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SUMMARY  

With the rapid progression of human sensing technologies, High Performance Buildings 

(HPB) are inevitably moving towards the wide scale automation of occupancy detection 

for energy efficiency purposes. Occupancy patterns influence energy consumption in 

buildings by governing the Heating, Ventilation and Air Conditioning (HVAC) systems to 

regulate indoor conditions for human comfort. The integration of emerging sensing 

systems in residential buildings requires low-cost, low-resolution alternatives that might 

be subject to inaccuracies and result in errors.  

In Building Performance Simulation (BPS), occupancy schedules act as proxies for 

human presence patterns in buildings. This thesis develops a simulation-based workflow 

to examine the impact of system sensing errors, like human false sensing, using occupancy 

schedules to quantify energy loss. A Markov-Chain analysis of the 2018 American Time 

Use Survey (ATUS) is used to extrapolate transition matrices and generate probabilistic 

driven occupancy schedules.  

The aims of this thesis are threefold: i) investigate the evolution and current state 

of BPS occupancy schedules and their connection to sensing technologies, ii) examine the 

effect of different human detection system configurations on total energy consumption in 

false sensing scenarios, and iii) introduce occupancy schedules as a new factor in the 

decision analysis process of sensing systems. The simulations evaluate the impact of false 

positives in binary occupancy modelling scenarios using Honeybee as a front-end software 

and EnergyPlus as a backend Building Energy Modeling (BEM) engine.  



 xii  

Results highlighted the role of sensing configurations, like scanning frequency, on 

the percentage of weekly energy loss per false positive, with an increase from 0.51% to 

1.49% corresponding to the 10-60-minute scanning frequencies. The standard deviation of 

the percentage of energy lost per error ranged from 0.53-0.74, indicating that the time of 

error also influenced the amount of energy lost. The number of errors that would result in 

a significant amount of energy loss (assumed as 30%) was 22 in the 60-minute error 

duration scenario. The high threshold was dependent on the scanning frequency and eluded 

to the viability of using low-cost sensing technologies.  

The annual false positive impact on total energy consumption was examined under 

various environmental conditions. For the United States, climate zones ranging from 1 to 

6, the cities of Miami, Houston, Atlanta, Albuquerque, Chicago, and Milwaukee were 

selected as representatives. The distribution of the annual investigation passed the 

KolmogorovïSmirnov test for normality and were fitted to a normal distribution to gauge 

the ranges of energy loss. Results indicate an approximate mean of 0.5% weekly energy 

loss per-hourly error across the 6 chosen climate zones. The large range of occurring errors 

was shown to be attributed to prior occupancy, seasonal and daily climatic variations, and 

countermeasures were proposed for the reduction of such error effects. The potential 

energy savings by the implementation of the system varied between different climate 

conditions. The projected savings ranged from 20.1% for the city of Miami to 11.0% for 

Milwaukee. The potential of a city was governed both by the severity of the climatic 

conditions and the occupancy pattern corresponding to peak impact times.  

Seasonal investigations showcased the benefit of full HVAC system usage in short 

absence periods in winter months. Critical system scanning points for the reduction of 

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test


 xiii  

average error durations were established at 8:30 AM and 7 PM for weekdays, and 9:30 AM 

and 6 PM for weekends. The incorporation of additional scanning points is also encouraged 

for the reduction of overall error duration but must be evaluated based on inherent sensing 

system energy consumption.  

An integrated approach combining occupancy schedule and sensing technology is 

finally described for the mutually beneficial enhancement of their performance. Overall, 

the results indicated that with recommended guidelines and criteria for system 

configurations, the use of low-cost, low-accuracy sensing technologies is warranted. The 

thesis provides an overview of the implications of integrating future sensing technology in 

building thermal energy regulation, from an error evaluation perspective, that must be 

considered before emerging technologies are eventually deployed across United States 

residential buildings in the future. 
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CHAPTER 1. INTRODUCTION  

Significant advancements were made in the field of HPB in the past decades in terms of 

simulating and designing for the effects of geometrical attributes and physical phenomenon 

on the built environment. Contextual factors, like accurate climate modeling, are now 

investigated with increasing accuracy and precision. Building inhabitants and their 

influence on energy use, represented in BPS through occupancy schedules, on the other 

hand, are comparably less developed (Mahdavi and Tahmasebi 2019).  

The impact of occupants on energy use in buildings has been recognized as far back 

as 1978 by Sonderegger, who stipulated that occupant behavior may influence 71% of the 

variation in building energy demands (C.Sonderegger 1978). It has also been established 

that household size and occupancy patterns are the main contributors to electrical loads in 

residential buildings (Richardson, Thomson, and Infield 2008). The influence of those 

inhabitants is expected to grow in the future, with a predicted decrease in misused energy 

attributed to building characteristics as a result of enhanced regulation guidelines and 

improved building thermal properties (Guerra Santin, Itard, and Visscher 2009).  

A higher degree of accuracy in capturing human presence in buildings can create 

savings not only in future structures but can also be integrated to manage and conserve 

energy in the proportionally larger current building stock. Occupancy schedules have and 

will undoubtedly play a key role in regulating energy consumption by tightly managing 

and matching mechanical system usage to human presence patterns. The drastic 

improvement in sensing technologies in the last decade, on the other hand, has made them 

a definite candidate for regulating the consumption of energy in the future. For sensing 
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technology to have a significant impact in the energy regulation process, they must be 

employed beyond their current restricted use in high-end building typologies and become 

more integrated in the larger fabric of the built environment.  

A comprehensive evaluation of the current state and gradual progression of 

occupancy schedules through time is key towards understanding the diverse components 

of occupancy patterns. The modern representation of human presence in space can also be 

wielded as a means of evaluating and testing both the potential and limitations of sensing 

technology. The HPB community would then be prepared to answer questions regarding 

the integration of these systems, which would in turn pave the way for future interventions.  

1.1 Research Purpose 

1.1.1 Research Goal 

To understand both past and current methods for occupancy informed energy regulation in 

buildings, and develop a simulation-based workflow that evaluates sensing technology 

integration from an energy conservation perspective. 

1.1.2 Research Hypothesis 

If sensing technology is going to replace our current occupancy representational tools, then 

how can occupancy schedules be used to evaluate, simulate, and explore the potentials and 

limitations of sensing technology integration in future residential buildings?   
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1.2 Research Motive and Structure  

1.2.1 Significance 

The research assumes the inevitable integration of sensing technology in future homes. 

Therefore, it investigates how wide-scale adoption of sensing technology would, in turn, 

create considerable energy savings for both existing and future buildings. 

