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SUMMARY

Recent research has demonstrated how racial biases against users who write African

American English exists in popular toxic language datasets. While previous work has fo-

cused on a single fairness criteria, we propose to use additional descriptive fairness metrics

to better understand the source of these biases. We demonstrate that different benchmark

classifiers, as well as two in-process bias-remediation techniques, propagate racial biases

even in a larger corpus. We then propose a novel ensemble-framework that uses a special-

ized classifier that is fine-tuned to the African American English dialect. We show that our

proposed framework substantially reduces the racial biases that the model learns from these

datasets. We demonstrate how the ensemble framework improves fairness metrics across

all sample datasets with minimal impact on the classification performance, and provide

empirical evidence to its ability to unlearn the annotation biases towards authors who use

African American English.

** Please note that this work may contain examples of offensive words and phrases.
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CHAPTER 1

INTRODUCTION

In response to the rise of hateful and toxic language common in online communities, its

detection has become a growing field of interest for both researchers and industry profes-

sionals [1]. Social media companies have increased their automated moderation efforts in

order to promote healthier discourse and reduce toxicity [2]. However, the problem space is

riddled with challenges and human biases that pose many open questions in both classifier

performance and practical applications. Issues such as class imbalances, label subjectiv-

ity, and annotation biases can cause these algorithmic models to encompass and propagate

human biases against the very minority groups they are designed to protect [3, 4, 5].

The challenge of using machine learning systems to automate hateful language detec-

tion can be traced to a high-degree of subjectivity in the human-labeled datasets on which

the algorithms are trained. These datasets rely on annotators’ familiarity with cultural and

historical contexts and ever-changing societal forms of bigotry [1]. Sap et al. [3] docu-

mented the existence of annotation bias against users of African American English (AAE)

in commonly used toxic language datasets. As a well-studied English dialect, AAE exhibits

distinct grammatical rules and syntax and can serve as a proxy for racial identity when a

user’s race is not reported. The potential of falsely moderating AAE users’ speech comes

at a time of increased online racial harassment towards African Americans [2].

In Chapter 2, we review existing literature, covering previous research that explores

topics of AI biases, African American English, hate speech, and the associated biases in

toxic language detection. We further discuss the existing bias mitigation strategies for re-

duction of racial biases in toxic language detection and note that they are measured using

false-positive rate (FPR) - the probability of classifying non-toxic samples as toxic con-

ditional on the samples being non-toxic as the only criteria for correcting models’ biases
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against AAE authors. We observe that AAE samples in popular toxic-language datasets

are mainly annotated as toxic, leaving a very small sample of AAE instances that are true-

negatives (non-toxic). Hence, a fairness criterion based solely on FPR has a very limited

scope.

Based on this preliminary research, we employ more descriptive fairness metrics, de-

scribed in Subsection 4.1.3, in addition to FPR, to evaluate how annotation biases against

AAE authors propagate through hate-detection models. We then perform experiments on

commonly used models and examine the results from two bias-mitigation strategies de-

scribed in Subsection 4.1.1 that have been proposed to reduce algorithmic bias towards

group-identifiers and between group disparities using FPR [6, 7]. We demonstrate how

all models continue to propagate and encompass racial biases from four toxic-language

datasets that we describe in Section 3.1, in spite of the proposed bias-mitigation techniques.

To address this issue, we propose an ensemble model architecture (Subsection 4.1.2)

that uses a general toxic language classifier coupled with a specialized AAE classifier. We

demonstrated in Chapter 5 the results that show that this framework reduces the effects of

annotation biases towards AAE users without impacting classifier performance. We then

conduct error analysis on misclassified AAE tweets from this framework (Section 5.2) to

better understand further challenges in debiasing and classifying AAE instances for toxic

language detection.

This work heavily borrows from our research paper that explored the same topic which

was published at ACM EAAMO 2021 [8].
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CHAPTER 2

LITERATURE REVIEW

As machine learning systems are integrated as a standard tool of society, more researchers

have begun to document and demonstrate how these systems learn and amplify biases from

the data. Hate speech and toxic language classification has become a growing subfield of

natural language processing that has been receiving attention for the fairness challenges it

poses. In this chapter, we discuss previous research that demonstrates how these AI sys-

tems encompass harmful biases. We also explore computational hate speech detection and

the challenges that exist around that problem space. Lastly, we discuss bias mitigation tech-

niques that have been used in machine learning, specifically natural language processing

and hate speech detection domains.

In this work we make use of a few terms that can have varied definitions. For the

purpose of our work we define these terms explicitly here. We use the generalized under-

standing of Artificial Intelligence (AI) to refer to algorithms and systems that learn and

act on their learning [9]. This use of AI encompasses methods referring to computational

statistics, machine learning, deep learning, etc.

Bias is often used interchangeably with terms such as stereotypes, prejudice, implicit, or

subconsciously held beliefs. While biases are often referred to in negative contexts, positive

biases also exist that refer to “favoritism”. However, in this work we largely focus on the

negative biases that are tied to unjust discrimination. We define bias to be the influence in

a decision-making process that prevents an objective consideration of an issue, decision,

or situation [10]. Bias includes a taxonomy of features and sources that results in favoring

or discriminating behaviors between things, people, or groups. We note that bias does

not have to be judgements a person makes on other people but can include systems and

practices that make decisions.
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Lastly, in our work we utilize Toxic Language as a hypernym that includes hateful, abu-

sive, or offensive language. Hate speech, identity based attacks, online bullying, trolling,

threats of violence, and sexual harassment are all examples of language that is defined as

toxic language [11].

2.1 AI Biases

Bias is a human behavior that guides decision processes in our daily life. When these biases

emerge in the data that represents these human decisions, the biases can systematically be

captured in automated decision processes that rely on this data. In recent years, interest and

attention towards biases embedded in AI systems have grown dramatically. More attention

in AI research fields is being devoted to the data and processes that are the sources of biases,

how the systems perpetuate the biases, and the mitigation of such biases.

Biases present in AI systems may be derived from a multitude of sources, such as gen-

eral assumptions in the problem space, ambiguous or prejudice task definition, and the data

itself [12]. Biased data comes from both explicit and implicit sources. For example, an-

notation biases can stem from using crowd-sourced workers who lack the cultural context

needed for data labelling [3, 10, 13]. Nobata et al.’s work includes an experiment that

compares annotations conducted by crowd-sourced workers and expert annotators. They

document low agreement between crowd-sourced annotators and the expert annotators [14].

Implicitly, bias in the data does not necessarily require the introduction of human biases.

For example, within hate speech detection identity and lexical biases hinder model perfor-

mance. Identity biases in this domain create AI systems that are biased to the presence

of group identifiers (i.e. terms such as women, Jews, immigrants, etc.) that can create

false-positives in classification.

To address some of the human-introduced biases, techniques such as racial or stereo-

typing priming have been utilized. In Sap et al.’s [3] investigation of racial biases in toxic

language datasets they re-annotated the samples using dialect priming with crowd-sourced

4



workers. They found that annotators that were primed with race/dialect information for

AAE tweets were significantly less likely to label those tweets as offensive to anyone com-

pared to the non-primed annotators. Similarly to racial priming, Patton et al.’s Contextual

Analysis of Social Media (CASM) framework introduced techniques to address the intro-

duction of biases during data annotation [15]. The CASM technique utilizes a multi-step

process in which the annotators examine the cultural and contextualization of the data. The

authors observed improved classification results with reduction in annotation biases.

To analyze the effects of bias in the AI systems, a concept of algorithmic fairness is

often pursued. Quantitatively, fairness metrics are used to measure and explain the effects

of the bias and algorithmic fairness in these systems. In Verma and Rubin’s [16] exploration

of fairness definitions and metrics, they demonstrate how for the same cases, different

definitions of fairness can produce conflicting results of whether a system is fair or unfair.

This work explores the definitions and application of these metrics, with groups of fairness

metrics categorized as general statistical measures, misclassification rates, to metrics of

predicted outcomes, or metrics for both predicted and actual outcomes. A common fairness

metric based on predicted outcomes is the statistical parity that measures whether subjects

in a protected and unprotected group have the same probability of being in the positive

predicted class. For example, assuming the groups are split as m and f , P (d̂ = 1|G =

m) = P (d̂ = 1|G = f). Similarly, a fairness metric that uses the predictive and actual

outcome is predictive parity (PPV). Predictive parity is satisfied when both protected and

unprotected subjects have equal probability of the positive predicted value belonging to

the positive class. Verma and Rubin also explore the use of similarity-based measures that

help compare fairness when the non-protected attributes of samples are similar and casual

reasoning that represents relations between attributes and predicted outcomes.

As more attention is being devoted to biased AI in the media and research more effort is

being exerted to audit datasets and AI systems. Buolamwini and Gebru [17] demonstrated

how commercial facial analysis machine learning (ML) systems perpetrate colorism by
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misclassifying dark-skinned women at higher rates than lighter-skinned individuals. This

study found that by evaluating three commercial facial analysis algorithms by the pheno-

typic subgroups, there was a dramatic increase in error rates between the dark and light-

skinned groups per gender. To correct the under-representation of gender and different skin

types in existing facial recognition datasets they also released a balanced and representative

facial analysis dataset.

AI biases have been demonstrated across many domains and applications, including

facial recognition, voice recognition, recommendation systems, and search engine applica-

tions. These bias systems have been reported to be used in practice to favor male software

engineers’ applicants over females in large technology companies, judge inmates for likeli-

hood of recidivism, and labelling Black individuals as “gorillas” in photo applications [10,

18]. For the rest of this section, we will narrow the scope of AI biases to biases in natural

language processing (NLP).

