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SUMMARY

With the rapid progression of humaansingtechnologes High Performance Buildings
(HPB) areinevitably moving towards the wide scale automation of occupdatsction
for energyefficiency purposesOccupancypatterns influence energy consumption in
buildings by governing theleating Ventilation andAir Conditioning (HVAC) systems to
regulate indoor conditions for human comfofihe integration of emerging sensing
systems in residential buildingequires lowcost,low-resolutionalternativeshat mght

be subject tonaccuracies ancesult inerrors.

In Building Performance SimulatioBPS), occupancy schedules act as proxies for
humanpresenceatterns in buildingsThis thesisdevelopsa simulatiorbased workflow
to examindghe impact of systersensingerrors like human false sensingsing occupancy
schedulesto quantifyenergy lossA Markov-Chain analysis of the 2018 American Time
Use Survey (ATUS) is useid extrapolate transition matds and generatgrobabilistic

drivenoccupancy schedules.

The aims of this thesis atlredold: i) investigate thevolution and current state
of BPS occupancy schedules ahdit connectiorio sensing technologies) examinethe
effect ofdifferenthuman detection system configurationstotal energy consumptian
false sensing scenarjoand ii) introduceoccu@ncy schedules as a new factor in the
decision analysis proces$ sensing systemnThe simulations evaluate the impact of false
positives in binary occupancy modelling scenarios using Honeybee as-arfdsatftware

and EnergyPlus as a backend BuildingeEy Modeling (BEM) engine.

Xi



Results highlighted the role of sensing configuratjdike scanning frequencyn
the percentagef weekly energy loss per false positive, with an increase from 0.51% to
1.49%corresponahg to the 10-60-minutescanning fregenages The standard deviation of
the percentage of energy lost per error rarfget 0.530.74,indicating that theime of
error also influenced the amount of energy lost. The number of errors that would result in
a significant amount of energy loss (@s®&d as 30%) was 22 in the-60nute error
duration scenario. The high threshold was dependent on the scanning frequency and eluded

to the viability of usingow-cost sensing technologies.

The annual false positive impact on total energy consumptionxaasied under
various environmental conditions. Ritwe United States, climate zones ranging from 1 to
6, the cities of Miami, Houston, Atlanta, Albuquerque, Chicago, and Milwaukee were
selected as representativekhe distribution of theannual investigaton passed the
Kolmogorov Smirnov tesfor normality and were fitted to a normal distribution to gauge
the range®f energyloss.Results indicate an approximate medr0.5% we&ly energy
lossperhourly error acroshe6 chosen climate zones. The large raofgeccurring errors
was shown tde attributed to prior occupancy, seasonal and daily clinvati@tions and
countermeasures were proposed for the reductiosuch error effects. The potential
energy savings by the implementation of the system vdraddeen different climate
conditions.The projected savings ranged fr@d.1% for the city of Miami to 1.0% for
Milwaukee. The potential of aity was governed both by thewerity of the climatic

conditions and the occupancy pattern corresponding to peak impact times.

Seasonal investigations showcased the benefit of full HVAC system usage in short

absence periods in winter months. Critical system scanning points for tnetioadof

Xii
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average error duratiomgere established at 8:30M and7 PM for weekdaysand 9:30AM
and6 PM for weekends. The incorporation of additional scanning p@mtisoencouraged
for the reduction of overall error duration but must be evaluzdeetion inherent sensing

system energy consumption.

An integratedapproachcombiningoccupancy schedule and sensing technology is
finally described for the mutually beneficial enhancement of their performance. Overall,
the results indicated that with recomnded guidelines and criteriafor system
configurations, the use of lewost, lowaccuracy sensing technologies is warrantdz
thesis provides an overvievi the implications of integrating future sensing technology in
building thermal energy regulatipfirom an error evaluation perspectiteat must be
considered beforemerging technologies are eventually deployed addvsted States

residential buildings in the future
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CHAPTER 1. INTRODUCTION

Significant advancements were made in the fieltHBB in the pasdecades in terms of
simulating and designing for the effectgebmetrical attributes and physical phenomenon
on the built environmentContextual factors, like accurate climate modeling, are now
investigated with increasing accuracy and precisiBuoilding inhabitarg and their
influenceon energy userepresented in BPSrugh occupancy schedules the other

hand arecomparably less developédahdavi and Tahmasebi 2019

The impact of occupants on energy use in buildings has been recognized as far back
as D78 by Sonderegger, who stipulated that occupant behavior may influenaef #igo
variation in building energy deman{S.Sonderegger 1978t has also been established
that household size and occupancy pastara the main contributors &ectrial loads in
residential buildinggRichardson, Thomson, and Infield 2008 he influence of those
inhabitants is expected to grow in the future, with a predicted decrease in misused energy
attributed to building lsaracteristics as a result of enhanced regulation guidelines and