1.2.2 Research Objectives 

- Formulate an understanding of the development of occupancy representation in 

buildings; 

- Identify the intersection points between occupancy schedules and sensing 

technology; 

- Develop thresholds and benchmarks for the evaluation of sensing technology 

integration in residential buildings from an energy regulation perspective; and 

- Investigate the properties of system error in terms of total energy consumption. 

1.2.3 Research Questions 

1) How can the existing body of knowledge on occupancy schedules be integrated 

with emerging sensing technologies to enhance their mutual capacity for building 

energy regulation? 

2) How can sensing technologyôs management of residential energy consumption, 

given errors, be evaluated and improved through our understanding of the 

parameters influencing its regulatory performance?  

1.2.4 Target Audience 

The thesis enhances our current understanding of sensing system configurations and should 

encourage wide-scale implementation of sensing systems. The primary target audiences 
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are both energy modelers and technology developers. The finding can also help architects 

and engineers make informed decisions concerning the implementation of these emerging 

technologies.  

1.2.5 Thesis Overview 

The first chapter introduces the thesis and underlines its goals and objectives. The second 

chapter investigates the mutually beneficial relationship between occupancy schedules and 

sensing technology through a literature review. The third chapter is an examination of 

sensing technology's impact on energy consumption through a simulation-based 

experimental workflow. The fourth chapter demonstrates the results of the experiment. The 

fifth and final chapter is an evaluation of the findings and conclusion for the thesis. Figure 

1 demonstrates the general thesis breakdown and workflow.  

 

 

Figure 1 - Research Process Flowchart 
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1.2.6 Contributions to Knowledge 

- Evaluation of the current relationship between occupancy schedules and sensing 

technologies, as agents of regulating energy consumption in buildings. 

- The establishment of the terminology needed to evaluate emerging sensing 

technologies from an energy conservation perspective. 

- Providing suggestive guidelines for sensing technology settings and configurations 

to achieve enhanced overall performance from an energy conservation perspective. 

1.3 Acknowledgments 

The information, data, or work presented herein was funded in part by the Advanced 

Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award 

Number DE-AR0000940. The views and opinions of authors expressed herein do not 

necessarily state or reflect those of the United States Government or any agency thereof. 
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CHAPTER 2. LITERATURE REVIEW  

This chapter aims to investigate the evolution and development of occupancy schedules as 

agents of building energy regulation. The intersection between occupancy schedules and 

sensing technology is then explored and critical examination topics for sensing systems are 

highlighted. 

2.1 Occupants in Buildings 

Understanding and reproducing the complex impact of occupant behavior in buildings can 

be a challenging task. Occupants can affect the building through two main behavioral 

categories. People influence the building either passively by their presence, or actively 

through their interaction with building systems to control their environment and ensure 

their comfort (Hong et al. 2017). In BPS, occupancy schedules are used to give a better 

understanding of the passive presence of individuals in buildings. They feed more 

importantly into models that depict how individuals are expected to respond to changing 

environmental circumstances such as interaction with windows (Fritsch et al. 1990),  air-

condition systems (Tanimoto, Hagishima, and Sagara 2005) and lighting (Reinhart 2004).  

Developing the behavioral patterns required to determine and regulate the energy 

consumption of a building is, therefore, highly dependent on the fidelity of the occupancy 

schedule (Yao and Steemers 2005). While the passive impact of occupants can be 

calculated, the issue lies primarily in the input that feeds those calculations. The depiction 

of human presence in buildings faces multiple obstacles. First, there are challenges in 

obtaining the necessary observational data that is critical to generate an empirically 
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grounded presence model. Furthermore, the data that is available usually fails to describe 

the full  range of occupant diversity and is not accurate in terms of temporal representation 

(Mahdavi and Tahmasebi 2019). Any generated occupancy schedule, therefore, relies 

primarily on various means of data interpolation, that aim to describe actual human patterns 

as accurately as possible. The representation of occupancy schedules has evolved in the 

literature over time, with both our understanding of human behavior and the discovery of 

more analytical tools that capture the patterns of that behavior. 

2.2 Deterministic Occupancy Schedules 

While different approaches are currently used to represent occupant behavior in BPS 

(Crawley et al. 2008), one of the oldest and most widely adopted are deterministic 

schedules. The method adopts logical assumptions to create different patterns based on 

time of the week and type of the building.  In these schedules, the number of occupants 

that are expected to be present at any point in time is represented through a percentage of 

the peak building occupancy. The expected percentage of occupancy is then transmitted to 

the HVAC systems that expends the proportional amount of energy to regulate the indoor 

air conditions to the desired temperatures.  

The simplicity of these initial schedules does not capture the complexity and 

diversity of human behavior in buildings nor take advantage of the computational potential 

that modern technology provides. The deterministic values of these schedules are mostly 

derived from codes, standards, or the intuition of experienced energy modelers (DôOca and 

Hong 2015). The most referenced standard is the ASHRAE 90.1 published in 1989 that has 

remained relatively unchanged in the 2011 edition (American Society of Heating 
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Refrigerating Air-Conditioning Engineers 2011). The National Renewable Energy 

Laboratory (NREL) also referenced the ASHRAE Standard 90.1-1989 for office, retail, 

food Sales and food service buildings types, while noting that despite their belief of the 

flawed nature of these schedules, no better example has been established (U.S. Department 

of Energy Commercial Reference Building Models of the National Building Stock 2011). 

The oversimplified nature of these schedules leads to homogenous simulation results 

(Cowie et al. 2017) that neither captures the stochastic patterns of occupant behavior in 

buildings (Annex 66 Final Report 2018) nor is supported by empirical data. Multiple 

studies have indicated lower occupancy rates in the post-occupancy evaluation of office 

buildings than those provided by the standard (Duarte, Van Den Wymelenberg, and Rieger 

2013).  

An office building investigated by Sun & Hong displayed a significant 50% 

deviation from the standard schedules provided by the Department of Energy (DOE) when 

comparing them to actual observed occupancy presence (Sun and Hong 2017). The 

deviation of these occupancy schedules from their real-li fe counterparts alludes to the large 

quantities of energy lost due to mismanagement of mechanical systems. The inaccuracies 

and deviations lead to wasted energy in the form of either overheating or overcooling of 

vacant spaces. Occupancy schedules that depict human presence across different climate 

zones have also been standardized and are deterministic, while real-life observations have 

indicated differences due to behavioral parameters (Azar and Menassa 2012). This means 

that the depiction of human behavior in occupancy schedules can be further enhanced by 

integrating a wide variety of factors like socio-economic structure in their production. 

