a given \(m \), this problem reduces to maximizing \(\sum_{i=1}^{n} r_{k_i}(k_{i+1} - k_i) \).

2) Maximize the fairness: \(\frac{1}{m} \sum_{j=1}^{m} r_{\phi(j)} / r_j^* \), where the fairness is defined as the average of the actual rate over the isolated rate. For a given \(m \), this problem reduces to maximizing \(\sum_{i=1}^{n} \sum_{j=k_i+1}^{n} r_j^* / r_{k_i} \).

3.1 Optimal Allocation Algorithms

The brute force solution to the problem involves trying every possible way to select \(n - 1 \) server rates from \(m - 1 \) client rates. When \(n << m \), the complexity is exponential \(O(m^n) \).

We develop an algorithm with complexity \(O(nm^2) \), by first transforming to a shortest path problem and then using Dijkstra’s algorithm to solve it. First we present an algorithm for solving the maximal rate problem, and then we show how to modify it for the maximal fairness problem.

The idea is to represent each possible choice of server rates from amongst client rates using a graph, with the vertices arranged in rows and columns as follows. There is one column of vertices for each server; there is one row of vertices for each client. Vertex \(v_{j,i} \) in row \(j \) and column \(i \) represents the potential for server \(i \) to select the rate of client \(j \). Figure 3 illustrates the graph for the example in Figure 2.

The edges in the graph are used to represent the performance associated with the choice of particular rates for two adjacent servers. That is, an edge from \(v_{j,i} \) to \(v_{k,i+1} \) represents that server \(i \) selects the rate of client \(j \) while server \(i + 1 \) selects the rate of client \(k \). The weight on this edge is the “deviation” from ideal for clients \(j, \ldots, k - 1 \) that results from this choice. These clients will all be assigned to server \(i \) with rate \(r_j^* \); all except client \(j \) will therefore receive at a rate lower than their isolated rate.

A solution is represented by a path through this graph that includes one vertex per column, thus selecting one client rate per server. With the edges and weights as described, a shortest path corresponds to an optimal solution.

Formally, we define the deficit from \(i \) to \(j \) (\(i \leq j \)) as the difference between the isolated rates of clients \(i \) and \(j \), i.e., \(D(i, j) = r_j^* - r_i^* \). If client \(j \) selects a server sending at rate \(r_i^* \) (note \(r_i^* \leq r_j^* \)), the wasted capacity by \(j \) is \(D(i, j) \). The cumulative deficit from \(i \) to \(j \) (denoted as \(D_C(i, j) \)) is the sum of the deficits from \(i \) to all \(k \) (\(i \leq k \leq j \)), or \(D_C(i, j) = \sum_{k=i}^{j} D(i, j) \). Define \(D_C(i, j) = 0 \) if \(i \geq j \).

We define a deficit digraph \(G_d = (V_d, E_d) \), where \(V_d = \{v_{j,i} \cup \{v_s, v_e\} \ (j = 1, \ldots, m, i = 1, \ldots, n) \) and \(E_d \) is given as follows. Connect \(v_s \) to \(v_{1,1} \) with an edge of length 0. For \(1 \leq j \leq k \leq m, 1 \leq i \leq n - 1 \), connect \(v_{j,i} \) to \(v_{k,i+1} \) with an edge of length \(D_C(j, k - 1) \). For \(1 \leq j \leq m \), connect \(v_{j,m} \) to \(v_e \) with an edge of length \(D_C(j, m) \). For the rates of clients in Figure 2, we can generate a graph in Figure 3 (not all edges are shown in the figure).
Using Dijkstra’s algorithm, we can compute a shortest path from \(v_s \) to \(v_e \). The path must be in the form \((v_s, v_{i,1}, v_{i,2}, \ldots, v_{k,j}, \ldots, v_{k,n}, v_e) \). These \(k_i \)'s \((2 \leq i \leq n) \) are clients we want to partition the client set. The shortest path in the problem in Figure 3 is \((v_s, v_{1,1}, v_{3,2}, v_{5,3}, v_e) \) (shown as bold lines) and the optimal solution to the problem is to set servers \(s_1, s_2, s_3 \) at rates \(r_1^*, r_3^*, r_5^* \), or 1, 22, 64 and allocate clients \(c_1, c_2 \) to \(s_1 \), clients \(c_3, c_4 \) to \(s_2 \) and clients \(c_5, c_6 \) to \(s_3 \).