improved building thermal properti€Guerra Santin, Itard, and Visscher 2D09

A higher degree of accuracy in capturing human presence in buildings can create
savings not only in future structures but can also be integrated to manage and conserve
energy in the proportionally larger ¢ant building stockOccupancy schedules have and
will undoubtedly play a key role in regulating energy consumption by tightly managing
and matching mechanical system usage to human presence pattieensrastic
improvement in sensing technologies in gt decadeon the other hanthas made them

a definite candidatefor regulating the consumption of energy in the futlier sensing



technology to have a significant impact in the energy regulation process, thepenust
employed beyontheir current resicted use in higkend building typologies and beme

moreintegrated in the larger fabric of the built environment.

A comprehensive evaluation of the current state and gradual progression of
occupancy schedules through time is key towards understamgirdivierse components
of occupancy pattern¥he modernrepresentation of humamwesencén space can also be
wielded as a means of evaluating and testing both the potential and limitdtssrsing
technology The HPB community would then be preparedtswer questions regarding

the integratiorof these systemwsvhichwouldin turnpavethe wayfor future interventions.

1.1 ResearchPurpose

1.1.1 Research Goal

To understantdothpast ancturrentmethods for occupancy informed energy regulation in
buildings and developa simulatiorbasedworkflow that evaluatessensing technology

integrationfrom an energy conservation perspective.

1.1.2 Research Hypothesis

If sensing technology is going to replace our current occupancy representationgéools
how can occupancy Bedules be used to evaluate, simulate, and explore the potentials and

limitations of sensing technology integration in future residential buildings?



1.2 ResearchMotive and Structure

1.2.1 Significance

The researchassumes th@evitable integration of sensirtgchnology infuture homes
Therefore, it investigates howide-scaleadoption of sensingechnologywould, in turn,

createconsiderablenergy savingor both existing and future buildings.

1.2.2 Research Objectives

- Formulate an understandird the developmenof occupany representation in
buildings

- ldentify the intersection points between occupancy schedale®l sensing
technology

- Develop threshokl and benchmarks for the evaluation of sensing technology
integration in residential buildingeom an energyegulation perspectivend

- Investigate the properties systemerror in terms of total energy consumption.

1.2.3 Research Questions

1) How can the existing body of knowledge on occupancy schedules be integrated
with emerging sensing technologies to enhance thetual capacity for building
energy regulation?

2) How can sensing technologyds management
given errors, be evaluated and improved through our understanding of the

parameters influencing its regulatory performance?

1.2.4 Target Aidience

The thesis enhances our current understanding of seysitggnconfigurationsandshould

encourage widscale implementation of sensing systeifise primary target audience



are bothenergymodelersand technologydevelopers. The finding can aleelparchitects
andengineersnakeinformed decisionsoncerningheimplemenation of thesemerging

technologies.
1.2.5 Thesis Overview

The first chapter introduces the thesis and underlisegoials and objectives. The second
chaptelinvestigateshe mutually beneficial relationship between occupancy schedules and
sensing technology through literaturereview. The third chapter is aaxaminationof
sensing technology impact on energy conswtion through a simulatioiased
experimeral workflow. The fourth chaptelemonstratethe result®f theexperiment. The

fifth and final chapter is an evaluation of the findirgsl conclsionfor the thesisFigure

1 demonstratethe generathesisbreakdown andvorkflow.

Goal Objectives Methods Dissertation

Chapter 1:
Introduction

To understand both past .
Research Overview

and current methods for

occupancy informed

.C - :
energy regulation in L
buildings and develop a [ B Simulation Fxperiment  [ETRSSEN
simulation-based workflow e : -
vy €| Y B ‘.

that  evaluates  sensing

technology integration Chattara:
from an energy Results

conservation perspective.

Conclusion

Figurel - Research Process Flowchart



1.2.6 Contributions to Knowledge

- Evaluation of the current relationship between occupancy scheatulesensing
technologiesas agents of regulating energy consumption in buildings.

- The establishment of the terminology needed to evaleaterging sensing
technologies from an energy conservation perspective.

- Providing siggestive guidelines faensing technology settings and configurations

to achieveenhanceaverall performance from an energy conservation perspective.

1.3 Acknowledgments

The nformation, data, or work presented herein was funded in part by the Advanced
Research Projects Agen&nergy (ARPAE), U.S. Department of Energy, under Award
Number DEAR0000940. The views and opinions of authors expressed herein do not

necessarily stater reflect those of the United States Government or any agency thereof.



CHAPTER 2. LITERATURE REVIEW

This chapter aim® investigate the evolution and development of occupancy schedules as
agents of building energy regulation. The intersection between accyschedules and
sensing tehnology is then explored and critical examination toficsensing systenae

highlighted.