With so much of our information being stored in text form, the biases present in lan-

guage based systems can enable, enforce, and propagate social hierarchies, inequalities,

and harmful stereotypes. Much of the work being done in identifying and mitigating biases

in NLP has been concentrated in word-embeddings and language modelling tasks [19].

Bolukbasi et al. [20] demonstrated how widely used pre-trained word embeddings that

are trained on Google News articles still capture sexist stereotypes. These gender biases

are shown to exist as directions in the word embeddings, such as man − woman is roughly

equivalent to computer programmer−homemaker. In their work they also introduced an al-

gorithm that debiases these embeddings while preserving the gender association of certain

words (i.e. Female and Queen).

In Lu et al. they benchmark gender bias in language modelling and coreference res-

olution tasks [21]. Language modelling is a task that attempts to model the distribution

of word sequence and is commonly used as a pre-training task in Transformer-based ar-

chitectures [22]. A coreference system is a mention-ranking model that finds words and
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expressions referring to the same entity in a natural language text. In their evaluation, they

found that bias mirrors stereotypical gender occupations in these systems and bias mitiga-

tion strategies of debiased word embeddings and counterfactual data augmentation were

not sufficient at mitigating the biases without dramatically impacting predictive results.

Blodgett et al.’s survey of 146 papers related to bias in NLP demonstrates how the

field is growing [19]. In this work, the researchers critique the inconsistencies between

motivations and quantitative techniques for measuring bias. They also note that bias in

NLP tends to not engage in multi-disciplinary literature, as present by 32% of the papers

they surveyed were motivated by system performance rather than normative reasoning.

Along with an inconsistent range of motivations and assumptions around definitions of

“racial bias,” “gender bias,” or even social injustice imply in these different contexts show

that there is still much work to be done in this field of research. This work showcases

the difficulties in quantifying system biases and provides recommendations for how future

work can better detail, discover, and address these biases.

2.2 Hate Speech

In recent years interest in hate speech detection has grown as a subtopic of natural language

processing research and industry practice [1]. To respond to the rise in hateful and toxic

language, social platform companies have increased their automatic moderation efforts that

detects and removes such language [2]. Issues regarding hate speech detection emerge as

many other machine learning disciplines have high agreement of their true labels, while

defining toxic and hateful language classification requires expertise in both cultural and

historical contexts. Additionally, subjective definitions of what constitutes hate speech,

ever-changing forms of societal bigotry, and concerns of suppression of free speech induce

challenges that make the automatic hate speech detection a difficult problem to solve.

Due to the lack of an international legal definition of hate speech, we first explore some

common definitions of hate speech in Table 2.1. In the survey paper conducted by Fortuna
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and Nunes [1], they compare these definitions and note the differences each definition

entails. Features of the hate speech definitions differ as an incitement to violence or hate,

a call to attach or diminish, and the status of humor have some inconsistencies. Based on

their analysis of other papers and policies, the definition they use, and we adopt for the

remainder of this thesis is:

“Hate speech is language that attacks or diminishes, that incites violence or hate against

groups, based on specific characteristics such as physical appearance, religion, descent,

national or ethnic origin, sexual orientation, gender identity or other, and it can occur with

different linguistic styles, even in subtle forms or when humour is used.” [1]

With the increased attention on automatic hate speech detection, more datasets have be-

come available for researchers to utilize. However, in the literature there is still no widely

accepted benchmark dataset, therefore it is important to note that the available datasets are

derived from different sources, annotation guidelines, and domains. Twitter is the most

used platform for data collection, being used in several abusive language and hate speech,

anti-refugee, and cyber-bullying datasets. Other datasets are derived from Facebook con-

tent, far-right and white supremacy forums such as GAB and Stormfront, and from com-

ment sections on websites such as Yahoo! or Wikipedia. More details regarding these and

other datasets are available in Table 2.2.
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Table 2.1: Definitions of Hate Speech

Source Definition

United Nations Any kind of communication in speech, writing or behaviour, that
attacks or uses pejorative or discriminatory language with reference
to a person or a group on the basis of who they are, in other words,
based on their religion, ethnicity, nationality, race, colour, descent,
gender or other identity factor [23].

Scientific Paper Language used to express hatred towards a targeted individual or
group, or is intended to be derogatory, to humiliate, or to insult the
members of the group, on the basis of attributes such as race, reli-
gion, ethnic origin, sexual orientation, disability, or gender [24].

Facebook ... as a direct attack against people — rather than concepts or in-
stitutions— on the basis of what we call protected characteristics:
race, ethnicity, national origin, disability, religious affiliation, caste,
sexual orientation, sex, gender identity and serious disease. We de-
fine attacks as violent or dehumanizing speech, harmful stereotypes,
statements of inferiority, expressions of contempt, disgust or dis-
missal, cursing and calls for exclusion or segregation. We also pro-
hibit the use of harmful stereotypes, which we define as dehuman-
izing comparisons that have historically been used to attack, intim-
idate, or exclude specific groups, and that are often linked with of-
fline violence. We consider age a protected characteristic when ref-
erenced along with another protected characteristic. We also protect
refugees, migrants, immigrants and asylum seekers from the most
severe attacks, though we do allow commentary and criticism of
immigration policies. Similarly, we provide some protections for
characteristics like occupation, when they’re referenced along with
a protected characteristic. Sometimes, based on local nuance, we
consider certain words or phrases as code words for PC groups [25].

Twitter Promote violence against or directly attack or threaten other people
on the basis of race, ethnicity, national origin, caste, sexual orienta-
tion, gender, gender identity, religious affiliation, age, disability, or
serious disease [26].

YouTube ... content promoting violence or hatred against individuals or
groups based on any of the following attributes:
Age, Caste, Disability, Ethnicity, Gender Identity and Expression,
Nationality, Race, Immigration Status, Religion, Sex/Gender, Sex-
ual Orientation, Victims of a major violent event and their kin, Vet-
eran Status [27].
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Table 2.2: Toxic Language Datasets

Dataset Domain Source Size

Davidson et al. (2017) [28] HateBase Terms Twitter 22050
Founta et al. (2018) [24] HateBase + Offensive Terms Twitter 87371
Waseem & Hovy (2016) [29] Sexist + Racist Terms Twitter 16849
Golbeck et al. (2018) [30] Offensive Hashtags + Phrases Twitter 19715
Warner & Hirschberg (2012) [31] Anti-semitic Yahoo + AJC Data 9000
Burnap and Williams (2015) [32] Aftermath of Terror Attack Twitter 1878
Silva et al. (2016) [33] Sample for Hate Speech Whisper + Twitter 27.55M + 512M
Xiang et al. (2012) [34] Sample for Hate Speech Twitter 696M
Ross et al. (2017) [35] German Anti-Refugee Twitter 13766
Kennedy et al. (2018) [36] Far-right Forum GAB 27665
Gibert et al. (2018) [37] White Supremacy Forum Stormfront 9916
Del Vigna et al. (2017) [38] Italian Hate Speech Facebook 1687
Zhong et al. (2016) [39] Cyberbullying Instagram 3000 pictures + comments
Wulczyn et al. (2017) [40] Toxic Comments Wikipedia 100k
Mathew et al. (2020) [41] Hate Targets Twitter 20148
ElSherief et al. (2021) [42] Implicit Hate Speech Twitter 22056
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Earlier work in automatic hate speech detection relied on classical machine learning

methods such as logistic regression, SVMs, and random forests [1]. More recently, many

of the works exploring hate speech detection leverage deep learning models. In Badjatiya

et al.’s work using Waseem and Hovy’s dataset they demonstrated how using deep learning

approaches of a convolutional neural networks (CNN), long short-term memory (LSTM),

and FastText in hate speech detection are able to significantly outperform classical ma-

chine learning models trained on bag of words and n-gram embeddings [43, 29]. Qian et

al.’s work proposed the usage of intra-user and inter-user representations along with the

single tweet in their model. This inclusion improves the classification score when trained

on a baseline LSTM model [44]. Additionally, in Zhang et al.’s research they used a com-

bination of a CNN and gated recurrent units (GRU) architecture to capture implicit features

of hateful content and computed state-of-the-art results in hate speech detection [45].

More recent work has begun to explore the intricacies of hate speech detection chal-

lenges. Matthew et al. has released a benchmark dataset for explainable hate speech de-

tection and used state-of-the-art models (CNN-GRU, BiRNN, BiRNN with attention and

BERT) to evaluate performance on this dataset [41]. They found that even while achieving

high classification metrics, the models did not score well on explainability metrics. Another

dataset focused on implicit hate speech was released to address an underserved type of hate

speech by ElSherief et al. [42]. With the dataset they benchmarked their results for classi-

fication and generation of intended target and implied meanings tasks using state-of-the-art

baselines (BERT, GPT, and GPT-2).

2.3 African American English (AAE)

African American English (AAE), also known by the names of African American Ver-

nacular English, Black English, or Ebonics, is a well studied, rule-bound and grammatical

dialect of the English language [46, 47]. AAE is characterized by unique grammatical, pro-

nunciation, and lexical features that distinguish it from Standard American English (SAE)
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on which many natural language processing applications are based. AAE’s origin are un-

known, one hypothesis for its origins is that the dialect was developed as a common lan-

guage shared among slaves taken from different language backgrounds which developed

into a creole language. Another is that slaves in the Southern United States worked along

indentured servants of Scottish/Irish descent and learned English through them. Support

for these theories are rooted in the linguistic similarities AAE shares with other English

dialects and creole languages that persist today [48].