For the maximum fairness allocation algorithm, we only need to modify the deficit from \(i \) to \(j \) to be \(D(i, j) = 1 - r_i^*/r_j^* \).

3.2 Performance Results

To illustrate the use of the algorithm described above, consider a system with 400 receivers. Their isolated rates are randomly selected between 0.1 to 0.9. The number of servers varies from 1 to 15. We compare five algorithms:

1. Maximize Average Rate, as described above.
2. Maximize Fairness, as described above.
3. Random. Each client randomly selects a server, and the rate of server is set to the lowest of the rates of the clients selecting this server.

4. Equally Spaced Server Rates. Assume that the range of rates is pre-determined. Each server is assigned a rate evenly spaced from each other. Each client selects the fastest one from the set of servers that have a lower rate than this client.

5. Maximum Gap. This is an approximation to the optimization algorithm above. It operates as follows. Assume client rates are in ascending order. Calculate the difference between
the rates of two clients in adjacent positions in that order. Divide the clients into groups at the place where the difference is biggest. If there are several locations with the same biggest distance, divide arbitrarily if there are no consecutive pairs that have the same biggest distance. If there are consecutive pairs with the biggest distance, they constitute a chain. We can divide at the middle of longest chain. For the problem in Figure 2, the Maximum Gap solution is to set servers s_1, s_2, s_3 at rates 1, 64, 100, respectively, and allocate clients c_1, c_2, c_3, c_4 to s_1, client c_5 to s_2 and client c_6 to s_3.

In Figure 4(a), we compare the average rate of each algorithm. We use the average of isolated rates of all clients as a comparison baseline. The rate shown in the plot is the ratio of the average of actual rates of clients over the average of isolated rates. As the number of servers increases from 1 to 15, the average rate in all cases increases. The random selection algorithm does not increase much while all other algorithms demonstrate a sharp increase when the number of servers increases from 1 to 6. The maximum rate algorithm has the highest average rate, and the maximum fairness algorithm is very close to it. They both perform better than equally spaced rate and maximum gap algorithms.

Figure 4(b) shows the fairness of each algorithm. As expected, the maximum fairness algorithm has the largest fairness value, and the fairness of the maximum rate algorithm is very close to it. They both have a larger fairness value than maximum gap and equally spaced rate algorithms. The random selection has a very low fairness value. This is because it leads to servers operating at rates of some low-end clients, and all the clients are receiving at a very low rate. Therefore, both the average rate and fairness are very low when using random selection.

These results demonstrate that increased sophistication in the selection algorithm has a considerable performance payoff. The presence of rate-adaptive servers requires coordination across clients to avoid the “lowest common denominator effect” illustrated by the random result. The equally spaced rate improves upon the random result, however, the three most sophisticated schemes offer additional improvement varying from 30% to 50%.
4 Special Case II: Server Rate Allocation

In this section, we assume that each client has selected a server according to some strategy, and the path from the server to each client is also determined. This prior allocation of clients to servers could be based on closeness to server criteria or perhaps some policy or pricing considerations. The problem is how to allocate the rate of each server to maximize the average rate or the fairness index, subject to the feasibility constraints. One obvious solution is multicast max-min allocation under the definition of Tzeng and Siu [12]. However, as shall be demonstrated shortly, this does not necessarily generate the best allocation according to our measures.