2.1 Occupants in Buildings

Understanding and reproducing the complex impact of occupant behavior in buildings can
be a challenging taskOccupants can affect the building through two main behavioral
categories. People influence the building either passively by their presence, or actively
through their interaction with building systems to control their environment and ensure
their comfort(Hong et al. 201)7 In BPS, occupancy schedules are used to give a better
understanding of the passiy@esence of individuals in buildings. They feed more
importantly into models that depict how individuals are expected to respond to changing
environmental circumstancesich asnteraction with windowgFritsch et al. 1990 air

condition systeméTanimoto, Hagishima, and Sagara 2088d lighting(Reinhart 2004

Developing the behavioral patterns required to determine and regulate the energy
consumption of a building jsherefore highly dependent on the ftity of the ocapancy
schedule(Yao and Steemers 2005While the passive impact of occupants can be
calculated, the issue liggsimarily in the input that feeds tisecalculationsThe depiction
of human presence in buildings faces npldt obstaclesFirst, thereare challenges in

obtaining the necessary observational data thatriical to generate an empirically



grounded presence modElurthermore, the data that is available usually fails to describe
thefull range of occupant diveity and is not accurate in terms of temporal representation
(Mahdavi and Tahmasebi 201Any generatedoccupancy scheduléherefore,relies
primarily on various means of data interpolation, that aim to describe actual human patterns
as accurately as possible. Tiepresentation of occupancy schedules has evolved in the
literature over time, with both our understanding of human behavior and the discovery of

more analytical toolthatcapture the patterns of that behavior.

2.2 Deterministic Occupancy Schedules

While different approaches are currently used to represent occupant behavior in BPS
(Crawley et al. 2008 one of the oldest and most widelgopted are deterministic
schedulesThe method adoptogical assumptions to create different patterns based on
time of the week and type dfie building. In these schedulethe number of occupants
thatareexpected to bpresent at any poimb time is represented throughpeercentage of

the peak building occupancihe expected percentage of occupancy is then transmitted to
the HVAC systemshatexpend the proportional amount @nergyto regulate the indoor

air conditiongo the desiredemperatures

The simplicity of these initial schedules edonot capture the complexity and
diversity of human behavior in buildingsrtake advantage of the computational potential
that modern technology provides. The deterministic values of these schedules are mostl
derived from codes, standayds the intuition of experienced energy mode(®® Oca and
Hong 201%. The most referenced standard is the ASHRAE 90.1 published in 1989 that has

remained relatively unchanged in the 2011 edit{@dmerican Society of Heating



Refrigerating AirConditioning Engineers 2011 The National Renewable Energy
Laboratory(NREL) also referenced the ASHRAE Standard 91989 for office, retalil,
food Sales anébod service buildings types, whiteting that despite their belief of the
flawed nature of these schedules, no better exanapleeen establishgd).S. Department

of Energy Commercial Reference Building Models of the National Building 3dddk

The oversimplified nature of d#se schedules leads to homogenous simulation results
(Cowie et al. 201)/that neither captusgthe stochastic patterns of occupant behavior in
buildings (Annex 66 Final Repor2018 nor is supported by empirical datdultiple
studieshaveindicated lower occupancy ratesthe postoccupancy evaluation of office
buildings than those provided by the stand@darte, Van Den Wymelenberg, and Rieger

2013.

An office building investigated by Sun & Hong displayed igngicant 50%
deviation from the standard schedules provided by the Department of Energy (DOE) when
comparing them taactual observed occupancy presen(@un and Hong 2037 The
deviation of these occupancy schedules ftioeir reatlife counterpartslludesto the large
quantities of energy lost due to mismanagement of mechanical sySteensiaccuracies
and deviations lead to wasted energy in the form of either overheating or overcooling of
vacant space®ccupancy schedules that d#ghuman presence across different climate
zones have also been standardized and are deterministicredilié2 observations have
indicated differences due to behavioral paramdi&szar and Menassa 20LZ his means
thatthe depictionof human behavioin occupancy schedules can be further enhanced by
integratinga wide variety offactors like socieeconomic structure in their production.

These oversimplifiedschedules are thendorporated in energy simtian platforms of



software like REVIT and EnergyPlusieaning that the computational potential of modern

technology is lost.