The AAE dialect is rule-based and grammatical, such that it’s syntactic and lexical

characteristics can be used to develop parts of speech and dialect detection models [49, 50,

51]. In Table 2.3 we present these characteristics and examples.

Jørgensen et al. investigated performance differences for Part-of-Speech (POS) models

on SAE and AAE texts. Additionally, they created a POS for AAE associated subtitles,

lyrics, and tweet texts. To develop this model, they mined tag dictionaries from various

websites to have partially labeled data then manually annotated it. They released the model

and accompanying dataset that improved on the state-of-the-art POS model for AAE texts,

reducing the disparity in prediction performances between dialects of AAE and SAE [49].

In Blodgett et al.’s research they developed a corpus of Tweets and a dialect estimation

ensemble model [50]. In their collection of this corpus they utilized the demographic census

data and the geolocation from Twitter’s API to define covariates that act as a proxy for

the probability a user belongs to a census group. The groupings they chose were non-

Hispanic whites, non-Hispanic Blacks, Hispanics, or Asian. Using their collected corpus,

they trained a model that outputs the posterior probability of a tweet’s author being AAE

(non-Hispanic Black), SAE (non-Hispanic white), Hispanic, or Asian. In their analysis,

they found that only the first two topics correlated with the census data and recommended

discarding the classification results of Hispanic and Asian. This model was verified in its

ability to detect AAE texts by using Jørgensen et al.’s [49] POS model to show well-known

AAE characteristics exist in the AAE predicted texts.
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Similar work was done by Pietro and Ungar who created a dialect estimation model

that relies on user-level race and ethnicity predictors on Twitter text samples [51]. This

contrasted the existing methodologies that relied on distantly supervised ethnic predictors

with census data. Instead, the models developed rely on self-reported user race data and the

participants’ tweets to predict demographic information. They achieved better results for

out-of-sample accuracy when predicting the demographics of the four largest racial/ethnic

groups in the United States. The dataset that they used to create this model was also dis-

tributed and made available to the research community.

2.4 Bias Mitigation Techniques and Hate Speech

Hate speech and toxic language classification are riddled with challenges due to a low

agreement in annotation, complexity and ambiguity in what constitutes hate speech, and

a lack of expertise that is required to understand the social and cultural structures that

underlay different types of bigotry [1]. These challenges induce biases to the data and

models that detect hate speech that unfairly impact certain demographics or lower model

performance.

One such issue is the “false-positive” biases associated with identity terms. Work by

Dixon et al. attempted to reduce the biases associated with identity terms by re-balancing

the dataset with an unsupervised approach [52]. They first demonstrated that class im-

balances in the training data leads to unintended bias in the models trained on them. They

found that rebalancing their dataset helped reduce the biases without impacting the model’s

performance quality.

To tackle a similar issue with group-identifiers, Kennedy et al. used a post-hoc ex-

planation regularizer to encourage the classifiers to learn the context around hate speech

rather than the models over-reliance on the presence of group-identifiers [6]. This post-

hoc explanation regularization uses Occlusion (OC) and Sampling and Occlusion (SOC)

explanations over BERT to score how the identifiers contribute to the classification. Dur-
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ing training it penalized the model for weighing the presence of a group identifiers heav-

ily, with the intention that the model will instead learn the context surrounding the group

identifiers. The results of this work improved the vanilla-BERT’s model performance and

demonstrated a decrease of the group-identifier biases in hate speech detection.

Work by Park et al. attempted to reduce gender bias in the toxic language datasets

that exist against women [4]. They did so by experimenting with debiased word embed-

dings, data augmentation to swap gender pronouns in the training data, and the usage of a

larger corpus. These methods proved very effective at mitigating the bias that discriminates

against women and recommend usage of similar approaches in similar scenarios. In Zueva

et al.’s work that reduced identity bias in Russian hate speech detection by employing sim-

ilar principles as previous works to reduce these biases. They utilized language models to

generate a larger training set and experimented with random word drop-outs during train-

ing such that a protected identity term would be replaced with an unknown token to help

the model learn the context surrounding the identifiers [53].

More recently, limitations with the construction of toxic-language datasets have become

a source of research in this field. For example, Awal et al. showed that semantically

similar samples in hate and abusive language datasets have issues with label consistency

[54]. As Fortuna and Nunes discussed, a consistent definition of hate speech does not exist

[1]. This subjectivity in label definitions can introduce annotation biases as demonstrated

by the graph-based approach developed by Wich et al. that groups annotators to identify

annotated biases [55]. They demonstrated this by building a graph based on annotations

from different annotators and applied a community detection algorithm. They then trained

data from the group of annotators to demonstrate the effects of annotation biases in these

datasets.

In another study, Wich et al. demonstrated that politically biased abusive language

datasets impair the performance of hate speech classifiers [5]. They constructed a politi-

cally biased dataset by collecting samples from the right-wing, left-wing, and center of the
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political spectrum. Using this dataset they demonstrated that these political biases nega-

tively affect the performance of the hate speech detection models that are trained on these

datasets.

Sap et al. revealed a high correlation between annotators’ perception of toxic labels and

tweets predicted to be AAE using Blodgett et al.’s dialect-prediction model [3, 50]. Further-

more, by using AAE dialect as a proxy for race, they showed that by relabeling a sample of

the dataset with racial priming, the annotation bias towards AAE authors was significantly

reduced. In both Sap et al.’s and Davidson et al.’s research, they demonstrated how using

the toxic language datasets for training, ad-hoc machine learning models propagate and

amplify the racial biases against AAE speakers [3, 56].

Xia et al. and Zhou et al. have proposed approaches to minimize the racial biases

that are propagated from these datasets [57, 58]. Xia et al. introduced an adversarial

model architecture to reduce the false-positive rates for AAE samples while reducing the

impact on classifier performance. Zhou et al. evaluated pre-processing and in-processing

debiasing techniques and introduced an experiment of relabeling the dataset by translating

the AAE sample to SAE, in order to have the same toxicity label. Their works reported

improvements on model biases measured by the false-positive rates. Our work builds on

these findings and adds to the state of knowledge by evaluating new debiasing techniques

with additional fairness metrics, demonstrating challenges in using a larger corpus for bias-

mitigation in low-resource contexts, and introducing an ensemble framework that increases

fairness while minimizing classification degradation.
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Table 2.3: Characteristics of AAE and Sample Phrases

Characteristic Definition Example(s)

Verbal Auxil-
iaries (inversion,
reduction, and
singularity) [50].

To form tenses, moods, and
voices of other verbs – this in-
cludes aspectual markers. In
AAE the usage includes a habit-
ual be, future gone, and a com-
pletive done, and remote past of
bin (been).

“Fees be looking upside my
head.”, “Now we gone get
fucked up.”, “damnnn I done let
a lot of time pass by.”, “I BIN
knowing that.”

Null Copulas [50] Removing the link between the
subject of a clause to the sub-
ject complement. In AAE
this occurs when the copula is
present, not first person, ac-
cented, negative nor conveying
present tenses (Green 2002).

“If u with me den u pose to RE-
SPECT ME.”

Preverbal markers In AAE these are words that
precede a verb, common uses
of ain’t in the past tense or
steady/stay to indicate an action
is done in a consistent matter.

“I ain’t want him to know.”
“Them students be steady try-
ing to make a buck.”

Syntactic Proper-
ties

Double negatives, existential
it, Ass camouflage construction
(ACC)

“Ain’t nobody can beat me.”
“They should’ve fired her
ass.” “It’s some coffee in the
kitchen.”

Unmarked Pos-
sessive [48]

Omitting the -s with verbs fol-
lowing a third person singular
subject.

“He jump high.”

N-word usage Usage of the N-word ending
with an ”a” to indicate another
person.

“I know that n***a.”
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CHAPTER 3

THE DATA

Our work uses four publicly available toxic language datasets derived from Twitter that

have compatible definitions of hate speech and toxic language. The four datasets were cho-

sen due to their popularity in toxic language research and their corpus being sampled from

Twitter. Our proposed Hierarchical Ensemble (HxEnsemble) model architecture (described

in Subsection 4.1.2) includes a specialized AAE language model for which we utilized the

TwitterAAE dataset that Blodgett et al. made available in their work to train. [50].