In this section, we formulate the optimization problem as a Linear Programming (LP) problem and give an algorithm based on the Simplex method [13], exploiting special properties of the problem. We use the maximal rate as an example in the problem formulation and then discuss how to modify it to solve other optimization problems.

Assume that the rate of server s_i is r_i. For the case where we desire to maximize the average rate, the problem can be formulated as: Maximize $Z = k_1 r_1 + k_2 r_2 + \cdots + k_n r_n$, subject to

$$\sum_{e_j \in E_i} r_i \leq b_j, \text{for all edges } e_j \quad \text{and} \quad r_i \geq \delta \geq 0$$

where k_i is the number of clients selecting server s_i and δ is some minimum rate requirement. Note that because we are given routing and client allocation to servers, the problem may have no feasible solution if too many trees share a single link, unless δ is 0. This linear programming problem can be solved by the Simplex method. We are interested in finding a simple algorithmic solution based on the special properties of the LP problem.

First we transform the formulation slightly. Let $x_i = r_i - \delta$. The original problem is transformed into a new LP problem. Maximize $Z = k_1 x_1 + k_2 x_2 + \cdots + k_n x_n + (k_1 + k_2 + \cdots + k_n) \delta$, subject to

$$\sum_{e_j \in E_i} x_i \leq b_j - \ell_j \delta \quad \text{and} \quad x_i \geq 0$$

where ℓ_j is the number of servers whose trees include the edge e_j. Obviously, if any of $b_j - \ell_j \delta$ is less than 0, then the LP problem has no solution and the original allocation problem will have no solution.

Following the Simplex method, we get the following greedy algorithm. At each step, this algorithm assigns a rate to the server with the largest number of clients that has not yet had its rate assigned. The chosen rate is as large as possible, subject to the link constraints. That server and clients are then "removed" from the problem, and the link rates are adjusted accordingly.

Step 1. For each link e_j, let $b'_j = b_j - \ell_j \delta$, where ℓ_j is the number of servers currently using this link. If any b'_j is less than 0, then there is no solution to the original problem and exit; otherwise,

Step 2. Select a server s_i from S with the largest k_i (number of clients). For all the links e_j that s_i uses, select the smallest b'_j. Set x_i to this value.
Step 3. For all the links e_j that s_i uses, let $b'_j = b'_j - x_i$. Remove s_i from S. If S is not empty, go to Step 2.

Step 4. For server i, set its rate to be $x_i + \delta$.

Based on the above process, we can get an optimal solution to the original problem with a guaranteed minimal rate δ for each server. This is optimal because each step is a direct mapping from the Simplex method.

This method can be used as long as the goal function can be formulated as a linear combination of r_i. For example, we can maximize the fairness and the goal function can be defined as $Z = (\sum_{\phi(c_j)=s_1} 1/r_j^*) r_1 + (\sum_{\phi(c_j)=s_2} 1/r_j^*) r_2 + \cdots + (\sum_{\phi(c_j)=s_n} 1/r_j^*) r_n$. The only modification to the above algorithm is to substitute every k_i with $\sum_{\phi(c_j)=s_i} 1/r_j^*$.

4.1 Performance Results

We show different rate allocation algorithms by two examples as illustrated in Figure 5. We have two servers S1 and S2. There are 10 clients (C1 to C10) selecting server S1 and 5 clients (D1 to D5) selecting S2. There is a shared link with bandwidth y. We change the value of y to see the effects of different algorithms. In the first example, the isolated rate of C2 to C10 is 500, and the isolated rate of C1 can be up to 10. The isolated rate of D2 to D5 is 25, and the isolated rate of D1 can be up to 20. In the second example, we change the isolated rate of C2 to C10 to 100 and the isolated rate of C1 can be up to 40.

We compare three bandwidth allocation algorithms. In addition to maximal rate allocation and maximal fairness allocation algorithms, we use a multicast max-min allocation to determine the rates of servers. We measure the average rate of receivers and the inter-receiver fairness.