To overcome this obstaglene of the key objectives of Aax 66 was providing
multiple occupancy simulation tools that can beilgassed and integrated tm future
building performance simulatiorggnnex 66 Final Repo2018. The initiative spawned
the output ofnultiple occupancy simulation softwa@XML (Hong et al. 201pattempts
at standardizing the behavior of occnfsaas an input for building performance simulation.
The XML schema is based on Driveleed$ Actions Systems (DNAS) ontology. Here,
the environment is the driver that incites the actions performed by the building inhabitants,
who control the building sysins for their needs The obXML ontology showcases
occupant behavior in buildings and can ibeegratedby multiple BPS software. An
extension of this XML schema is the software component obFMU (Hong et al. 2016). This
software interprets the output of tbbXML file and feeds multiple occupant behavioral
models like lighting and temperature. The obFMU software has been utilized with
EnergyPlus to enhance occupant behavior simulation models throgghwation. Lastly
Feng developed a software module (@akveb simulator) as part of the Wax66 initiative
(Annex 66 Final Repo2018 that helps in generating occupancy sched(Fesg Yan,
and Hong 201p The software is capable of working as a standalone product, being

imbedded in simulation tools or used irgimulation(Feng, Yan, and Hong 2015

These tools have the potential to improve the representation of humaimbéhav
buildings and can subsequently enhance the fidelity of future performed energy

simulatiors. This leaves the HPB community with the challenge of generating occupancy



scheduleghat can be used to govern and reguéattergyconsumption in buildings ke

complementary segment to the initygbroposednitiative.

2.3 Probabilistic Models

The failure of deterministic occupancy schedules in capturing the large spectrum of human
behavior led to the development of probabilistic generated occupancy schedules.
Richardson et al. were one of the first to generate stochastically driven occupancy
schedules that attempted to replicate human behavior. The schedules were derived from a
large scale Time Use Data (TUD) survey in the UK that analyzed and divided riegident
behavioral patterns based on household size and day of thgRiek&rdson, Thomson,

and Infield 2008 First Order time inhomogeneous Markov Chaivere used in that
analysis to generate a model in which the probability of presence at a time step is only
dependent on the state of presence at the previous tim@stkp and Teichmann 195

The resulting model provided single day occupancy schedules that accounted for
differences between weekdays and weekends and the number of individuals present
(Richardson, Thomson, and Infield 200Being driven by probability, the model generates

a different schedule every time it runs, producing results more akin to human behavioral
patterns. Adopting that approadiowever creates issues thatlaite to scarcity of data
(Feng, Yan, and Hong 20}, 5ince large amounts of detaileoluseholdnputsare required

(Paatero and Lund 20ptor that analysis.

Unlike commercial bildings, collected residential data used for any model are not
alwaysbased on sensor feedback but rather on survdysh have been shown to be

inaccurate(Gauthier and Shipworth025). In these surveygeople are asked a series of

1C



guestions that pertain to their daily activities and movem&asearch has shovengap
however,when comparin@ctualhuman behavior with what peopleport they are doing
(Gauthier and Shipworth 20),5neaning that surveyare typicallynot a reliable tool for

data acquisitionWhile all stochastically generated algorithms relying on recalled memory
in the form of surveygnail inaccuracies, they provide an understandinthefationale

and motivationbehindhumanresidential occupancyata mining approaches similar to

the one proposed for office buildinl36 Oc a a n d ) dHowld lge céndidergd in the
futurewhile ensuring that the privacy of inhabitants is not compromiteel TUDsurvey
used i n Ri c bisopatasinedodlyto tha Ukeaning the obtained schedules
arenat viable for a global audiencd?age et al. believed calculating occupandtyesdales
based on a single day like Richardson efsatotinclusive ancattempted to reproduce an
entire year in their simulations. They incorporated interruptions in the model in addition to
inhomogeneous Markov Chains to account for abnormal eventesud in long absences

like vacations or sickneg¢Page et al. 2008The schedules developed by Richardson et al
and Page et alvere both critiquedhowever,on their shortcenings inbeing calibrated
according to individual characteristics of inhabitants. This is important since diversity has
been shown to influence a deviation of 46% than the recommended ASHRAE standard in
office buildings (Duarte et aR013).Research alsmdicated that a variation of 150% in
energy consumptiocouldbe expectedlepending on the values used to represent occupant

behavior(Clevenger and Haymaker 2006

Realizing the importance of occupant behavior in household energy consumption
(Guerra Santin, Itard, and Visscher 2)0&ilke et al later built on Richardson et.als

research by providing schedules that described the time, type and duration of different

11



activities performed in a dgyVilke, Haldi, and Robinson 201 {Wilke et al. 2013 The
researchermgsedahigh order Makov chain and Survival analysistimgeneration process.
Another approach to creating occupancy schedules was undertakemibyoto in 2008
and then later adopted by Yohei Yamaguchi in 2011. They Tig&lonly to calculate
AverageOngoingMinutes (AOM),StandardDeviation (SDOM)and behavior occurrence
percentage (PB) of all activitig@animoto, Hagishima, and Sagara 2p0Bhey used
logarithmic gauss distribution as a means of obtaining thatidn ofany singleactivity
(Yamaguchi, Fujimoto,red Shimoda 201)1 The researclwvas useful iremulating general
human behaviom a dayin terms ofdurationbut not in creating an occupancy schedule
the depicts whethose activities are performed/anget al. advancedccupancy schedules
to be movemestboth inside and outside of the building for office buildi(\ysng, Yan,
and Jiang 20)landwereable to reproduce human presence inside different zones of the
building. This work was one of the first texaminethe movement obccupants inside
buildings andhe correspondingnpad. Theysuggested further investigation be taken to

implement the same logic in residentialildings and other facilities.