3.1 Toxic Language and AAE Datasets

3.1.1 DWMW17 [28]

Davidson et al. randomly sampled 24,802 tweets that contained words and phrases from

Hatebase.org. The tweets were annotated by 3 or more crowd-sourced annotators and as-

signed labels of: “Hate Speech,” “Offensive,” or “Neither.” The definition for hate speech

provided to the annotators was: “language that is used to expresses hatred towards a tar-

geted group or is intended to be derogatory, to humiliate, or to insult the members of the

group.” The annotators achieved 92% intercoder agreement and the final label distribution

were 77.4% offensive language, 5.8% hate, and 16.8% were neither. Using Blodgett et al.’s

dialect estimation model, we note that 98% of the AAE tweets in the dataset are labeled as

Toxic (either “Hate Speech” or “Offensive”), relative to the 80% of SAE tweets. The “Hate

Speech” label had 4% of AAE tweets and 6% of SAE, noting a lower disparity between

dialect groups when using a stricter annotation definition.
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3.1.2 FDCL18 [24]

Founta et al. created a 79,996-sample dataset consisting of tweets annotated as either “Abu-

sive, Hateful, Normal, or Spam.” These tweets were collected from a stream of tweets and

then filtered using sentiment analysis and phrases from Hatebase.org. The authors defined

hate speech as: “language used to express hatred towards a targeted individual or group,

or is intended to be derogatory, to humiliate, or to insult the members of the group, on

the basis of attributes such as race, religion, ethnic origin, sexual orientation, disability, or

gender.” Inter-coder label agreement when holding out at most one of five annotators was

55.9%. The final label distribution showed 66% of the labels were normal, 16.8% were

spam, 12.6% were abusive, and 4.5% were hateful. On this dataset we observe a larger

disparity in Toxic and Hate labels in dialect estimation of the tweets, with 84% of AAE

tweets labelled as “Toxic” (Abusive or Hateful) compared to 26% of SAE tweets. For this

dataset we also observe a disparity between the dialect of tweets with the hateful label –

with 21% of AAE tweets labelled as Hateful compared to 4% of SAE tweets.

3.1.3 Golbeck [30]

Golbeck et al.’s binary dataset of tweets labeled as “Harassment” and “Not Harassment”

was created from sampling tweets that contained hashtags and phrases that were present

in their exploration of offensive tweets. They used two annotators in the first round and

when there was disagreement, a third would be brought in to determine a majority label.

The “Harassment” label ended up including sub-topics of racism, misogyny, homophobia,

threats, hate speech, directed harassment. Non-harassment included potentially offensive

and non-harassing tweets. Their definition of hate speech used was: “hate or extreme

bias to a particular group. Could be based on religion, race, gender, sexual orientation,

etc. Generally, these groups are defined by their inherent attributes, not by things they do

or think.” The Harassment label accounted for 15.7% of the tweets in the corpus. This

dataset is only used in the Toxic aggregate as it does not contain enough AAE samples (92)
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individually. With the small AAE sample size, we still observe a disparity in annotation,

where 50% of AAE samples are labeled as “Harassment” compared to 24% of SAE tweets.

3.1.4 WH16 [29]

The Waseem and Hovy (WH16) 16,849 sample dataset was collected by sampling tweets

containing at least one of the phrases or words they deemed to be hateful. The authors

labeled the tweets as racist, sexist, or neither using guidelines inspired by critical race

theory and had a domain expert review their labels. However, this dataset has received

significant criticism from scholars [59, 60], who deride it for most of the racist tweets

being anti-Muslim and the sexist tweets relating to a debate over an Australian television

show. Additionally, this dataset can introduce author bias as it is noted that two users wrote

70% of sexist tweets and 99% of racist tweets were written by another single user. Due to

these limitations, we only include the positive instances of this dataset in the aggregated

datasets Toxic and Hate as its usage in an aggregate largely addresses the author and topic

biases.

3.1.5 TwitterAAE [50]

Blodgett et al.’s TwitterAAE dataset was developed in adjacency with their dialect estima-

tion model that we used throughout our work. This dataset contains 1,045,467 samples

of Tweets that their dialect model predicted as being AAE. The associated data includes

the geo-location and the census block that location corresponds to and the other posterior

probabilities for the prediction of race.

3.2 Data Preparation

To estimate the dialect of the tweet, we used Blodgett et al.’s [50] dialect estimation model

that outputs the posterior probability of the text sample belonging to the dialect of AAE or

SAE. Due to the low incidence of AAE tweets within the toxic language datasets, we used
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a lower threshold of Pr(AAE ≥ 0.6) relative to Blodgett et al.’s use of Pr(AAE ≥ 0.8)

in order to have a larger sample of AAE tweets. In the Appendix A, we also showed the

fairness analysis of the hate-detection algorithms using the Pr(AAE ≥ 0.8) threshold in

order to provide equal comparisons and observed similar patterns. In Section 5.2 we also

discussed how the lower threshold may lead to some misclassified SAE instances being

evaluated in the specialized AAE model.

A common first step in addressing biases in datasets is using a larger corpus to increase

instances of the minority class [4]. We evaluated the DWMW17 and FDCL18 datasets

individually and created two aggregate datasets to better understand the racial biases and

annotation agreement across the toxic language datasets. These experiments informed the

challenges and feasibility of using a larger corpus or complimentary AAE toxic language

data to address the racial biases present in available datasets. We chose four commonly

used toxic language datasets that are taken from Twitter and annotated with compatible

definitions of either toxic or hate. The low AAE totals in the individual datasets of

Golbeck and WH16 made it difficult to assess the racial biases on their own. When evalu-

ated as part of the aggregated dataset, they informed cross-corpus label agreement and how

the use of a larger corpus impacts classification and fairness metrics.

For evaluation, we segmented the datasets based on binary labels of hate or toxic.

The Hate dataset is aggregated on the hate labels from DWMW17 and FDCL18 and only

the subset of positive instances of WH16 that were labeled as racist or sexist. The

Toxic aggregate dataset included the hate and offensive instances of DWMW17, the

hate and abusive instances from FDCL18, the positive instances of WH16 racist or

sexist, and the harassment instances from Golbeck17. We evaluated the outcomes

from the hate-detection algorithms applied to DWMW17 and FDCL18 datasets based on

the toxic label due to the strong association with AAE text being marked as toxic by

annotators and the lower sample count of hate in AAE texts. Additionally, using the aggre-

gate datasets of Hate and Toxic, we gain insight into the effects of using a larger corpus to
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reduce biases and compare the effects of annotation consistency on classifier performance.
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Table 3.1: Datasets Characteristics and Dialect Label Comparisons

Dataset (n=) AAE1 Toxic Hate Total ToxicAAE,ToxicSAE
2 HateAAE,HateSAE

3 Annotated By4

DWMW17 4878 20620 1430 22050 0.98, 0.80 0.04, 0.06 3+ CSW
FDCL18 1265 24821 4119 87371 0.84, 0.26 0.21, 0.04 5 CSW
Golbeck 92 4760 - 19715 0.50, 0.24 - 2+ GRA
WH16subset 12 3360 3360 3360 - - Authors + DE
Toxic 6205 52679 - 134457 0.94, 0.36 - -
Hate 6120 - 8710 123886 - 0.08, 0.07 -

1 Number of samples in the dataset Blodgett et al.’s [50] dialect model predicts as Pr(AAE ≥ 0.6)
2 Proportion of the AAE vs. SAE dialect samples labeled as Toxic
3 Proportion of the AAE vs. SAE dialect samples labeled as Hate
4 Crowd-Sourced Worker (CSW), Graduate Research Assistant (GRA), Domain Expert (DE)
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CHAPTER 4

RESEARCH DESIGN

In prior work and Table 3.1, a strong correlation was found between instances of AAE

dialect and the associated annotation of toxic labels in abusive language datasets. This leads

to racial bias against African American authors in models trained on them, introducing a

higher false-positive rate (FPR) for instances that are AAE [3, 56]. A higher FPR means

that non-toxic AAE texts are more likely to be misclassified as toxic by hate-detection

algorithms. This lexicographical and identity bias can then become embedded and further

propagated through the classifiers that are trained with them.

In our work, we benchmarked classifier performance and fairness indicators across the

datasets based on a series of different hate-detection algorithms including baselines, logis-

tic regression models with unigram and bigram encodings, TF-IDF, and GloVe embeddings

[61]. We also evaluated a vanilla-BERT classifier [22], a commonly used language model

in NLP classification tasks. We then evaluated the effectiveness of two in-process debiasing

algorithms that use BERT as a base model. Finally, we introduce a new ensemble frame-

work as a proposed method to remediate biases that may be attributed to low-resource

contexts.

4.1 Models and Bias Remediation Techniques

4.1.1 In-Process Debasing Algorithms

Explanation Regularization

Kennedy et al. [6] used the Occlusion (OC) and Sampling and Occlusion (SOC) explana-

tion over BERT to generate hierarchical explanations for a prediction and use it to score

how a phrase contributes to the classification. This score is then used to regularize the
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model during learning, with the intention of mitigating the compositional effects of a phrase

and the context around it. AAE’s characteristic of using the n-word to indicate another per-

son is an example of the in-group reclaiming a group identifier that was used to oppress and

dehumanize Black individuals. In-group usage of the term is not considered hateful, only

out-group usage is deemed hateful. Ass Camouflage Construction (ACC) is another char-

acteristic of AAE that has “ass” or “butt” usually proceeded by a possessive pronoun and

is an equivalent to the reflexive self. With the purpose of reducing the classifier’s bias to-

wards the in-group identifiers and AAE pronoun altercations, we applied this regularization

algorithm to help the model to learn the context surrounding the pronouns and identifiers

in AAE [62, 63, 64].

MinDiff Framework

Prost et al. [7] introduced a regularization technique that penalized models for dependence

between the distribution of predicted probabilities and a protected subgroup, such as AAE.

This framework attempts to minimize the difference between the protected subgroup and

the majority (unprotected) group distributions. This algorithm minimizes the differences

in FPR across the two slices with the intention of a minimal impact on classification per-

formance. This algorithm has been discussed as an effective manner of reducing biases in

language modeling tasks but is limited by the available data samples in the group slices.