In Figure 6(a) we show the average rate in the first example. As the bandwidth y increases from 1 to 30, the average rate of all three algorithms increases. The maximal fairness algorithm
favors clients with a smaller isolated rate; the average rate it can achieve is smallest among three algorithms. The max-min allocation falls in the middle and converges to the maximal rate allocation when the bandwidth \(y \) is more than 20. In Figure 6(b) we show the inter-receiver fairness for the three algorithms. The maximal rate algorithm is worst with regard to the inter-receiver fairness measure. Corresponding to average rate plot, the inter-receiver fairness of the max-min algorithm is the same as that of maximal rate algorithm when the bandwidth \(y \) is greater than 20.

The results of allocation in the second example are given in Figure 7. The general behavior is similar to the first example. In this case, we can see that max-min allocation converges to maximal fairness allocation after the bandwidth \(y \) is greater than 40 in both the average rate and the inter-receiver fairness plots.

In these examples, max-min allocation offers a compromise between maximizing average rate and maximizing fairness. However, other results we obtained indicate that this conclusion
cannot be extended to general cases.

5 Heuristics for Solving the General Static Problem

The general static problem is NP-hard, and there is no efficient optimal solution as in the two previous special cases. We study heuristic solutions to the problem in this section. Two obvious heuristics are:

1. Shortest. Each client selects a nearest server based on the hop count. To avoid the situation that a node may be in multiple trees, the clients join sequentially. Specifically, connect a client to a multicast tree by starting from the client and following a shortest path towards the nearest server until a node already in a multicast tree is met. If no such node exists, the entire path from server to client will be added to the tree. Otherwise, a partial path will be added. There are no shared links between different multicast trees established this way. We set the server rate to be the minimum bandwidth of all the links in the server's tree.

2. Widest. First we let each client select a server that has the highest bandwidth from the server to the client. Note the path from the server to the client is not necessarily the shortest path. Then we set the server rates so that they are feasible and maximize the goal function using the algorithms described in Section 4.

We propose another heuristic called Optimized Widest. Observe that with the Widest heuristic, a client selects a path that is best for itself. However, the bandwidth of paths connecting to the same server may vary a lot. When a server has clients with considerable diversity in path bandwidth, Optimized Widest forces those clients at the low end of path bandwidth to select a different server. This allows the particular server to operate at higher bandwidth, often with minimal penalty for the clients forced to another server.

Recall that the server set is $S = \{s_1, \ldots, s_n\}$ and client set is $C = \{c_1, \ldots, c_m\}$. Let M denote the maximum bandwidth of any edge in E.

- Step 1. Add an extra node s_0 and connect s_0 with each s_i ($i = 1, \ldots, n$) with an edge of bandwidth $M + 1$.

- Step 2. Use Dijkstra's algorithm to set up a tree so that s_0 has maximum rate along this tree to any node in the graph. This consists of the following steps.

 2.1) Set selected set $N = \{s_0\}$ and $\bar{N} = V - N$.

 2.2) Select an edge $e = (v_i, v_j)$ such that $v_i \in N$ and $v_j \in \bar{N}$ and the residual bandwidth of e is the biggest. Add this edge to the tree.

 2.3) Add v_j to N and remove v_j from \bar{N}.

 2.4) Repeat 2.2) and 2.3) until $N = V \cup \{s_0\}$.