These oversimplified schedules are then incorporated in energy simulation platforms of 
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software like REVIT and EnergyPlus, meaning that the computational potential of modern 

technology is lost.  

To overcome this obstacle, one of the key objectives of Annex 66 was providing 

multiple occupancy simulation tools that can be easily used and integrated into future 

building performance simulations (Annex 66 Final Report 2018). The initiative spawned 

the output of multiple occupancy simulation software. ObXML (Hong et al. 2015) attempts 

at standardizing the behavior of occupants as an input for building performance simulation. 

The XML schema is based on DriversïNeedsïActionsïSystems (DNAS) ontology. Here, 

the environment is the driver that incites the actions performed by the building inhabitants, 

who control the building systems for their needs. The obXML ontology showcases 

occupant behavior in buildings and can be integrated by multiple BPS software. An 

extension of this XML schema is the software component obFMU (Hong et al. 2016). This 

software interprets the output of the obXML file and feeds multiple occupant behavioral 

models like lighting and temperature. The obFMU software has been utilized with 

EnergyPlus to enhance occupant behavior simulation models through co-simulation. Lastly 

Feng developed a software module (Online web simulator) as part of the Annex66 initiative 

(Annex 66 Final Report 2018) that helps in generating occupancy schedules (Feng, Yan, 

and Hong 2015). The software is capable of working as a standalone product, being 

imbedded in simulation tools or used in co-simulation (Feng, Yan, and Hong 2015).  

These tools have the potential to improve the representation of human behavior in 

buildings and can subsequently enhance the fidelity of future performed energy 

simulations. This leaves the HPB community with the challenge of generating occupancy 
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schedules that can be used to govern and regulate energy consumption in buildings as the 

complementary segment to the initially proposed initiative.  

2.3 Probabilistic Models 

The failure of deterministic occupancy schedules in capturing the large spectrum of human 

behavior led to the development of probabilistic generated occupancy schedules. 

Richardson et al. were one of the first to generate stochastically driven occupancy 

schedules that attempted to replicate human behavior. The schedules were derived from a 

large scale Time Use Data (TUD) survey in the UK that analyzed and divided residential 

behavioral patterns based on household size and day of the week (Richardson, Thomson, 

and Infield 2008). First Order time inhomogeneous Markov Chains were used in that 

analysis to generate a model in which the probability of presence at a time step is only 

dependent on the state of presence at the previous time step (Feller and Teichmann 1967). 

The resulting model provided single day occupancy schedules that accounted for 

differences between weekdays and weekends and the number of individuals present 

(Richardson, Thomson, and Infield 2008). Being driven by probability, the model generates 

a different schedule every time it runs, producing results more akin to human behavioral 

patterns. Adopting that approach, however, creates issues that relate to scarcity of data 

(Feng, Yan, and Hong 2015), since large amounts of detailed household inputs are required 

(Paatero and Lund 2006) for that analysis.  

Unlike commercial buildings, collected residential data used for any model are not 

always based on sensor feedback but rather on surveys, which have been shown to be 

inaccurate (Gauthier and Shipworth 2015). In these surveys, people are asked a series of 
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questions that pertain to their daily activities and movements. Research has shown a gap, 

however, when comparing actual human behavior with what people report they are doing 

(Gauthier and Shipworth 2015), meaning that surveys are typically not a reliable tool for 

data acquisition. While all stochastically generated algorithms relying on recalled memory 

in the form of surveys entail inaccuracies, they provide an understanding of the rationale 

and motivation behind human residential occupancy. Data mining approaches similar to 

the one proposed for office buildings (DôOca and Hong 2015) should be considered in the 

future while ensuring that the privacy of inhabitants is not compromised. The TUD survey 

used in Richardsonôs study also pertained only to the UK, meaning the obtained schedules 

are not viable for a global audience.  Page et al. believed calculating occupancy schedules 

based on a single day like Richardson et al. is not inclusive and attempted to reproduce an 

entire year in their simulations. They incorporated interruptions in the model in addition to 

inhomogeneous Markov Chains to account for abnormal events that result in long absences 

like vacations or sickness (Page et al. 2008). The schedules developed by Richardson et al 

and Page et al. were both critiqued, however, on their shortcomings in being calibrated 

according to individual characteristics of inhabitants. This is important since diversity has 

been shown to influence a deviation of 46% than the recommended ASHRAE standard in 

office buildings (Duarte et al. 2013). Research also indicated that a variation of 150% in 

energy consumption could be expected, depending on the values used to represent occupant 

behavior (Clevenger and Haymaker 2006).  

Realizing the importance of occupant behavior in household energy consumption 

(Guerra Santin, Itard, and Visscher 2009), Wilke et al. later built on Richardson et al.ôs 

research by providing schedules that described the time, type and duration of different 
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activities performed in a day (Wilke, Haldi, and Robinson 2011) (Wilke et al. 2013). The 

researchers used a high order Markov chain and Survival analysis in the generation process. 

Another approach to creating occupancy schedules was undertaken by Tanimoto in 2008 

and then later adopted by Yohei Yamaguchi in 2011. They used TUD only to calculate 

Average Ongoing Minutes (AOM), Standard Deviation (SDOM), and behavior occurrence 

percentage (PB) of all activities (Tanimoto, Hagishima, and Sagara 2008). They used 

logarithmic gauss distribution as a means of obtaining the duration of any single activity 

(Yamaguchi, Fujimoto, and Shimoda 2011). The research was useful in emulating general 

human behavior in a day in terms of duration but not in creating an occupancy schedule 

the depicts when those activities are performed. Wang et al. advanced occupancy schedules 

to be movements both inside and outside of the building for office buildings (Wang, Yan, 

and Jiang 2011) and were able to reproduce human presence inside different zones of the 

building. This work was one of the first to examine the movement of occupants inside 

buildings and the corresponding impact. They suggested further investigation be taken to 

implement the same logic in residential buildings and other facilities.  

While several methods have started to build on the impact of active actions, it is 

generally believed that research regarding occupancy schedules still remains inconclusive. 

Other papers have also described the integration of stochastic occupancy schedules as 

scattered and isolated (Cowie et al. 2017).  

2.4 Occupancy Schedules moving Forward 

While stochastically generated occupancy schedules are better suited for annual evaluation 

of energy consumption, they fail to represent short term occupant behavior. Mahdavi and 
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Tahmasebi argued that predicted behavior by probabilistic models and their monitored 

daily counterparts are usually not compared on a one to one basis (Mahdavi and Tahmasebi 

2015). In the case of Page et al.ôs stochastically generated absence periods (Page et al. 