4.1.2 Hierarchical Ensemble Framework (HxEnsemble)

This paper proposes a hierarchical ensemble framework that minimizes potential classifier

performance degradation while mitigating biases that are a result of training data that does

not effectively represent the target population. To achieve closer to equality results across

groups (AAE and SAE authors), we make use of the general classifier that contains biases

to the “protected group,” AAE authors. For instances predicted as positive (toxic) in the

general model and in the dialect estimation model (as AAE), the ensemble will pass them
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to a specialized classifier that is pre-trained to the AAE dialect and fine-tuned on only AAE

samples in the toxic language datasets. Effectively, in order to achieve a classifier that has

closer to equal-outcomes across groups, we make use of an equity-based framework that is

better able to predict positive instances of the protected group which the general model has

been shown to exhibit bias against.

A related technique was first presented by Howard et al. [65], where it was shown that

an ensemble framework achieved better classification performance and reduced FPR for

misclassified emotions by using a combination of a generalized model and a specialized

learner that is trained on the classes that are most commonly misclassified. As demon-

strated in Sap et al. [3], annotator biases towards the AAE dialect may be minimized during

labeling when the annotators are racially primed of the potential race of the author. Since

AAE has different syntactical and lexicographical characteristics, we hypothesize that sim-

ilar to racially primed annotators, a classifier that is pre-trained on non-toxic AAE samples

is better able to distinguish between AAE samples in the toxic language datasets that are

true-positives and those that are true-negatives. While the underlying language model re-

mains a black-box, we conjecture that the AAE-BERT will have a better understanding of

the AAE dialect. Therefore, when the classifier for AAE toxic language classification is

fine-tuned on it, there will be less biases propagated than using a base language model that

is trained on a corpus of mainly SAE samples.

The motivation behind using a general and specialized learner as a debiasing tool is that

we hypothesize that the general learner and language model does not properly represent

the AAE dialect. As there exists an ethical trade-off in bias mitigation strategies between

model performance and bias reduction, when a specialized learner is used for the under-

represented group we expect better model performance for the group that has biases against

them. As a general learner is prone to biases for smaller sample groups, combining them

together to reduce the false-positive cases should address the bias issues without degrading

the overall model performance. Additionally this allows samples that belong in the under-
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represented group to have the correct context in the model that is evaluating them. In the

HxEnsemble case, this means that the specialized learner has a better understanding of the

AAE dialect. Therefore able to better distinguish between AAE samples that are truly toxic

and those that are not compared to a model that is mostly trained on language data outside

of AAE’s distribution.

Figure 4.1: The Hierarchical Ensemble (HxEnsemble) Framework
1 Training set of DWMW17, FDCL18, Toxic, or Hate is used. More details about these
datasets can be found in Table 3.1.
2 The unannotated AAE samples used for the MLM pre-training come from Blodgett et al.
[50]

The proposed HxEnsemble (Figure Figure 4.1) uses a general toxic language detection

model, in our case a vanilla-BERT classifier trained on the original dataset. If the general

model predicted a positive instance (hate or toxic), we then used the out-of-box Blod-

gett et al. dialect estimation model [50] to predict the probability the sample is AAE. If the

sample is not AAE, we returned the predicted result from the general classifier. However,

if the text is AAE we then passed it through the specialized AAE classifier and the en-
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semble model returned that prediction. The specialized classifier is created by fine-tuning

the vanilla BERT on a masked language model task with Blodgett et al.’s corpus of demo-

graphic based Twitter data that belongs to African American authors [50]. We then use this

BERT-AAE language model to fine-tune a classifier head on the AAE samples in the same

train-validation-test splits that the general model was trained on. The final prediction for

the positive AAE sample is the prediction of the specialized AAE classifier.

4.1.3 Fairness Metrics

Fairness metrics are used to statistically evaluate notions of fairness in classifier perfor-

mance, where certain metrics can reflect different definitions of fairness [16]. In previous

work by Zhou et al. [58] and Xia et al. [57] that explore bias remediation techniques for

toxic language detection, the FPR is used as the single fairness metric for reporting how

the biases in the training data propagate to the models. As seen in Table 3.1, the positively-

skewed distribution of AAE texts in the datasets means that there is a very limited number

of true-negatives in the data splits that were evaluated and the insights to the effects of

biases is limited. As such and in order to address the low occurrences of AAE samples,

we also compute a fairness metrics based on the disparate impact (DI) metric [16], also

commonly referred to as adverse impact. DI is a fairness metric that evaluates the predic-

tive parity ratio to compare predicted outcomes across groups, which does not rely on the

annotations in its computation. In practice, the acceptable fairness range for this metric is

limited to {0.8−1.2} [66], and a DI < 1 is interpreted as bias against the protected group,

in our case the AAE authors. Conversely, if DI > 1 there is said to be bias towards the

protected group.

DIfav =
Pr(Ŷ = 0|D = AAE)

Pr(Ŷ = 0|D = SAE)
, DIunfav =

Pr(Ŷ = 1|D = AAE)

Pr(Ŷ = 1|D = SAE)
(4.1)

In toxic language detection, the notion of a favorable prediction is subjective. There-

fore we analyzed the DI for when the prediction is non-toxic (DIfav) and toxic (DIunfav) to
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gain more insight into how the classifier treats the different dialect groups for both out-

comes. Lastly, we looked at false negative rates (FNR) to provide insight into whether

the bias remediation techniques are causing disagreement with the positively-skewed toxic

annotations for AAE authors.

4.1.4 Experiment Implementation

To evaluate the hate-detection algorithms as applied to the aforementioned datasets, we

randomly split all our datasets stratified on the positive-cases into 80% training, 10% vali-

dation, and 10% for testing. We used the training and validation splits to run a grid-search

in order to fine-tune the algorithms we benchmarked. We chose the hyperparameters that

resulted in the best validation F1-score and trained the model across 10 random seeds to

report our results below (Chapter 5).1

For the logistic regression-based models, we tune the hyperparameters on learning

rates {2e−3, 2e−5, 5e−5}, epochs {10, 100, 1000}, and batch sizes {16, 32, 64}. For all

BERT-based models, we tuned the hyperparameters on learning rates {2e−3, 2e−5, 5e−5},

epochs {1, 2, 3}, and batch sizes {16, 32, 64}. For the Explanation Regularization model,

we searched the regularization strength {0.1, 0.3, 0.5}, and for the MinDiff Framework we

fine-tuned MinDiff weight to {0.5, 1, 1.5}. With the specialized AAE learner in the hierar-

chical ensemble, we ran the parameter search on both the masked language model task and

classification task together.

1All our code is available at https://github.com/matanhalevy/DebiasingHateDetectionAAE
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Table 4.1: Hyperparameters used in Grid-Search

Algorithms Learning Rates Epochs Batch Sizes Regularization Strengths

Logistic Regression Models {2e−3, 2e−5, 5e−5} {10, 100, 1000} {16, 32, 64} -
Vanilla BERT {2e−3, 2e−5, 5e−5} {1, 2, 3} {16, 32, 64} -
Explanation Regularization {2e−3, 2e−5, 5e−5} {1, 2, 3} {16, 32, 64} {0.1, 0.3, 0.5}
MinDiff {2e−3, 2e−5, 5e−5} {1, 2, 3} {16, 32, 64} {0.5, 1, 1.5}
HxEnsemble {2e−3, 2e−5, 5e−5} {1, 2, 3} {16, 32, 64} -
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CHAPTER 5

RESULTS

5.1 Experiment Results

All metrics reported below include the subscript of their standard deviation across the 10

randomized trials.

5.1.1 DWMW17

In Table 5.1, we present the results of the different classifiers trained on DWMW17. Indi-

vidually, this dataset is the most difficult to analyze for fairness due to the fact that 98%

of AAE samples in the complete dataset are annotated as toxic, and only 2.5% of the 502

AAE samples in the test set are labeled as true-negatives. The classifiers of BERT, BERT

with OC and SOC, and our HxEnsemble method have the best classification performance.

After evaluating the fairness metrics across the best performing models, we verify that the

HxEnsemble model achieved the best disparate impact scores for prediction of non-toxic

and toxic outcomes. We theorize this result is due to the slight increase in the FNRAAE

and decrease in the FNRSAE compared to the other models. We observe that BERT+OC

achieves the lowest FPRAAE . However, for BERT+OC, BERT+SOC, and HxEnsemble,

the FNRAAE and FPRAAE are within each others’ error bounds. Overall we note that for

DWMW17, all classifiers are biased towards being more likely to predict AAE text as toxic

by a significant ratio, which is not as evident when examining the prediction parity across

groups. Due to the low true-negative AAE samples, we did not conclude any significant

results for the classifiers trained on DWMW17 with regards to unfavorable outcomes.
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Table 5.1: DWMW17 Results

Task Name * Acc F1 DIfav
1 DIunfav

2 FNRAAE
3 FNRSAE

4 FPRAAE
5 FPRSAE

N-Gram 0.947±0.001 0.968±0.000 0.112±0.006 1.203±0.003 0.003±0.001 0.027±0.001 0.308±0.000 0.206±0.004

TF-IDF 0.872±0.000 0.926±0.000 0.100±0.009 1.111±0.001 0.007±0.001 0.035±0.001 0.846±0.000 0.604±0.003

GloVe 0.886±0.002 0.933±0.001 0.137±0.013 1.177±0.021 0.011±0.003 0.062±0.010 0.523±0.061 0.421±0.046