- Step 3. From subtrees rooted at each server, pick one with the largest number of clients in the subtree. Optimize this subtree as described in the following steps. If there is only one subtree left, skip optimization step 3.2.
3.1) Prune those non-client leaves (recursively).
3.2) Assume the clients selecting the server are $1, \cdots, w$ and the isolated rate of client i is r^*_i ($1 \leq i \leq w$). Without loss of generality, we assume $r^*_i \leq r^*_{i+1}$ for $1 \leq i \leq w - 1$. We determine a k such that the value $(w - k + 1)r^*_k$ is maximized. We let clients k, \cdots, w stay with this server, which will operate at rate r^*_k. Clients $1, \cdots, k - 1$ are pruned from the subtree.
3.3) Set the rate of this server to be the maximal possible rate (r^*_k) subject to the bandwidth constraints and reduce the bandwidth of each edge in the pruned subtree by the server rate. These edges get a new residual bandwidth.
3.4) Remove clients in the subtree (k, \cdots, w) from the client set C. Remove the server from the server set S.

Step 4. If $C = \emptyset$, stop; else goto step 2.

5.1 Performance Results

In addition to the three heuristics, Shortest, Widest, and Optimized Widest, we calculate an upper bound on the rates of clients. Each client can receive at its isolated rate if there are no other clients. Usually, this rate cannot be achieved if we have multiple clients in the session simultaneously. This is a loose bound on what we can achieve when the clients are receiving at the same time. We will compare the average rate of clients by the heuristics with the average Isolated Rate measure.

We generate two kinds of topologies using GT-ITM [14]. One is a random graph with 400 nodes. Another is a transit-stub graph with 400 nodes. We have 1 to 32 servers randomly placed in the graph. We experiment with two kinds of client densities: either 5\% of the nodes are clients or 25\% of the nodes are clients, also randomly placed in the network.

The first case is that we have a transit-stub topology with 5\% nodes being clients. Figure 8
Figure 9: Bandwidth Used in Transit-Stub Topology

(a) shows the average rate of all clients. As the number of servers increase, the average rate increases in all cases. The Widest heuristic has a higher average rate than the Shortest heuristic, and the Optimized Widest further improves the Widest if the number of servers is more than 1. The average rate of the Optimized Widest is much closer to Isolated Rate than Widest and Shortest.

Figure 8 (b) shows the inter-receiver fairness. From the definition in Section 2.1, it is obvious that the inter-receiver fairness in Isolated Rate case is always one. The Widest heuristic has a higher inter-receiver fairness value than the Shortest heuristic, and the Optimized Widest improves upon this when the number of servers is greater than one. Note that the inter-receiver fairness in the Shortest and Widest cases decreases when the number of servers increases from one to two. This is because the isolated rate increases faster than the actual rate obtained by the heuristics, thus, the average of ratio of the actual rate over the isolated rate decreases. Similar phenomenon is also observed in other cases.

Figure 9 (a) shows the bandwidth used. As expected, Widest uses more bandwidth than the Shortest, and the Optimized Widest uses more bandwidth than the Widest. As the number of servers increases, the bandwidth used also increases. This is because the rate of servers and clients can be higher when we have more servers. We notice that when the number of servers increases beyond a certain point, the bandwidth used will decrease, as shown in the random topology in Figure 12. This is because in these situations, the average rate cannot increase much, but the distance from a server to a client becomes shorter. Therefore, the bandwidth used decreases because the number of hops from a server to its clients is smaller.

Figure 10 and Figure 9 (b) shows the result when 25% of nodes in the graph are clients. The general trends are similar to the 5% case, but the average rate, the inter-receiver fairness and the bandwidth are generally smaller. This is because with more clients, the multicast tree is bigger. So there are more constraints on the server rate and it can only be smaller.

Figures 11, 12, 13 give the results when the graph is a random topology. Comparing them with the transit-stub topology, we can see that the difference between the performance of
Figure 10: Average Rate and Fairness in Transit-Stub Topology with 25% Clients

Figure 11: Average Rate and Fairness in Random Topology with 5% Clients

Figure 12: Bandwidth Used in Random Topology
Shortest and Widest are much bigger in the random topology. This is because in the random case, Widest has more chance to find a wider path from a server to the client than in the previous transit-stub topology.

Similar to the random case, the Optimized Widest improves over the Widest when the number of servers is greater than 1. This gives us a hint that the optimization process does give us better performance from the global perspective.