2008), the frequency of days is accurately depicted, but the periods are randomly scattered 

across the year and do not match the actual absences.  

Stochastically generated occupancy schedules, therefore, fail to accurately govern 

energy regulation on a day to day basis. A study conducted on a high rise commercial 

building recommended the use of probabilistic occupancy schedules for annual 

investigations rather than day-repeated schedules when trying to assess the model (Carlucci 

et al. 2016). Stochastically generated schedules can help us understand long term trends 

and represent human diverse patterns but are insufficient in producing short term 

predictions. The role of sensing technologies becomes apparent in enhancing the fidelity 

of those day to day predictions. Although occupancy schedules and sensing technologies 

are both means of depicting occupant presence in space, the interplay between those two 

elements have rarely been studied in spite of the capability of the latter in significantly 

managing the impact of occupants (Dounis and Caraiscos 2009).  

The work performed by Mahdavi and Tahmasebi is one of the first to appreciate 

the value of that connection. Surprisingly, non-probabilistic predictive models that are 

driven by onsite observations performed better in the short term than their probabilistic 

counterparts  (Mahdavi and Tahmasebi 2015). The reliance on sensing technologies for 

post-occupancy evaluation is also critical since stochastically generated occupancy 

schedules entail within them a 5% spatial and 10% temporal uncertainty (Carlucci et al. 

2016). A study conducted on 18 design phase energy models in Canada indicated that 
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revising the initial assumptions related to occupancy behavior can reduce the energy 

estimation error by an average of 32% (Samuelson, Ghorayshi, and Reinhart 2015).  

Calibration of simulations also enhanced the accuracy of depicting actual energy 

use in the case of a high rise commercial building in Shanghai (Pan, Huang, and Wu 2007). 

In order for calibrations to be a realistic solution, however, the currently undeveloped 

evaluation process of occupancy schedules needs to be tackled (Yan et al. 2015). Research 

must be conducted on a large scale to compare the simulations of occupant behavior against 

their real-world counterparts. Sensing technologies can, therefore, be used in the post-

occupancy evaluation of initially generated schedules and assist in calibrating those 

schedules to produce more accurate results.  

Post occupancy evaluation is also required in residential buildings, where 

calibration at the apartment level has been encouraged to accurately gauge the energy 

requirements of the different building users (Carlucci et al. 2016). There have been various 

examples in the literature where building performance data is used to generate occupancy 

schedules. In one study, occupancy schedules have been produced using hourly building 

electricity consumption rates as a proxy for human presence in buildings (Yang-SeonKim 

and JelenaSrebric 2015). Occupancy schedules in non-residential facilities have been 

developed by using personal location meta-data. Results from meta-data generated 

occupancy schedules were 10% more accurate in calculating cooling loads and 50 % more 

accurate in calculating heating loads (Parker et al. 2017). This means that the generation of 

accurate occupancy schedules must be considered an ongoing process.  
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From the energy conservation perspective, if occupancy schedules are going to 

continue their regulatory role, they must transform their current static state to become 

dynamic and constantly be modified over time in response to new information. Occupancy 

schedules should utilize post occupancy data and continuously change to accurately 

represent the behavior of humans in buildings. The relationship between occupancy 

schedules and sensing technologies is not only favorable, however, for enhancing 

occupancy schedule accuracy. Sensing technology performance can also be improved by 

their integration with occupancy schedules.  

A sensing technology is by nature a means of capturing current events through 

sensory observations. As a standalone mechanism, sensing systems do not retain 

information regarding prior occupancy behavior.  Given that building specific occupancy 

schedules are generated based on prior data, they represent a history of behavioral patterns 

of building inhabitants in that particular unit. The probability that an occupant is present, 

entailed in occupancy schedules, can provide a second evaluating metric that improves the 

performance of sensing systems. Most visual human detection mechanisms use confidence 

indices to indicate the certainty that a tracked object is human (Benezeth et al. 2011). When 

a certain percentage or threshold is met, the system recognizes an object as a person. The 

probability of presence offered by occupancy schedules can therefore act as a supporting 

mechanism for either increasing or decreasing that percentage threshold based on prior 

observational data that relate to that particular time of the day. This mechanism becomes 

more viable with single use building typologies, that do not exhibit multiple behavioral 

patterns. Concerns are also raised regarding the security of preserving the autonomy of 

such data for ensured privacy protection. An integration and cross-validation process 
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between sensed information and simulated results can create enhanced energy savings, a 

topic that has not been thoroughly researched. 

2.5 Residential Human Sensing Technologies 

The importance of sensing technologies is apparent in building types where occupancy 

schedules are either not obvious or a large uncertainty in the results is evident (Clevenger 

and Haymaker 2006). Unlike commercial facilities where the general behavioral trend is 

governed by the functionality of the building, schedules of residential buildings are greatly 

influenced by the nature of the occupant in terms of their work, socio-economic status and 

habits. Occupancy schedules have, therefore, been proven unreliable in governing day to 

day energy regulation in buildings (Mahdavi and Tahmasebi 2015). This further amplifies 

the role of sensing technology as the sole mean of regulating energy consumption in those 

typologies. Relying on onsite installed sensing systems is essential to ensure occupant data 

is collected and processed correctly.  

The rapid advancement in sensing accuracy coupled with the steady decrease in 

necessary capital for integrating such technologies has also made them a viable solution 

for building energy regulation. A clear understanding of the potential and limitations of 

these technologies must be evaluated, however, before wide-scale implementation can be 

considered. A focus was, therefore, placed on developing occupant sensing technologies, 

and the annex 66 final report provided a framework of multiple sensing mechanisms that 

can be used separately or in tandem.  

Human sensing technologies can generally be divided into either radio frequency 

signal technologies or infrared (IR) and video technologies (Yang, Santamouris, and Lee 
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2016). Infrared occupancy sensors have been used to count the movement of people, both 

exiting and entering the building and tracking them inside the buildings itself (Gul and 

Patidar 2015). Passive IR sensors have also been used frequently to measure occupancy in 

different spaces. Video imaging is currently an emerging field that enables us to accurately 

track individuals in space, which is important since the presence of multiple occupants has 

been shown as a behavior impacting trigger (Haldi and Robinson 2010). The large amounts 

of data that are the characteristic problem of video image-based sensors have also been 

constantly tackled by the progression of compressed sensing (Jung and Ye 2010). In the 

case of Computer Vision (CV), high accuracy has been shown but with the downside of 

requiring extensive computational effort (Lam et al. 2009). The fusion of multi-layered 

data gathering techniques has successfully increased the viability of detecting behaviors 

and drastically improved energy consumption in high-performance buildings (Dodier et al. 