While several methods have started to build on the impaattofe actionsit is
generallybelievel that research regarding occupasciiedules still remains inconclusive.
Other papers have also described the integration of stochastic occupancy schedules as

scattered and isolat¢@owie et al. 201)

2.4 Occupancy Schedules moving Forward

While stochastically generated occupancy schedules are better suited for annual evaluation

of energy consumption, they fail to represent short term occupaavior. Mahdavi and

12



Tahmasebi argued that predicted behavior by probabilistic models and their monitored
daily counterpagare usually not compared on a one to one ljatdavi and Tahmasebi

2019. In the case of Page et@als st ochastically @aeenat ed
2008, the frequency of days is accurately depicted, but the periods are randomly scattered

across the year and do not match the actual absences.

Stochastically generated occupancy schedtieseforefail to accurately govern
energy regulation on a day to day basgisstudy conducted on a high rise commercial
building recommended the use ofopabilistic occupancy schedules for annual
investigationsather tharay-repeated schedules when trying to assess the if@oakélicci
et al. 2016. Stochastically generatesthedulse can help us understand long term trends
and represent human diverse pattelmg are insufficient in producinghort term
predictions.The role of sensing technologies becomes apparent in enhancing the fidelity
of those day to day predictions. Although occupancy schedules and sensing technologies
are both means of depicting occupant presence in space, the interplay bebsedmwth
elements have rarely been studied in spite of the capability of the latter in significantly

managing the impact of occupafiBounis anl Caraiscos 2009

The work performed by Mahdavi and Tahmasebi is one of the first to appreciate
the value of that connection. Surprisingly, qanobabilistic predictive modelghat are
driven byonsite observations performed better in the short than theirprobabilistic
counterparts(Mahdavi and Tahmasebi 2019 he reliance on sensing technologies for
postoccupancy evaluation is also critical since stochastically generated occupancy
scheduts entail within them a 5% spatial and 10% temporal uncert@@iastucci et al.

2016. A study conducted on 18 design phase energy models in Canada indicated that

13
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revising the initial assumptions related to occupancy behavior can reduemetwy

estimationerrorby an average of 32¢%amuelson, Ghorayshi, and Reinhart 2015

Calibration of simulations also enhanced the acgquodaepicting actual energy
use in the case of a high rise commercial building in ShaiBhai Huang, and Wu 2007
In order for calibrations to be a realistic sadat however, the currently undeveloped
evaluation process of occupancy schedules needs to be t@citedt al. 201p Research
must be conducted on a large scale to compare the simslatioccupant behavior against
their realworld counterpartsSensing technologies catherefore,be used irthe post
occupancyevaluation of initidly generated schedules and assist in calibratuge

schedules to produce more accurate results.

Post occupancy evaluation is also required in residential buildings, where
calibration at the apartment level has been encouragedctoately gage the energy
requirements of the different building us@@arlucci et al. 2016 There have been various
examples in the literaturgherebuilding performance dats used tayenerat occupancy
schedules. In one studgccupancy schedules have been produced using hourly building
electricityconsumptiorratesas a proxy for human presence in buildifgang-SeonKim
and JelenaSrebric 20150ccupancyscheduls in nonresidential facilitieshave been
developedby using personal location metlata. Results from metata generated
occupancy schedules were 10% mareuaate in calculating cooling loads and 50 % more
accurate in calculating heating log@srker et al. 20)7This means that the generation of

accuate occupancy schedulesist be considereah ongoing process.