BERT 0.965±0.002 0.979±0.001 0.098±0.014 1.231±0.006 0.002±0.001 0.024±0.003 0.308±0.115 0.108±0.012

BERT+OC 0.966±0.001 0.979±0.001 0.100±0.005 1.248±0.008 0.002±0.001 0.030±0.003 0.238±0.044 0.081±0.013

BERT+SOC 0.968±0.001 0.980±0.001 0.098±0.008 1.248±0.005 0.002±0.001 0.029±0.002 0.246±0.049 0.077±0.009

BERT+MD 0.887±0.059 0.936±0.031 0.053±0.057 1.108±0.119 0.003±0.007 0.016±0.026 0.746±0.310 0.601±0.420

HxEnsemble 0.964±0.002 0.978±0.001 0.114±0.008 1.223±0.004 0.004±0.002 0.022±0.001 0.262±0.040 0.121±0.009

* Models that had the best classification accuracy are italicized and the best fairness indicators on the best performing models are bolded per column.
1 Disparate Impact for favorable outcomes measures the prediction disparity for AAE and SAE authors being predicted as non-toxic.
2 Disparate Impact for unfavorable outcomes measures the prediction disparity for AAE and SAE authors being predicted as toxic.
3 FNRAAE: the ”best” fairness metric in this case is the highest FNR, since the annotations are biased to labeling AAE samples as toxic, an increase
may be indicative of the model unlearning these biases.
4 FNRSAE: for this metric, we want the lowest score as we only care about classification performance of the SAE group.
5 For both AAE and SAE group, a lower FPR is better.
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5.1.2 FDCL18

Table 5.2 shows the results the classifiers achieved on FDCL18. Similar to DWMW17,

there is a low true-negative count in the test set with 14.5% of 117 AAE samples being an-

notated as non-toxic. BERT, BERT+OC, BERT+SOC, and HxEnsemble achieved the best

classifier performance. HxEnsemble achieved the best fairness results across favorable and

unfavorable disparate impact scores and FPRAAE. It’s worth noting that HxEnsemble also

has the highest FNRAAE amongst this subset and the lowest disparity between FPRAAE to

FPRSAE , providing some empirical evidence that increasing the language model’s concept

of the AAE dialect causes the model to disagree with the biased AAE annotations.

We noted that for all models the FNRAAE is lower than FNRSAE, while the FPRAAE is

larger than FPRSAE. This means that all models are more likely to misclassify non-toxic

AAE samples as toxic compared to SAE samples and less likely to misclassify toxic AAE

samples as non-toxic compared to SAE samples. The high FPRAAE and disparate impact

scores show significant bias towards AAE authors for both favorable and unfavorable out-

comes across all models that are trained on FDCL18. For this dataset, the bias remediation

techniques helped reduce the FPR disparity but did not effectively mitigate the prediction

disparity. These results demonstrated how underlying data bias to AAE authors propagate

to the models even with bias-remediation techniques.
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Table 5.2: FDCL18 Results

Task Name * Acc F1 DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.935±0.000 0.878±0.001 0.194±0.000 3.398±0.016 0.040±0.000 0.147±0.002 0.235±0.000 0.036±0.001

TF-IDF 0.896±0.001 0.788±0.001 0.334±0.005 3.453±0.021 0.187±0.005 0.291±0.002 0.294±0.000 0.036±0.000

GloVe 0.900±0.001 0.810±0.002 0.209±0.005 3.417±0.028 0.064±0.005 0.222±0.005 0.294±0.000 0.056±0.002

BERT 0.943±0.001 0.896±0.001 0.155±0.005 3.287±0.015 0.001±0.003 0.098±0.003 0.229±0.019 0.043±0.001

BERT+OC 0.943±0.001 0.895±0.001 0.164±0.009 3.325±0.038 0.006±0.007 0.108±0.003 0.206±0.031 0.040±0.002

BERT+SOC 0.943±0.001 0.895±0.002 0.166±0.016 3.315±0.038 0.009±0.009 0.107±0.005 0.212±0.041 0.040±0.003

BERT+MD 0.824±0.102 0.429±0.453 0.616±0.406 1.465±1.551 0.526±0.500 0.555±0.469 0.082±0.101 0.035±0.045

HxEnsemble 0.943±0.000 0.896±0.001 0.180±0.019 3.243±0.051 0.016±0.015 0.101±0.004 0.183±0.035 0.045±0.009

* Please refer to Table 5.1 for the explanation of the table results.
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5.1.3 Toxic

In Table 5.3, the results for the classifiers on the aggregate Toxic dataset is shown, we note

that for this aggregate dataset the true-negative count for AAE instances is 5.7%. BERT and

HxEnsemble are the algorithms that had the best classification scores, while BERT with

OC and SOC achieved slightly worse results. HxEnsemble achieved the lowest FPRAAE

across all algorithms, and the best disparate impact scores across all BERT-based models.

MinDiff performs poorly on this dataset, even with more AAE samples available. This

pattern is demonstrated across the low F1 scores MinDiff has on every dataset, excluding

DWMW17. The same pattern of higher FPR and lower FNR for AAE samples exists in this

aggregate but, compared to the standalone FDCL18, the disparate impact scores provide

partial evidence that an effective strategy to mitigate biases is to aggregate a larger corpus.

In comparison to Table 5.4, the F1 scores for the algorithms suggest that there is more label

agreement for the definition of toxic, compared to the F1 scores on the more stringent

definition of hate. This is indicative that in order to better deal with label inconsistency

issues across toxic-language datasets, users must opt for a more general definition of toxic

rather than hate.

34



Table 5.3: Toxic Results

Task Name * Acc F1 DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.900±0.000 0.867±0.001 0.059±0.001 2.904±0.015 0.014±0.001 0.189±0.003 0.385±0.000 0.054±0.001

TF-IDF 0.844±0.001 0.780±0.002 0.136±0.002 3.121±0.026 0.077±0.001 0.321±0.004 0.473±0.019 0.065±0.002

GloVe 0.840±0.000 0.787±0.000 0.114±0.003 2.752±0.019 0.061±0.002 0.264±0.002 0.615±0.000 0.106±0.002

BERT 0.915±0.000 0.890±0.001 0.058±0.003 2.850±0.012 0.008±0.001 0.156±0.002 0.300±0.040 0.046±0.001

BERT+OC 0.911±0.001 0.883±0.001 0.053±0.004 2.863±0.031 0.009±0.001 0.165±0.006 0.392±0.065 0.050±0.003

BERT+SOC 0.911±0.001 0.883±0.001 0.059±0.003 2.837±0.025 0.010±0.001 0.162±0.005 0.319±0.036 0.051±0.003

BERT+MD 0.632±0.131 0.227±0.294 0.700±0.483 0.410±0.531 0.637±0.480 0.629±0.486 0.362±0.480 0.343±0.457

HxEnsemble 0.914±0.001 0.887±0.001 0.072±0.005 2.778±0.029 0.016±0.003 0.152±0.004 0.277±0.016 0.052±0.003

* Please refer to Table 5.1 for the explanation of the table results.
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5.1.4 Hate

As in the Toxic dataset, BERT and HxEnsemble perform best on the Hate aggregate dataset.

However, across all algorithms the low F1-score suggested the aggregated datasets individ-

ually had a low agreement in their hate label. Although we attribute this to poor model

performance, the favorable and unfavorable disparate impact scores achieved more fairness

in their predictions than in other datasets. HxEnsemble introduces bias in favor of AAE as

the high FNR and low FPR yielded a lower disparate impact score for the unfavorable out-

come compared to vanilla-BERT. The use of this aggregate dataset is not very informative

of biases against AAE authors as the learners themselves struggle to deal with the class-

imbalance and inconsistent hate definitions across the datasets as seen by low classification

scores.
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Table 5.4: Hate Results

Task Name * Acc F1 DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.936±0.000 0.368±0.006 0.990±0.002 1.316±0.074 0.736±0.026 0.735±0.008 0.022±0.001 0.013±0.001

TF-IDF 0.936±0.000 0.234±0.002 0.985±0.001 2.156±0.071 0.807±0.008 0.863±0.002 0.015±0.000 0.004±0.000

GloVe 0.928±0.003 0.181±0.034 1.001±0.006 0.947±0.381 0.959±0.033 0.881±0.031 0.015±0.006 0.011±0.005

BERT 0.943±0.001 0.522±0.006 0.987±0.005 1.231±0.084 0.524±0.027 0.534±0.008 0.035±0.004 0.024±0.002

BERT+OC 0.938±0.002 0.386±0.031 0.979±0.016 1.675±0.499 0.690±0.090 0.724±0.035 0.029±0.013 0.011±0.004

BERT+SOC 0.937±0.002 0.396±0.019 0.971±0.029 1.890±0.954 0.645±0.111 0.710±0.028 0.037±0.023 0.013±0.003

BERT+MD 0.930±0.000 0.079±0.068 0.400±0.516 0.600±0.516 0.400±0.516 0.400±0.516 0.600±0.516 0.600±0.516

HxEnsemble 0.942±0.001 0.516±0.009 1.030±0.011 0.445±0.203 0.795±0.101 0.549±0.011 0.008±0.004 0.021±0.001

* Please refer to Table 5.1 for the explanation of the table results.
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5.2 Error Analysis and Challenges for Hate-Detection Algorithms in Classifying