2006; Dong et al. 2010). Although the accuracy of sensing technologies is gradually 

improving, they are still susceptible to error caused by inactivity, airflow, or sunshine 

triggering a sensor. Even with the best accuracy rates for human detection through video 

image sensors, an error of 3% is usually expected (Benezeth et al. 2011).   

A major concern in the evaluation of such problems, from an energy conservation 

perspective, pertains to the methodological approach that should be adopted to experiment 

with their general behavioral tendencies. The interplay and combination of simulation and 

experimentation has been recognized and called for as one of the key factors that can be 

used to inform and tackle such problems (Khosrowpour et al. 2018). A simulation based 

workflow can adopt occupancy schedules to test both the implications and parameters of 

integrating sensing technologies in building energy regulation. The findings can provide a 
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comprehensive understanding of the problem and would subsequently lead to persistent 

energy savings in the long term (Khosrowpour et al. 2018). The results can also support 

energy forecasting models that are developed for the insufficiently addressed residential 

sector (Jain et al. 2014). The fact that human behavior seems to exhibit response relapse 

patterns in household electricity use (Peschiera, Taylor, and Siegel 2010) further 

encourages the utilization of sensing technologies in the energy regulation process rather 

than relying on occupants altering their HVAC usage practices. Sensing technologies can 

also be integrated with behavioral learning algorithms (Khosrowpour, Gulbinas, and 

Taylor 2016) that have been developed for the commercial sector. The fusion of those two 

methods for data driven occupant prediction can be wielded to enhance overall energy 

efficiency in buildings. 

One of the underlying problems with current sensing systems is their limited 

application to commercial and public facilities. To encourage the widespread application 

of sensing technologies in the residential sector, a low-cost system must be established. 

Additional considerations, however, would also have to be made to ensure the privacy of 

individuals in their own homes is not compromised. There are currently efforts underway 

to develop a low-resolution camera that aims to only capture pixelated frames and helps 

preserve individual privacy. The low-cost target coupled with the low resolution required 

for residential application suggests higher levels of inaccuracies and mistakes. In order to 

evaluate the viability of that widespread application, a better understanding of the impact 

of these errors is required. 
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2.6 False Positive Measures 

Research on sensing systems has primarily operated under assumptions of perfect accuracy 

for the implemented technology. The potential value brought by integrating those sensing 

technologies in terms of energy savings is then weighed against the cost of production and 

the scale of their application. While many studies have attempted to capture the impact of 

stochastic occupancy schedule implementation on energy consumption and its components 

like lighting (Zhou et al. 2015), electrical appliances (Yilmaz, Firth, and Allinson 2017) 

and BPS (Gunay et al. 2014), a lack of research regarding the impact of errors on building 

energy consumption is identifiable.  

An incident where the detection sensor falsely indicates human presence in his 

absence is generally referred to as false positive sensing. False-positive sensing can result 

from a wide variety of factors like the failure of the system to distinguish between pets and 

humans (Benezeth et al. 2011). The link between sensing technologies and building 

performance elements means that these errors result in the activation of household systems 

like Heating, Ventilation, and Air Conditioning (HVAC), consequently leading to energy 

loss. For a holistic examination of the topic, a general investigation on the potentials and 

disadvantages of relying on sensing systems needs to be conducted. The relationship and 

impact of false-positive errors on total energy conservation need to be examined. While a 

sensitivity analysis has rarely been undertaken to evaluate the impact of false human 

sensing, it has been applied to various other building elements relating to occupants. Blight 

and Coley conducted a sensitivity analysis to evaluate the impact of occupancy behavior 

on total energy consumption, while observing lighting and appliance use (Blight and Coley 

2013). The same classical format and methodology used by conventional references 
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(Sensitivity analysis 2000) and other reviewed studies (Blight and Coley 2013) can, 

therefore, be extrapolated to evaluate false occupant sensing.  

The impact of a false positive reading of human presence can only be calculated, 

however, with a developed understanding of how human sensing systems work. 

Differences can be found between sensing systems (Annex 66 Final Report 2018) based on 

their software configuration and limitations, so a process for breaking down system 

configuration and rules and extrapolating their effect is critical. The workflow of the 

sensing technology needs to be carefully examined for key elements like Motion Sensor 

Timeout (MST) intervals that form the base of simulation inputs. These inputs dictate the 

response of the sensing system to any detection of presence, whether true or false. Their 

implications would influence both the probability of a false positive occurring and the 

speed at which a false positive reading of human presence can be amended. Responses of 

simulated energy performance in modeling software like EnergyPlus can only then studied 

with respect to simulation variations (Ioannou and Itard 2015). In these software 

simulations, all inputs are kept constant, while changes are being tested for the chosen 

element. Sensitivity analysis concerning occupancy behaviors is usually performed with 

Monte Carlo analysis (Lomas and Eppel 1992) (Ioannou and Itard 2015), and regression 

techniques can also be used to understand the relationship between any number of factors 

in the form of an equation (Blight and Coley 2013). Given that creating energy savings is 

the main driver behind sensing technology integration, maximum allowable error rates that 

sustain the inherent potential must also be established.  

To conclude, the increasing accuracy of sensing systems due to technological 

advancements makes its future widespread use in energy consumption management highly 
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likely. Raised uncertainties regarding the impact of errors like false positives on total 

energy conservation must be addressed. A comparison and evaluation must be performed 

before the current reliance on preset occupancy schedules is removed. Questions regarding 

the potential of currently available occupancy schedules in sensing technologies evaluation 

are also raised. The focus of this thesis is the general investigation of the qualities and 

ramifications of detection errors in sensing systems. Error frequencies, that would differ 

between sensing systems is therefore not the main target of this thesis. The acquisition of 

observational data that establish error frequencies in regard to specific sensing systems 

becomes the role of technology developers. The findings of this thesis can be used to 

quantitatively evaluate the impact of false positives on energy consumption and 

accordingly set benchmarks and thresholds that sensing systems should adhere to for 

optimal general performance.   
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CHAPTER 3. EXPERIMENT DESIGN  

This chapter aims to enhance the understanding of sensing technologies as agents of 

regulating energy consumption in residential buildings. The focus is placed on the 

examination of the potential and limitations of integrating sensing systems in terms of total 

thermal energy savings. 