14



From theenergy conservatioperspective, if ocupancy schedulesre going to
continuetheir regulatory rolethey musttransform their currenstatic $ate to become
dynamic and constantlye modifiedover timein response to new informatio@ccupancy
schedules should utilize post occupancy data and continuously change to accurately
represent the behavior of humans in buildin§ke relationship between occupancy
schedules and sensing tectogies is not only favorablehowever for enhancing
occupancy schedule accura8gnsing technology performance can also be improved by

their integration with occupancy schediile

A sensingtechnologyis by nature a means of capturing current evémisugh
sensory observationsAs a standalone mechanisnsensing systemslo not retain
information regarding prior occupancy behavi@iven that building specific occupancy
schedules are generated based on prior data, they represent a history of dlgieteims
of building inhabitantsn that particular unitThe probability that an occupant is present,
entailed in occupancy schedules, can provide a second evaluating metric that improves the
performance of sensing systems. Most visual human detection m&uokaise confidence
indices to indicate the certainty that a tracked object is hyBemezeth et al. 20)1When
a certain percentage or threshold is et system recognizesn object as a person. The
probability of presence offered by occupancy schedules can therefore act as a supporting
mechanism for either increasing or decreasing that percentage thrbakettl on prior
observational data that relatett@t particular time of the dayhis mechanism becomes
more viable with single use building typologies, that do not exhibit multiple behavioral
patterns.Concernsare also raisedegarding the security of preserving the autonomy of

such data for ensurediyacy protection.An integration and crosgalidation process
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between sensed information and simulated results can create enhanced energy savings, a

topic that has not been thoroughly researched.

2.5 Residential Human Sensing Technologies

The importance of ssing technologies is apparent in building types where occupancy
schedules are either not obvious or a large uncertainty in the results is ¢Zidgahger

and Haymaker 20Q6Unlike commercial facilities wherée general behavioral trend is
governed byhe functionality of the building, schedules of residential buildings arelgreat
influenced by the nature of the occupant in terms of theik, sociceconomic status and
habits. Occupancy schedules haerefore been proven unreliable in governing day to
day energy regulation in buildingslahdavi and Tahmasebi 2015 his further amplifies

the role of sensing technology as the sole meaegrflatingenergy consumption in those
typologies.Relying on onsiténstalled sensing systenssessentiato ensure occupant data

is collected and processed correctly.

The rapid advancement in sensing accuracy coupled with the steady detrease
necessary capital fontegrating such technologiéss alsomadethem a viable solution
for building energyregulation.A clear understandmof the potential and limitations of
these technologies must be evaluatexmvever before widescale implementation can be
considered. A focus watherefore placed on developing occupant sensing technologies,
and the annex 66 final report provided anfiework of multiple sensing mechanisms that

can be used separatelyiotandem

Human sensing technologies can generally be divided into either radio frequency

signal technologies or infrared (IR) and video technolo@iesg, Santamouris, and Lee
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2016. Infrared occupancy sensors have been used to count the movement qftjmebple
exiting and enteringhe building and tracking them inside theildings itself(Gul and
Patidar 201p Passive IR sensors have also been used frequently to measure occupancy in
different spaces. Video imaging is currently an emerging field that enables us to accurately
track individualan space, which is important since the presence of multiple occupants has
been shown as a behavior impacting triggtaldi and Robinson 20)0The large amounts

of data that aré¢he characteristic problem of video imagased sensors have also been
constantly tackled by the progression of compressed sefiing and Ye 20301In the

case of Computer Vision (CV), high accuracy has been shown but with the downside of
requiring extensive computational effg¢ltam et al. 200 The fusion of multlayered

data gathering techniques has successfully increased the viability of detecting behaviors
and drastically improved energy consumptiohigih-performance buildingodier et al.

2006 Dong et al. 2010 Although the accuracy of sensing technologiegradually
improving, they are still susceptible to error caused lagtinity, airflow, or sunshine
triggering a sensor. Even with the best accuracy rates for human detection through video

image sensors, an error of 3% is usually expg@edezeth et al. 20)1

A major concern in t evaluation of such problegrfsom an energy conservation
perspectivepertains tdhe methodologicapproachthatshouldbe adopted texperiment
with their generabehavioratendenciesThe inteplay and combination of simulation and
experimentation has been recognized and called for as one of the key factors that can be
usedto inform and tackle such problenfghosrowpour et al. 2038A simulation based
workflow can adopt occupancy schedulegsest bth the implicationsand parametersf

integrating sensing technologiesbuilding energy regulatiofhe findingscan provide a
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comprehensive understanding of the problem wadld subsequently lead to persistent
energy saving the long termKhosrowpour et al2018. The results caalsosupport
energyforecastingmodelsthat aredeveloped fothe insufficiently addressedesidential
sector(Jain et al. 2014 The fact that human behavior sextm exhibitresponse relapse
patternsin householdelectricity use (Peschiera, Taylor, and Siegel 2Q1further
encourages the utilization of sensing technologies in the energy regyleicessather
than relying oroccupantslteringtheir HYAC usage practiceSensing technologies can
also be integrated with behavioral learning algorithfideosrowpour, Gulbinas, and
Taylor 2016 thathave beenleveloped for the commercial sectohe fusion of those two
methods for data driven occupant predicteam bewielded toenhance overall energy

efficiencyin buildings

One of the underlying problems with current sensing systems is their limited
application to commercial and public facilities. To encourage the widespread application
of sensing technologies in the @msntial sector, a lowost systemmustbe established.
Additional considerations, however, would also have to be made to ensure the privacy of
individuals in their own homes is not compromised.réhae currently efforts underway
to developa low-resoluton camera that aims to only capture pixelated frames and helps
preserve individual privacy. The leeost target coupled with the low resolution required
for residential applicatiosuggesthigher levels of inaccuracies and mistakesorder o
evaluate lhe viability of that widespread application, a better understanding of the impact

of theseerrorsis required.
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2.6 False Positive Measures