AAE Text

Table 5.5: AAE Tweets that were Misclassified by HxEnsemble

Tweet ŷ y

1 RT : still stuntin on my ex bitch 1 0
2 RT : IF U SEE ME SMILING IM EITHER ABOUT TO KILL U OR

REALLY FUCKED UP EITHER WAY I AINT IN THE RITE STATE
OF MIND

0 1

3 RT : That ain’t yo n**** if he let you go to sleep mad sis 1 0
4 ID SLAP YO BIPLAR ASS POLAR BITCH U AINT SHIT BUT A

WANNA BE ASS BITCH WHO BETTER WATCH THE FUCK OUT
YOU UGLY ASS HOE

1 0

5 RT : Whatchu know bout livin in the ghetto, eating cottage cheese 3
times a day. Lil salt Lil peppa lil A1, Lil barbeeequeee

0 1

6 Yea all these bad ass bey bey kids ride bikes over here 1 0
7 Y’all n****s annoying I’m bout to start calling y’all sis 1 0
8 Blatt trash too ... but twitter said he was good 0 1
9 YO IMMA MOTHERFUCKING BOYYYYYYYYYYYYYYYYY 0 1
10 Fucc u primo aint nobody ask u 2 fav dink lies 0 1
11 RT : Who did y’all n****s give y’all hearts to for y’all to be so cold

hearted
1 0

12 You gots da BET and da MSNBC wit dat colored reverend who only
listen to coloreds. What else I missing?

0 1

13 He did go in i was actually surprised he when that hard RT : N the crib
listen 2 my n** G-Eazy;don’t diss my homie

0 1

14 Dumb Haitian fake black faggots. Go to Haiti and neck yourself. 0 1
15 #TripleTalaqArrest 2fgt dis social menace #TripleTalaq rgts shd b gvn

2d Muslim wmn2, den dis evil wl hv a natural death #TripleTalaqDebate
0 1

16 yall trash but cold 0 1
17 RT : Whatchu sayin hoe, YOU KNOW IM THE MAN HOE 1 0

In Table 5.5 we present all the misclassified AAE tweets from our test set from a run

using our HxEnsemble. Below, we categorized these tweets into 7 categories in order to

better understand the challenges in debiasing hate-detection classifiers as applied to AAE

authors. We include the False-Negative (FN) and False-Positive (FP) prepended to our

category names to clarify the type of challenge.
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1. FN: Mislabeled, Non-Toxic HxEnsemble predicted examples 5, 9, 13, and 16 as

non-toxic while annotators labeled them as toxic. For these examples we see that

the HxEnsemble model overcame the annotators’ bias and provided the prediction

that matches the definition of non-toxic language provided to the annotators.

2. FN: Mislabeled, Non-Targeted Threat For example 2, while the text contains ag-

gressive language it remains non-targeted and the author of the tweet is only talking

about themselves. We disagreed with the annotators that label this as toxic and

agree with the HxEnsemble prediction. However, this may be interpreted as a threat

but, since it’s not directed at a person or group, we dismiss it as such.

3. FN: Missing Context, Unclear Toxicity We observed that instances 8 and 10 are not

clear in what constituted them as toxic. While these two examples have sentiments

that may be slightly demeaning, we were unable to conclude whether we agreed with

the annotators’ labels.

4. FN: Toxic and False-Positive AAE Three examples of toxic instances were mis-

classified as AAE but the dialect model used the lower threshold of 0.6. However,

had we used the threshold of 0.8 these would not have been classified as AAE. For 12

and 14, the general classifier predicted them as toxic and the specialized classifier

predicted them as non-toxic. We hypothesize this is because these two examples

are toxic to Black people, and the specialized classifier did not have many exam-

ples of that type of toxicity in the AAE training dataset. For instance 15, lexical

variation may have been used as a common method to avoid moderation detection

[67] as toxic by the general classifier.

5. FP: Mislabeled, Toxic Tweets We found only one false-positive example (instance

4) that was predicted by HxEnsemble to be toxic when the annotators did not label

it as such. This tweet is directed at someone and harasses them based on a mental-

health condition and calls them several derogatory curse words. We found the model
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predicted this example correctly while annotation across all datasets included in the

aggregate should have labeled it as toxic as well.

6. FP: Use of Pejorative for Third-Parties For instances 1, 3, 7, and 17, we found

that these four examples the authors all referred to a third-party by either using the

n-word or using the b-word to speak negatively about them. Instance 1 in particular

is a retweeted tweet that is very similar to a popular rap lyric, ”I’m just stuntin’

on my ex-bitch.” [68] This suggests that even in cases that may not be toxic, the

model struggles to differentiate between toxicity and use of these words in negative

sentiment when used to describe a third-party.

7. FP: Use of Curse Words in Neutral Context In examples 6 and 11, the false-

positives are resulted from the HxEnsemble unable to understand the Ass Camou-

flage Construction (ACC) and the n-word to replace an equivalent ”guys” commonly

used in AAE without implying toxic connotation.

As seen in the above challenges and summarized in Table 5.6, we attributed 35.3% of

the AAE misclassified instances by HxEnsemble to incorrect annotations in the datasets.

We also observed that 11.8% of the misclassified AAE samples were due to non-AAE

samples being misclassified by the dialect model, when the general classifier correctly

predicted the texts as toxic. While the subjectivity of some challenge types may mean

that there is higher disagreement with the labels provided in the datasets. These findings

demonstrated how the efficacy of bias-mitigation strategies in addressing annotation biases

may be under-reported using standard classification and fairness metrics. We also note that

while the HxEnsemble method was able to effectively mitigate some of the biases towards

AAE, it still struggled at times with some AAE characteristics such as ACC and the usage

of the n-word. Lastly, we note that effects of incorrect annotations of AAE texts on the

performance of the specialized AAE classifier and its ability to remediate the biases more

effectively.
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Table 5.6: Breakdown of challenges in AAE Hate-Detection

Challenge Type (n = ) %

FN: Mislabeled, Non-Toxic 4 23.5
FP: Use of Pejorative for Third-Parties 4 23.5
FN: Toxic and False-Positive AAE 3 17.6
FP: Curse Words in Neutral Contexts 2 11.8
FN: Missing Context, Unclear Toxicity 2 11.8
FN: Mislabeled, Non-Targeted Threat 1 5.9
FP: Mislabeled, Toxic 1 5.9
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CHAPTER 6

DISCUSSION, LIMITATIONS, AND FUTURE WORK

In our investigation, we evaluated various hate-detection algorithms with a focus on ex-

amining the effectiveness of our proposed hierarchical ensemble model and two bias-

mitigation algorithms that addressed the racial biases present in toxic language datasets. In

our experiments, we observed that our hierarchical ensemble model consistently achieved

state-of-the-art classification results while improving upon the fairness metrics we evalu-

ated on. The explanation regularization technique was also able to reduce the biases against

AAE authors better than the vanilla-BERT model without a dramatic decrease in classifica-

tion performance. Across all datasets, the MinDiff regularization framework consistently

performed worse than other classifiers, and while it had a closer false-positive error rate

balance, this came at the cost of classification accuracy to the SAE authored tweets, rather

than an improvement to AAE authored tweets. Since our HxEnsemble proposed framework

is model agnostic, combining it with other bias-mitigation techniques to better address the

complex underlying reasons for model biases can be investigated in future work.

Table 5.6 suggests that the hierarchical ensemble model increased FNR is strongly cor-

related with annotations that we deemed as misclassified as toxic by annotators. This

further strengthens the importance of utilizing additional metrics when evaluating debias-

ing methods. In fact, when investigating the effects of annotation bias, understanding the

prediction disparities and classification inaccuracies provides valuable insight into the fair-

ness of the underlying black-box models. We noted that at minimum, 35.3% of misclassi-

fied AAE tweets by our HxEnsemble are mislabeled by original annotators. As a result, the

effectiveness of the bias-mitigation strategies is likely a lower-bound estimate and provided

empirical evidence that the increased FNR of our hierarchical ensemble model successfully

mitigates some of the annotation biases towards AAE authors in toxic-language datasets.
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For DWMW17, FDCL18, and Toxic datasets we observed how disparate impact of non-

toxic predictions strongly favors SAE, while for toxic prediction AAE are more likely

than SAE. Additionally, almost all classifiers have FNRSAE computed larger than FNRAAE,

while the FPRSAE is smaller than FPRAAE. While the biases of the dataset are present and

perpetuated, HxEnsemble and the explanation regularization methods were able to decrease

the disparities in these fairness metrics with minimal impact to classification metrics. This

shows that on their own, bias-mitigation strategies are not enough to correct the underlying

biased data and to fully address this issue in future work, efforts to relabel the dataset or

create a new dataset that is less biased to AAE authors is essential.

We saw that using the aggregated dataset Toxic provided mixed results for addressing

biases. A decrease in the unfavorable disparate impact metric across all the classifiers is

observed in the Toxic dataset compared to the FDCL18, the largest dataset in the aggre-

gate. However, a slight increase in the FPRAAE and a decrease in the disparate impact of

a favorable outcome indicates that using a larger corpus is an insufficient bias mitigation

strategy for this issue. Additionally, label inconsistencies in the hate annotation resulted

in classifiers that had very poor performance and struggled to overcome the class imbalance

in Hate. Comparatively, using a less stringent definition of toxic in the Toxic aggregate

allowed the classifiers to achieve strong performance. If a supplementary dataset of AAE

authors for hate-detection is created to address the racial biases present, ensuring that an-

notation consistency with other datasets will be a challenging issue to address.