3.1 Experiment Goals and Objectives 

The unique properties of sensing systems create uncertainties for the HPB community that 

need to be addressed before wide-scale integration can be considered. Some of the more 

pressing questions include: 

1) What are the potential energy savings as a result of sensing technology 

integration in residential buildings?  

2) How does the amount of energy being conserved vary by false-positive 

readings? 

3) How do environmental, operational scenarios influence the amount of energy 

being lost due to errors? 

4) What is the impact of system configurations on wasted energy amounts? 

5) Can household occupancy patterns assist sensing technology in thermal energy 

regulation?  

The examination of these questions would help assess the parameters of integrating 

detection systems in buildings and can assist decision-makers in evaluating the viability of 

relying on sensing technologies as the sole means of regulating energy consumption in 

future buildings. The findings can also inform the configuration of future sensing 

technology for optimal performance in terms of energy regulation. 
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3.2 Experiment Design 

Figure 2 showcases the experimental workflow: 

1) Using a TUD set to develop an extensive occupancy behavior database.  

2) The dataset is analyzed, and a probabilistic occupancy schedule generating 

model is established.  

3) Simulations for both the initial and the error embedded occupancy schedule are 

conducted. 

4) The results are compared to estimate the impact of a false positive reading in 

terms of total energy consumption. 

 

Figure 2 - Experiment Workflow 

 

The workflow establishes the general system for all conducted experiments. The 

necessary number of simulations for representative result are designated on a case by 

case basis depending on the output. The main research findings and their output 

categorizations are illustrated in Figure 3. The diverse outputs of this thesis, are 

organized in respect to chapter 4 sections 1-5:  



 24 

 

Figure 3 - Experiment Outputs 

3.3 Data Breakdown/Constraints/Limitations 

For this thesis, the 2018 American Time Use Survey (ATUS) is used (Statistics 2018). The 

main objective of the survey is the development of a nationally representative estimate of 

how Americans spend their time. The survey is sponsored by the Bureau of Labor Statistics 

and conducted by the United States Census Bureau. The ATUS sample population is a 

subsample of the Current Population Survey (CPS) households. The distribution of the 

survey respondents across different states is governed by the proportion of the national 

population that each state represents, respectively.  The data is collected on a month by 

month basis and included 9592 households in the 2018 Survey (Statistics 2018). Each 

person provided demographic information including age, sex and marital status. 

Individuals also gave a breakdown of duration, location, and timing of activities 

that were conducted on the day before the questionnaire. The recorded data on the location 

of activities were disregarded, however, due to problems of inconsistency and 
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incompleteness in the output entrees. Assumptions, therefore, had to be made regarding the 

different activity types to align the data outputs with the research objectives. The survey 

lexicon helped categorize the wide range of activities in a simple binary representation of 

household and non-household activities. Household designated categories included things 

like sleep, personal care, home situated relaxing and leisure. The location of each person 

throughout the day was then aligned with that categorization.  

Challenges with the data sample included significant differences in the fidelity of 

activity timings. While some individuals provided a detailed minute by minute breakdown 

of their daily activities, others gave a general summary of their prior day. Duration and 

timing of activities were also generally rounded up to the nearest hour for convenience and 

ease. Concerns regarding the reliance on recalled memory for prior events also questions 

the accuracy of the data.  

The output is, therefore, not a true representation of how people generally occupy 

their residence but rather a portrayal of that process. The survey does, however, provide a 

general understanding of household occupancy trends on a national scale and can thus be 

used to extrapolate inherent patterns. The transformed survey data, in its binary 

representation, would form the basis for the assembled national occupancy profile and all 

subsequent occupancy investigations.  

Future expansions on this research might include comparisons of annual ATUS 

outputs for different years. The examination can give insights into the evolution of 

household use over the years and allow us to speculate how things might develop further 

in the future.  
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3.4 Occupancy Schedule Generation 

This thesis employed the previously established workflow for generating probabilistic 

driven occupancy schedules. The proposed method was first introduced by Richardson in 

2008 in the context of UK residential buildings. The method used a Markov chain analysis 

approach of the TUD surveys in the creation of occupancy schedules. The governing logic 

is adopted here for the 2018 ATUS survey. The survey was first analyzed by categorizing 

activity types by whether they were household or non-household based. The responses 

were then organized into two categories according to the day of the week to differentiate 

between weekday and weekend activity patterns. The timeline of the day is then divided 

into 5-minute increments, with each increment being considered a separate state in of itself. 

In a Markov chain, a future state is only dependent on the current state and its 

transition probabilities. Therefore, under the Markov Chain assumption presented in Figure 

4 the next state is only dependent on whether the current condition is absence or presence 

and the transition probabilities for this time increment. 

P (Xn+1 = j || Xn=i, Xn-1= kn-1,é) = p(i,j) 

Analysis of the data is then performed to extrapolate binary transition probabilities 

from the national survey. There are two primary states that can exist for any current time 

corresponding to either presence (1) or absence (0), respectively. For each state, two 

outcomes represent the possibilities of its future development. The four possible transition 

possibilities illustrated in Figure 5 are accordingly established for every time increment.    

 
Future State     Current State Past States 

Figure 4 - Markov Chain Definition for Transition Probabilities 
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Being driven by probability, the model generates a different occupancy schedule 

every time it is run. Once the transition probabilities had been established, a sample 100 

occupancy schedules were generated, using the model, for testing purposes. This is 

conducted in the grasshopper interface using a random seed selection process that is based 

on the generated transition probabilities. 

While the main critique of probabilistic schedules is their incapability of informing 

short term predictions and use for energy regulation purposes, this thesis utilizes their 

potential for recreating diverse human activity patterns. Each of the generated 

probabilistically driven occupancy schedules, depicted in Figure 6, is considered a sample 

alternative of how people occupy their residence. The probabilistic model is thus only used 

to recreate diverse occupancy presence/absence schedules as part of a holistic investigation 

of the topic.  

 
Figure 5 - Transition Scenarios for Time Increments 
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3.5 Experiment Logic 

The thesis aims at understanding the impact of a false positive reading on total energy 

consumption. A false positive reading is an incident in which the presence of a human is 

falsely detected by a buildingôs sensing technology, and the HVAC systems are activated 

accordingly. The occurrence of a false positive is represented in this experiment on the 

previously generated occupancy schedules. The workflow showcased in Figures 7 and 8 

illustrate the changes made in occupancy schedules to emulate a false positive.  