6 Dynamic Problem

In many multicast applications, the set of receivers changes dynamically. When a receiver joins or leaves a multicast session, messages are exchanged between routers to establish or tear down the appropriate paths. For the dynamic server selection problem, we assume that there are multiple multicast trees established and a client wants to join one of them. Once the client joins, the server rate will be adapted, if necessary, based on the new path. We compare several joining heuristics. When a client leaves the multicast session, we use a simple heuristic that prunes links not shared by other clients.

The performance measures for the dynamic case are a bit different from the static case. We are interested in four measures: the average receiving rates of clients, the inter-receiver fairness, the bandwidth used by multicast trees, and the joining and leaving cost. Since the trees change over time, we must include time in our measures. Assume that we are interested in the time interval T, in which the system goes through N configurations of multicast trees, with each configuration lasting for t_i ($1 \leq i \leq N$). Assume the number of clients during time t_i is n_i, the average rate is r_i. We define time-normalized overall average rate as $\frac{\sum_{i=1}^{N} t_i n_i r_i}{\sum_{i=1}^{N} t_i n_i}$. Other measures are calculated in a similar way.
6.1 Heuristics for Solving the Dynamic Problem

We have two simple heuristics that a client can use to select from a set of existing trees.

1. Shortest: Select an in-tree node that is closest to this node based on the hop count.
2. Widest: Select an in-tree node that has the highest bandwidth path to the joining node.

We also propose another heuristic called Greedy.

First, observe that each in-tree node \(v_k \) may be in more than one multicast tree. For each tree \(i \), it has an associated rate \(r_{k,i} \). From the node wanting to join the multicast session, we can get a widest path to each in-tree node \(v_k \). Assuming the bandwidth of this path is \(b_k \), we compare \(b_k \) and \(r_{k,i} \). If \(b_k \geq r_{k,i} \), then the path from node \(v_k \) to the joining node is not a bottleneck and the rate will be \(r_{k,i} \) if the client joins this multicast group. If \(b_k < r_{k,i} \), then the path from node \(v_k \) to the joining node is a bottleneck and the rate will be \(b_k \) if the client joins this multicast group. We notice in this case that the rate of the server is reduced because of this client join.

Based on the above observation, the Greedy heuristic will let a client join a multicast group with the biggest benefit value. We define the benefit value to be \(r_{k,i} \) if \(b_k \geq r_{k,i} \) and \(b_k - n_i(r_{k,i} - b_k) \) if \(b_k < r_{k,i} \), where \(n_i \) is the number of clients already in the multicast group for this tree. By doing this, we can make the largest increase from the existing rate.

6.2 Simulation Results

For the dynamic problem, we compare the performance of three heuristics, Shortest, Widest, and Greedy. As a comparison baseline, we calculate the performance measures with the Optimized Widest heuristic described in the static case. It reallocates clients to servers from scratch whenever a client joins or leaves. This frequent tree reconfiguration has high overhead and potentially disturbs existing clients, hence it is not particularly practical.

Two kinds of topologies, random and transit-stub, are generated by using GT-ITM. There are 400 nodes in each graph, among which 1 to 32 nodes are servers. The time of a client in the multicast session is exponentially distributed and so is the time outside. By adjusting the average time in and out of the multicast session of clients, we can control the average number of clients in the multicast session to be either 5% or 25% of nodes in the graph.

Figure 14 (a) shows the average rate of clients, and the inter-receiver fairness when 5% of nodes on average are clients in a transit-stub topology graph. We find that the Widest has a higher average rate than the Shortest heuristic and our proposed Greedy heuristic improves over Widest. The Recalculate method can adjust the tree structure when a client joins or leaves, so it can get an even higher average rate.