Researclon sensing systesimasprimarily operatedinder assumptions of perfect accuracy
for theimplementedechnology The potential value brought liytegrating thoseensing
technologies in terms of energy savingthenweighed against the costmfoductionand

the scale of their applicatiokVhile many studies have attempted to capture the impact of
stochastic occugncy schedule implementation on energy consumption and its components
like lighting (Zhou et al. 201p electrical appliancegrilmaz, Firth, and Allinson 201)7

and BPSGunay et al. 2014 a lack of research regarding the impact of eroor building

energy consumption is identifiable.

An incident where the detection sensor falsely indicates human prasehise
absences generally referred to as false positive sendiadsepositive sensing can result
from a wide variety of factorskle the failure of the system to distinguish between pets and
humans(Benezeth et al. 20)1The link between sensing technologies and building
performance eleants measithat these errors result in the activation of household systems
like Heating, Ventilationand Air Conditioning (HVAC), consequently leading to energy
loss For a holistic examination of the topegeneral investigationrothe potentials and
disadvantages of relying on sensing systems needs to be condue@lationship and
impact offalse-positive errors onotal energy consrvation need to be examinatthile a
sensitivity analysis has rarely been undertaken to evaluate the impact ofidais
sensing, it has been applied to various other building elements relating to occupants. Blight
and Coley conducted a sensitivity analysis to evaluegempact of occupancy behavior
on total energy consumptipmwhile observing lighting and applianase(Blight and Coley

2013. The same classical format and methodology used by conventional references
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(Sensitivity analysi000 and other reviewed studigBlight and Coley 2018 can

therefore pe extrapolated to evaluate false occupant sensing.

The impact of a false positive reading of human presence can only be calculated
however with a developed understanding of hohwuman sensing systems work.
Differences can be found between sensing systamsex 66 Final Repo018 based on
their software confuration and limitations, so a process for breaking down system
configuration and rules and extrapolating their effectriical. The workflow of the
sensing technology needs to be carefully examined for key elements like Motion Sensor
Timeout (MST) intevals that form the base of simulation inputs. These inputs dictate the
response of the sensing system to any detection of presémether true or false. Their
implications would influence both the probability of a false positive occurring and the
speedat which a false positive reading of human presence can be amended. Responses of
simulated energy performance in modeling software like EnerggBiusnlythen studied
with respect tosimulation variations (loannou and Itard 20}5 In these software
simulations all inputs are kept constant, while changes are being tested for the chosen
element. Sensitivity analysoncerningoccupancy behaviors is usually performed with
Monte Carlo analysigLomas and Eppel 19%Zloannou and Itard 20)5andregression
techniquesan also beised to understand the relationship between any number of factors
in the form of an equatiofBlight and Coley 2013 Given thatcreatingenergy savingss
themain driver behind sensing technology integrgtioaximum allowable erraiatesthat

sustain the inherent potentiadustalsobe established

To conclude, the increasing accuracy of sensing systems due to technological

advancements makes its futwielespread use in energy consumptisanagemerttighly
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likely. Raiseduncertaintiesregardingthe impact of errors like false positives on total
energy conservatiomust beaddressedA comparison and evaluation must be performed
before the current reli@eon preset occupancy schedukeemovedQuestions regarding
the potential oturrently available occupancy schedulesensing technologies/aluaion

are alsoraised The focus d this thesisis the general investigation ¢fie qualities and
ramificationsof detectionerrors in sensing systexrError frequencies, that would differ
between sensing systems is therefore not the taggetof this thesisThe acquisition of
observational data that establish error frequencies in regard to specifiqgsgystiems
becomes the role of technology developditse findings of this thesis can be uged
guantitatively evaluaé the impact of false positives on energy consumpteord
accordingly set benchmarks and thresholds that sensing systems should adbere to

optimal general performance
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CHAPTER 3. EXPERIMENT DESIGN

This chapter aimg¢o enhancethe understandingdf sensing technologies as agents of
regulating energy consumption residential building The focus isplaced on the
examination othe potential and limations of integrating sensirgystensin terms oftotal

thermal energy savings.