 First, an initial schedule is used as a substitute for real on-site observational data 

and is assumed to be a true sample of a binary inhabitance pattern of a space. The original 

dataset consisting of 0 and 1, that correspond to the absence or presence of individuals at 

particular time periods is then altered. Since sensing technologies should theoretically 

  

  

Figure 6 - Sample Binary Residential Occupancy Schedules 
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recreate the initial occupancy schedule in the absence of errors, any deviation or change is 

accordingly analogous to a false positive reading registered by the system.  

 The example presented in Figures 7 and 8 showcases how an initial occupancy 

schedule is altered to emulate a false positive occurring at 5 pm. The schedule is changed 

to reflect human presence at those hours due to the error. This framework is adopted for all 

conducted simulations in this experiment.  

 For holistic investigations, errors were considered random occurring events that are 

liable to occur at any time increment given the absence of humans in the household. The 

degree of change in the initial occupancy schedule due to an error and accordingly, the 

amount of time the HVAC systems are operating in the absence of people is then 

determined by the succeeding full-home scan. The scan following a false positive is where 

the system can rectify an error and shut down the operating HVAC building systems.  

 In this experiment, various types of configurations are explored for the logic that 

governs household full scans. In some studies, the implementation of a consistent scanning 

frequency is examined. The scanning frequency is the interval of time that a detection 

 
Figure 7 - Initial Occupancy Schedule Segment 

 
Figure 8 - Modified Occupancy Schedule Segment 
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system leaves between routine consecutive scans of the interior surroundings after human 

presence has been detected. Scanning frequency is, therefore, used as a measure of the 

duration of a false positive and assists in quantifying how the occupancy schedules are 

modified.  

 Other scenarios explored the explicit placement of a restricted number of daily 

scans as a means of reducing system inherent energy consumption. In all examined 

scenarios, the difference between the total HVAC thermal load given the initial occupancy 

schedule and that of the modified one is the impact of a false positive reading.  

3.6 Simulation Model 

The residential setting depicted in Figure 9 was modeled in the Grasshopper 

interface for Rhino3D CAD software. The area of the modeled room is 20 m2 (5m(L) 

x4m(W)), with a height of 3m. The module has a southern facing façade window located 

at the narrow end with a 40% window-to-wall ratio. Context modules are placed adjacent 

to the focus room to shelter from direct sun radiation exposure from all sides.   

The exterior walls and roofs have an R-Value of 1.94 m2-K/W and 3.53 m2-K/W, 

respectively. All interior surfaces were considered adiabatic. The ladybug HVAC system 

 
Figure 9 - 3D Rhino Model for the Experiment 
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used for the household simulations is the Packaged Terminal Air Conditioner Heat Pump 

(PTHP). The number of occupants was set to one, while lighting and equipment loads were 

kept constant for all simulations. The stochastically generated schedules were used as the 

occupancy baseline for space. Equipment, lighting, and HVAC schedules were then 

matched to that schedule. The simulations were performed with Typical Meteorological 

Year (TMYx) weather files for various climate zone cities. The targeted temperature range 

in the simulated model was 22-25 °C.  

The output being monitored was specifically the thermal load (Heating/Cooling) in 

any specified period. The energy consumption was simulated through EnergyPlus using 

Ladybug and Honeybee. These environmental open source tools act as plugins for 

grasshopper and facilitate the interaction with EnergyPlus for energy modelers. EnergyPlus 

is a building energy simulation platform that was developed by DOE and is commonly 

used by various disciplines for energy consumption calculation purposes(DOE 2013). 

The simulated model should be considered a prototype for residential units that can be used 

to speculate on the behavior of diverse context scenarios. A broader focus is therefore 

placed on the behavioral trends of results and the existing relationships between different 

system configurations and their impact on total energy consumption, rather than specific 

numeric energy consumption values that might vary for different household contexts. 

These relationships can form the basis of understanding the impact of errors and the means 

through which they can be both minimized and controlled. 
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CHAPTER 4. RESULTS 

This chapter aims to present the simulation and experiment findings. A simulation-based 

validation process evaluates the result accuracy and future developments are suggested. 

4.1 National Occupancy Profile 

The first output, depicted in Figure 10, is the assembled national profile for binary 

occupancy representation of residential units. The percentages are extrapolated from the 

ATUS with a 5-minute increment fidelity. The weekday occupancy pattern shows 

consistently high levels of occupancy between 12 AM and 4 AM, where people are most 

likely asleep. The occupancy then starts to decline as a result of people either going to work 

or conducting daily necessary trips between 4 AM and 2:30 PM, reaching a low of 37.0%. 

A gradual increase is then observed from 12:30 PM until the end of the day.  

 

Figure 10 - Weekday National Binary Occupancy Profile 
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The weekend profile presented in Figure 11 exhibits the same occupancy trend 

between 12 AM to 4 AM. The decrease in occupancy that starts at 5 AM, however, is much 

more gradual than that of the weekday.  The two dips in the occupancy percentages reflect 

people choosing to go out in the morning or afternoon and reach 56% and 65%, 

respectively. 

On a holistic note, the weekend occupancy pattern experiences a generally higher 

level of overall residential presence in comparison to its weekday counterpart. 

4.2 Potential Savings 

It is important to understand the energy savings achieved by integrating a sensing system 

in a residential unit, as both a product of occupancy, as well as the human HVAC usage in 

practice. This investigation entailed an attempt to capture the maximum amount of energy 

that can potentially be saved by the implementation of the system. The simulations 

therefore presume inefficient human habits in relation to the HVAC operation in the 

 

Figure 11 - Weekend National Binary Occupancy Profile 
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residence. The assumption being made here is the full usage of the HVAC systems in the 

absence of any sensing platform as a way to mimic occupants leaving the HVAC system 

continuously working throughout the year. The potential energy savings are accordingly a 

measure of the maximum energy percentage that can be conserved by the integration of a 

human detection platform. In Figure 12, the markers represent the necessary annual energy 

consumption of the experiment module for different sample occupancy schedules. These 

results were then compared to the energy consumption if full HVAC operation occurs. The 

simulated example for the city of Atlanta, depicted in Figure 12, indicate average potential 

yearly savings of 19.58%. The noticeable deviation between the simulation results can be 

attributed to the varying general occupancy habits of the residential units. The potential 

energy savings are consequently different for the various occupancy modules. The higher 

the overall occupancy of a household throughout the year, the lower the potential savings 

regardless of human HVAC usage practice.  

 

 
Figure 12 - Annual Energy Consumption for Diverse Occupancy Schedules in Atlanta 
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 The investigation of the weekly energy savings potential, however, is different than 

its full yearly counterpart. The expected savings in June, depicted in Figure 13 were much 

higher than the yearly average. This highlights that potential energy savings at any given 

week are a function of the location of that week throughout the year. 