The biases against AAE dialect may be correlated to other historically oppressed groups’

dialects, such as LGBTQIA+ dialects [69]. Similarly to AAE, LGBTQIA+ dialects reclaim

oppressive identity terms which in-group members use in a neutral or positive context. We

also note that the study of biases towards AAE authors may be present in other NLP do-

mains, such as sentiment analysis which is commonly used during hate and toxic language

dataset creation. We hypothesize that our proposed HxEnsemble framework can be ex-

tended to these domains as we show its effectiveness in ensuring models are better able to
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represent the protected groups’ target population.

We also want to note the importance of maintaining high-accuracy in the models during

the bias-mitigation strategies that are applied to the toxic and hateful language detection

domain. In particular, we care about ensuring the models have high-accuracy as the domain

context is aimed at protecting not just one protected class. In our case we are studying the

issue of racial bias towards African American authors in toxic language datasets. Within

the datasets, samples of AAE represent 22% of samples in DWMW17, 1.4% in FDCL18,

4% in Toxic aggregate dataset, and 4.9% in the Hate aggregate. While previous work shows

annotation biases towards the AAE group, it’s important to note that not all samples in the

dataset are mislabeled and that the metrics of model performance are still important when

comparing and benchmarking models. These models are able to protect other protected

groups that are targeted with online bigotry and harassment when participating in online

communities and dialogues.

The choice between general accuracy and improved fairness metrics for a protect group

is an ethical trade-off. Bias mitigation algorithms often come at the cost of accuracy to

the generalized population. In most literature regarding bias-mitigation algorithms, bench-

marking their performance is done against the baseline model and the fairness criteria the

algorithm was attempting to improve on. As one of the goals of our HxEnsemble algo-

rithm is to reduce the propagation of these annotation biases while minimizing the impact

to model performance, those were the two dimensions we compared when comparing the

benchmarked models on. Choosing between the optimization of both accuracy and bias

mitigation begins to explore the ethics of equity in the performance of algorithms. For

example, is it fair that a social media company will use a worse-performing algorithm that

misclassifies more people’s post as toxic language so that the error rate is equal to the

protected classes’ error rate in the algorithm?

Lastly, we echo Blodgett et al.’s [19] sentiment on the progress in bias mitigation within

natural language processing to have a more unified and systematic approach to fairness.
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Assumptions and definitions of what entails the biases and fairness metrics should be em-

phasized during the research so that the reproducibility, explainability, and cross-domain

applications are able to benefit tremendously.
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CHAPTER 7

CONCLUSIONS

In this work, we first explored the current state of research regarding AI biases, hate speech,

and biases in hate speech detection and some of the related mitigation strategies. We pro-

posed and evaluated an ensemble framework that leveraged a general toxic language clas-

sifier, dialect estimation model, and a specialized AAE classifier to reduce the racial biases

in hate and toxicity detection datasets. We evaluated the HxEnsemble, two bias-mitigation

algorithms, and common machine-learning classifiers using several fairness metrics and

datasets that provided insights into how these models learn and propagate the annotation

biases in the underlying datasets. Experiments conducted revealed that across all datasets,

classifiers had higher FPR and lower FNR for AAE instances than the SAE instances.

Additionally, both favorable and unfavorable prediction biases exist against AAE authors,

where the disparate impact score for non-toxic predictions is heavily biased against AAE

authors, and predictions for toxic is heavily biased towards AAE authors. Although the

data biases are propagated to the models, both our HxEnsemble and the explanation regu-

larization bias-remediation techniques were able to mitigate some of the racial biases with

minimal impact on classifier performance.

Using a thorough error analysis, we noted that the challenges in debiasing these datasets

resulted from a large portion of misclassified AAE samples. We also presented character-

istics of AAE samples that the HxEnsemble framework struggled with, which can further

motivate future research on debiasing hate-detection on AAE texts. Future usage of our

proposed framework is extensible to other low-resource and biased domains, where it can

be combined with other bias-mitigation techniques. Lastly, we demonstrated the effects of

label consistency issues on classifier performances with two thresholds of dataset aggrega-

tion. We call for future work to create a new toxic language dataset that has AAE samples
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labeled by in-group annotators, has cultural training materials available, and/or adds racial

priming or utilizes CASM to urge annotators to consider the cultural context of the tweet.

47



Appendices



APPENDIX A

RESULTS WITH A STRICTER AAE PREDICTION THRESHOLD

In the following tables we show the fairness metrics for the classifiers on each dataset using

the threshold of Pr(AAE ≥ 0.8) for texts belonging to the AAE dialect using Blodgett et

al.’s model [50]. Please see Section 3.2 for more information.

A score of 0 is used to indicate a missing metric or a division error. For example, in

DWMW17 there are no mis-classified non-toxic AAE instances in the dataset, hence a FPR

of 0.

Table A.1: DWMW17 Fairness Metrics for Pr(AAE ≥ 0.8) [nAAE = 74, nAAE = 2396]

Task Name DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.000±0.000 1.187±0.002 0.000±0.000 0.022±0.001 0.000±0.000 0.209±0.004

TF-IDF 0.220±0.076 1.079±0.007 0.020±0.007 0.029±0.000 0.000±0.000 0.612±0.003

GloVe 0.000±0.000 1.169±0.020 0.000±0.000 0.052±0.009 0.000±0.000 0.424±0.045

BERT 0.055±0.038 1.196±0.010 0.009±0.007 0.019±0.002 0.000±0.000 0.114±0.014

BERT+OC 0.000±0.000 1.222±0.007 0.000±0.000 0.024±0.003 0.000±0.000 0.086±0.012

BERT+SOC 0.000±0.000 1.222±0.004 0.000±0.000 0.023±0.001 0.000±0.000 0.082±0.009

BERT+MD 0.026±0.061 1.090±0.098 0.005±0.013 0.013±0.022 0.000±0.000 0.606±0.416

HxEnsemble 0.056±0.039 1.192±0.008 0.009±0.007 0.018±0.001 0.000±0.000 0.129±0.008

Table A.2: FDCL18 Fairness Metrics for Pr(AAE ≥ 0.8) [nAAE = 7, nSAE = 9079]

Task Name DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.193±0.000 3.313±0.015 0.000±0.000 0.143±0.002 0.000±0.000 0.036±0.001

TF-IDF 0.549±0.001 2.597±0.010 0.333±0.000 0.286±0.002 0.000±0.000 0.036±0.000

GloVe 0.191±0.001 3.377±0.034 0.000±0.000 0.217±0.005 0.000±0.000 0.057±0.002

BERT 0.198±0.000 3.090±0.016 0.000±0.000 0.094±0.003 0.000±0.000 0.044±0.001

BERT+OC 0.196±0.001 3.152±0.023 0.000±0.000 0.104±0.003 0.000±0.000 0.040±0.002

BERT+SOC 0.176±0.062 3.201±0.132 0.000±0.000 0.103±0.005 0.100±0.316 0.040±0.003

BERT+MD 0.582±0.445 1.531±1.647 0.500±0.527 0.554±0.470 0.100±0.316 0.035±0.045

HxEnsemble 0.197±0.000 3.119±0.019 0.000±0.000 0.098±0.004 0.000±0.000 0.042±0.001

49



Table A.3: Toxic Fairness Metrics for Pr(AAE ≥ 0.8) [nAAE = 70, nSAE = 13376]

Task Name DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.022±0.000 2.774±0.013 0.000±0.000 0.172±0.002 0.500±0.000 0.055±0.001

TF-IDF 0.144±0.006 2.874±0.024 0.101±0.005 0.297±0.004 1.000±0.000 0.066±0.002

GloVe 0.056±0.012 2.687±0.025 0.037±0.008 0.245±0.002 1.000±0.000 0.107±0.002

BERT 0.043±0.007 2.688±0.013 0.000±0.000 0.142±0.001 0.050±0.158 0.046±0.001

BERT+OC 0.022±0.015 2.726±0.041 0.000±0.000 0.150±0.005 0.500±0.333 0.051±0.003

BERT+SOC 0.034±0.012 2.695±0.023 0.000±0.000 0.148±0.004 0.250±0.264 0.052±0.003

BERT+MD 0.722±0.503 0.397±0.515 0.644±0.477 0.629±0.486 0.300±0.483 0.343±0.457

HxEnsemble 0.056±0.012 2.627±0.032 0.007±0.008 0.138±0.003 0.000±0.000 0.053±0.003

Table A.4: Hate Fairness Metrics for Pr(AAE ≥ 0.8) [nAAE = 66, nSAE = 12323]

Task Name DIfav DIunfav FNRAAE FNRSAE FPRAAE FPRSAE

N-Gram 0.980±0.007 1.631±0.228 0.800±0.000 0.735±0.008 0.038±0.008 0.013±0.001

TF-IDF 0.968±0.000 3.330±0.081 0.800±0.000 0.860±0.002 0.033±0.000 0.004±0.000

GloVe 1.019±0.008 0.000±0.000 1.000±0.000 0.884±0.031 0.000±0.000 0.011±0.005

BERT 0.991±0.015 1.154±0.258 0.680±0.103 0.533±0.008 0.043±0.011 0.024±0.001

BERT+OC 0.969±0.022 2.002±0.745 0.860±0.165 0.722±0.037 0.054±0.019 0.011±0.004

BERT+SOC 0.956±0.039 2.317±1.316 0.720±0.193 0.707±0.027 0.059±0.029 0.014±0.003

BERT+MD 0.400±0.516 0.600±0.516 0.400±0.516 0.400±0.516 0.600±0.516 0.600±0.516

HxEnsemble 1.042±0.011 0.210±0.204 0.960±0.126 0.551±0.009 0.008±0.009 0.021±0.001
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