The inter-receiver fairness in Figure 14 (b) has the same relative ranking as the average rate. The inter-receiver fairness in the Shortest, Widest and Greedy heuristic cases decreases when the number increases from one to two. The reason is that the rate generated by the heuristics does not increases client rate as fast as the the isolated rate.
Figure 14: Average Rate and Fairness in Transit-Stub Topology with 5% Clients

Figure 15: Bandwidth Used and Cost in Transit-Stub Topology with 5% Clients
Figure 16: Average Rate and Fairness in Transit-Stub Topology with 25% Clients

Figure 15 (a) shows the bandwidth used. We find that the Greedy heuristic may use more bandwidth than the Recalculate method when the number of servers is greater than eight, though the average rate of the Greedy method is smaller than Recalculate. This is because the path from the server to the client may be very long in the Greedy case after several joins and leaves of clients. It does not happen in the Recalculate case.

Figure 15 (b) shows the the join/leave cost. We calculate the hop count of grafting and pruning trees and get an average value over time in each case. We know from the plot that the average cost by the Shortest and Widest heuristics decreases when the number of servers increases. This is because the number of links to join or leave is decreased when there are more servers. The Greedy heuristic has a higher join/leave cost than Shortest and Widest because it may choose a longer path for a higher bandwidth link to one of servers. When the number of servers increases, the join/leave cost of Greedy increases. This is because with more servers, it has a larger chance of selecting a server farther away for a wider path. An interesting result is in the Recalculate case. When the number increases from one to two, then to four, the join/leave cost increases. This is because the clients may be allocated to a farther away server. When the number increases from four, the join/leave cost decreases because it is possible to allocate clients to a closer server. One point worth mentioning is that while the Recalculate method can get a much higher average rate and inter-receiver fairness, it has a very high join/leave cost, compared to other heuristics. So it may be infeasible to use the Recalculate method in the dynamic case. Among the three heuristics, our proposed Greedy heuristic has much better performance, while the cost is close to others.

Figures 16 and 17 show the result when 25% of nodes in the graph are clients. We find again that the average rate, the inter-receiver fairness and bandwidth used are smaller than the 5% node case. For the Recalculate method, the join/leave cost in the 25% node case is larger than in the 5% node case because there are more clients involved during the recalculation. For all other heuristics, the join/leave cost in the 25% node case is smaller than in the 5% node case because it can join a closer tree or remove a shorter path when there are more clients around.

The results for the random topology are shown in Figures from 18 to 21. Comparing them
Figure 17: Bandwidth Used and Cost in Transit-Stub Topology with 25% Clients

Figure 18: Average Rate and Fairness in Random Topology with 5% Clients

Figure 19: Bandwidth Used and Cost in Random Topology with 5% Clients
Figure 20: Average Rate and Fairness in Random Topology with 25% Clients

Figure 21: Bandwidth Used and Cost in Random Topology with 25% Clients
with the transit-stub topology, we can see that the difference between the performance of the Shortest and the Widest heuristics are much bigger. From the plots, we find that the average rate by the Greedy heuristic is consistently higher than Shortest and Widest heuristics, though it may use more bandwidth and have a higher join/leave cost.

7 Concluding Remarks

Multicast server rate adaptation is an approach to utilize the network resources efficiently and improve performance perceived by clients. We explore techniques of using replication to enhance the capacity of rate-adaptive multicast servers. Specifically we study the problem of how to allocate clients to replicated adaptive multicast servers in order to optimize the performance of clients. We prove that the general selection problem is NP-hard by transforming the 3-SAT problem to it. We then present two interesting special cases and give an optimal solution in each case. The Optimized Widest is proposed to solve the general static selection problem and its performance is demonstrated to be better than other simple heuristics (e.g., Shortest and Widest). We also study the dynamic selection problem for adaptive multicast servers and propose a Greedy heuristic, which is shown to be able to improve over other dynamic selection heuristics by simulations. In future work we are interested in developing practical protocols to implement selection heuristics.