 

The potential yearly savings calculated for different climate zone cities are compared 

in Figure 14. The average potential energy savings varied from 10.98% for the city of 

Milwaukee to 20.188% for the city of Miami. It is essential to understand potential savings 

as both a function of the context climate severity and the prevailing occupancy pattern at 

peak climate severity. This stipulation indicates that occupants in Miami are absent in peak 

climatic conditions. The energy savings that can be achieved by integrating a sensing 

system follows that governing logic if we normalize human HVAC usage practices. 

 

Figure 13 - Weekly Energy Consumption for Diverse Occupancy Schedules in Atlanta 

for the Month of June 
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4.3 False Positive Properties 

The focus was subsequently shifted to the analysis of errors and their impact on overall 

energy conservation. The first experiment demonstrated in Figure 15 was a general 

investigation of error qualities of June for the city of Atlanta. The monitored factor was the 

scanning frequency defined as the interval between consecutive full-home scans, where an 

error would potentially be rectified. In this experiment, a total of twenty false positives 

were randomly inserted in the weekly occupancy schedules. The results of the experiment 

revealed that shorter time intervals between consecutive scans produced, on average 

smaller percentages of energy being lost per false positive. A 60-minute scanning 

frequency accounted for a 1.49% loss of energy, while a 10-minute scanning frequency 

resulted in an average 0.51% weekly energy loss per error. The percentages can potentially 

contribute to significant amounts of energy being lost cumulatively, as six false positives 

in the case of the 60-minute interval can have an approximate 9% weekly loss ramification. 

While higher time periods between consecutive scans result in more significant percentages 

 

Figure 14 - Potential Energy Saving Percentages for Selected Cities 
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of energy loss, it does they do not follow the same ratio. The additional amount of lost 

percentage per added minute between scans falls off with higher error durations.  

 
Figure 15 ï Scanning Frequencyôs Effect of False Positive Impact 

The relationship between the weekly percentage of energy lost and the time interval 

of the scanning system can be best described by a power function indicated in the graph. 

The standard deviation from the average percentage of energy lost for all scanning 

frequencies, as shown in Table 1, is noticeably significant. Occurrences of false positives 

resulted in small quantities of energy being lost in some cases and large quantities in others. 

This warranted, in turn, an investigation on the factors driving energy loss.  

Table 1 Standard Deviation of False Positive Impact for Diverse Scanning Frequencies 
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To understand the number of errors that would contribute to a significant energy loss 

for the system, a simulation experiment was devised to measure the number of weekly false 

positives that resulted in a 30% energy loss threshold. The numbers and the subsequently 

required time, serve as a measure of the maximum energy losses that are liable to occur. 

The threshold as shown in Figure 16, is relatively substantial. In the case of the 60-minute 

interval, a weekly 22 hours were required to result in the 30% energy loss benchmark. 

These results provide boundary limitations that need to be avoided if any energy savings 

by the integration of a sensing system are to be expected.  

 

 

 

 

 
Figure 16 - Number of Weekly Errors that Result in 30% Energy Loss in June 
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4.4 Energy Loss Parameters 

Having established some basic false-positive properties in relation to scanning frequency, 

a holistic examination of their impact was conducted for the city of Atlanta. For this study, 

each error was situated randomly in both a different time of the year and a different time 

of the day and assigned a stochastically generated occupancy schedule.  

The simulation outputs were then organized in histograms in Matlab as depicted in 

Figure 17 and the distribution of the results was plotted. The sample distribution was then 

compared to the normal reference as illustrated in Figure 18. The distribution successfully 

passed the Kolmogorov-Smirnov test for normality. This meant that the effect of errors 

followed a normal distribution. Finally, the confidence interval was determined by 

integrating the area under the probability distribution function (PDF).  

 

Figure 17 - Distribution of the Percentage Impact of Errors for Atlanta 



 40 

 
Figure 18 Visual Comparison in Kolmogorov-Smirnov Test 

Confidence intervals are means of saying, with a certain percentage of certainty, 

that a result should lie between two points. A process of optimization and numeric 

integration depicted in Figure 19 was conducted in Matlab to receive the 95% desired area 

under the curve. The upper and lower bounds for the 95% confidence intervals contributed 

to -0.53% and 0.939% of weekly energy loss per error, respectively. The significant 

deviation between results can be inferred here by the wide shape and consequently, the 

broad range of the confidence interval.  

 
Figure 19 - MATLAB Output- Energy Loss Boundaries 

 The simulation process was repeated for 6 chosen cities, that corresponded to US 

climate zones 1 to 6. The outcomes allowed a holistic understanding of how errors impact 
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energy consumption in different climates. The percentages are calculated in relation to a 

weekly consumption to provide tangible context to the impact of a single hour and allows 

us to establish benchmarks in relation to that impact.  

Figure 20 illustrates the range for the average percentage energy loss due to an 

error, evaluated across the year. The 95% confidence interval exhibited a broad range 

across all climate zones. This wide range highlights again the variation in simulation results 

in relation to the timing of the error. The city of Miami exhibited the smallest range, while 

the largest range was experienced by the city of Albuquerque.  

 

Figure 20 - Weekly Energy Loss Range and Mean for Selected Cities  

The smaller range for Miami indicates a comparatively constant error impact across 

the year. The city of Albuquerque, in comparison, experienced vast differences in response 

to the timing of the error. The large variation warranted further investigation to understand 

the key components of both low and high impact errors. The mean percentage energy loss 

per error, on the other hand, was comparable across the chosen cities. The mean values 
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ranged from 0.46% in Albuquerque to 0.53% in Miami, respectively. The errors occurring 

in Miami should accordingly have a more substantial impact on total percentage energy 

loss than those of its Albuquerque counterparts. The mean of Albuquerque might be 

influenced, however, by errors that affected overall energy consumption positively. The 

positive effects of some errors, indicated by their inclusion in the range, is experienced by 

multiple climate zone cities.  

These findings allude to errors in particular cases, conserving energy cumulatively 

by the activation of the HVAC systems in the absence of the building occupants. These 

highlighted particular cases, however, represent a small percentage of all occurring 

possibilities. The distribution for the city of Houston, illustrated in Figure 21, shows that 

these types of errors occurred in 15 cases out of the 200 randomly sampled simulations. 

The findings needed further investigation to identify specific occurrence examples.  

 

Figure 21 ï Occurrence Number of the Percentage Impact of Errors for Houston 




























