References

A NP-hardness Proof of the Allocation Problem

Theorem. Given a network $G = (V, E)$, a bandwidth function B defined on E, n multicast servers $s_1, \ldots, s_n \in V$, m clients $c_1, \ldots, c_m \in V$, the following problem is NP-hard: Is there an allocation of clients to servers with server s_i operating at rate r_i such that the total rate of all the clients is greater or equal to R, subject to the link capacity constraint in equation (1)?

Proof. The 3-SAT problem is a well-known NP-hard problem. We show that the 3-SAT problem can be transformed to the allocation problem.

Here is the 3-SAT problem: We are given a set of Boolean variables, X_1, \ldots, X_n. A literal is a variable X_i or its complement \overline{X}_i. Also given is a set of clauses C_j, where each clause contains three literals from three distinct variables. The problem is: Can each variable be set to True or False so that all clauses are true?

The transformation is as follows. Given any instance of 3-SAT problem, with n variables, and m clauses, construct a graph $G = (V, E)$ as shown in Figure 22. Set M to be some big number (like e^n). The node set V contains X_i and \overline{X}_i ($i = 1, \ldots, n$), C_j ($j = 1, \ldots, m$) and auxiliary nodes Y_i, U_i, W_i ($i = 1, \ldots, n$) and K_j ($j = 1, \ldots, m$). For each variable X_i, we have an edge from X_i to Y_i and an edge from \overline{X}_i to Y_i. Each has bandwidth M. Add an edge from Y_i to U_i with bandwidth 1 and an edge from Y_i to W_i with bandwidth M. For each clause C_j, add an edge from K_j to C_j with bandwidth M. If C_j contains literal L (some X_i or \overline{X}_i), then add an edge from L to K_j. In the figure, we show a clause C_2 contains \overline{X}_1, X_3, X_4. The servers are X_i and \overline{X}_i. The clients are U_i, W_i and C_j. The problem is to decide whether we
can find an allocation with total rate \((n + m)M + n \). It is clear that the time to compute the transformation is polynomial.

Assume we can find an allocation with total rate \((n + m)M + n \). Because of constraints by the bandwidth of the edge coming to them, the maximal possible rate of \(U_i \) is 1, the maximal possible rate of \(W_i \) and \(C_j \) is \(M \). To achieve the total maximal rate of \((n + m)M + n \), they must all operate at the maximal rate. For any \(i \), \(U_i \) and \(W_i \) can only receive from servers \(X_i \) and \(\bar{X}_i \), so either \(X_i \) or \(\bar{X}_i \) must have rate \(M \) and another have rate 1. The fact that each \(C_j \) must have rate \(M \) implies that at least one of literal in \(C_j \) must have rate \(M \).

If \(X_i \) has rate \(M \) and \(\bar{X}_i \) has rate 1, we let \(X_i \) be True. If \(X_i \) has rate 1 and \(\bar{X}_i \) has rate \(M \), we let \(X_i \) be False. Therefore, all literals operating at rate \(M \) are True. Since each clause contains at least one literal with rate \(M \), so every clause must be True.

Conversely, we assume that we can set variables to True or False, so that all the clauses are True. Let \(U_i \) select a server (from \(X_i \) and \(\bar{X}_i \)) that is False and \(W_i \) select the other one that is True. For any clause \(C_j \), one of its literals must be True because the clause is True. Let the \(C_j \) selects one of its literal that is True. By verifying against condition (1), we can see following rate allocation is feasible. If \(X_i \) is True, we set the rate of \(X_i \) to \(M \) and the rate of \(\bar{X}_i \) to 1. If \(X_i \) is False, we set the rate of \(X_i \) to 1 and the rate of \(\bar{X}_i \) to \(M \). So \(U_i \) has rate 1, \(W_i \) has rate \(M \) and \(C_j \) has rate \(M \). So the total rate is \(n + Mn + Mm = (n + m)M + n \). This completes the proof.