3.1 Experiment Goals and Objectives

The unique properties of sensing sysdeneate uncertainties for the HPB community that
need to be addressed befoarnele-scaleintegration ca be consideredsome of the more

pressingquestions include:

1) What are the potential energy savings as a result of sensing technology
integration in residential buildings?

2) How doesthe amount of energy being conserveary by falsepositive
readings?

3) How do environmental, operational scenarinfluence the amount of energy
being lostdueto error®

4) What is the impact of system configurations on wasted energy amounts?

5) Can household occupancy patterns assist sensing technology in thermal energy

regulation?

Theexaminatiorof these questiongould helpassess thparameters dhtegrating
detection systems in buildings acahassisidecisionmakersn evaluaing the viability of
relying on sensing technologies as the sole means of regulating energy comsumpt
future buildings. The findings can also inform the configuration of future sensing

technology for optimal performance in terofenergy regulation.
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3.2 Experiment Design

Figure2 showcases the experimental workflow:

1) Using a TUD set to develomaxtens/e occupancy behavior database.

2) The dataset is analyzednd a probabilistioccupancy schedule generating
model is stablished

3) Simulatiorsfor both the initial andheerrorembeddedccupancy schedule are
conducted.

4) The results are compared to estienthe impact of a false positive reading in

terms of total energy consumption.

1) 2 : 3 : (a4

ACQUIRING © GENERATING OCCUPANCY RUNNING STATISTICAL

DATA = SCHEDULES SIMULATION ANALYSIS OF
: RESULTS

A

4

—

3o

i

—

B 000

Figure2 - Experiment Workflow

The workflow establishes the general system for all condwetpdrimentsThe
necesary numberof simulations forepresentativeesult are designated on a case by
case basis depending on the outpthie main research findings and their output
categorizabns are illustrated in Figur8. The diverse outputs of this thesis, are

organized in respect to chaptesectiors 1-5:
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Figure3 - Experiment Outputs
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3.3 Data Breakdown/Constraints/Limitations

For thisthesis the 2018 American Time Use Sury@yT US) isused(Statistics 2018 The
main objectiveof the survey is the developmentadhationaly representative estinmeaof
howAmericansspend their timelhe survey is sponsored by the Bureau of Labor Statistics
and conductedby the United States Census Bure@be ATUS sample population &
subsample of th€urrent PopulatiorSurvey CPS householdsThe distribution of the
surveyrespondentsicross different statds governed bythe proportion of the national
population thaeach stateepresentstespectively The data is collected on a month by
month basisandincluded 9592 households the 2018 SurveyStatistics 2018 Each

personprovideddemographic informatioimcludingage sexand marital &tus

Individuals alsagavea breakdown otluration, locationand timing ofactivities
that wereconductednthe daybeforethe questionnairéherecordediata orthelocation

of activities were disregarded however due to problems of inconsistencyand
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incompletenes the output entreedssumptionsthereforehad to be made regarding the
different activity types to align the dabaitpus with the reseach objectives. The survey
lexiconhelpedcategorize the wide range of activities in a simple binary representation of
household and nehousehold activitiedlousehold designatezhtegoriesncluded things

like sleep, personal care, homsieuatedrelaxingand leisureThe location of each person

throughout the day was then aligned witatitategorization.

Challengeswith the data sample includesignificantdifferences in the fidelity of
activity timings While some individuals provided a detailed minoyeminute breakdown
of their daily activities, others gave a general summary of their priorRiaation and
timing of activities were also generally rounded up to the nearest hour for convenience and
easeConcerns regarding threlianceon recalled merary for prior eventsalsoquestions

theaccuracyof thedata

The output istherefore not a true representation of how people genewbupy
their residence but rathemartrayalof that processThe survey doeshiowever provide a
general understanty of householdccupancyrends on a nationascaleand can thus be
usal to extrapolate inherent pattern¥he transformed survey data, in its binary
representatiorwould form the basis fahe assembled national occupancy profile and all

subsequent oopancy investigations.

Future expansionson this researchmight include comparisonsf annual ATUS
outputs for different years The examinationcan give insightanto the evolution of
householduseoverthe yearsand allow us to speculate how things migavelopfurther

in the future
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3.4 Occupancy Schedule Generation

This thesisemployed the previously established workflow for generating probabilistic
driven occupancy schedules. The proposed method was first introduced by Richardson in
2008 in the contextfdJK residential buildings. The method used a Markov chain analysis
approach of the TUD surveys in the creation of occupancy sche@ibkgoverning logic

is adopted herfor the 2018ATUS survey.The survey was first analyzed by categorizing
activity types by whether thewere householdr norhouseholdbased The responses
werethenorganizednto two categories according to the day of the weedlitierentiate
betweenweekdayandweekendactivity patterns Thetimeline of the dayis thendivided

into 5minute incrementsvith each increment being considered a separate state in of itself

In a Markov chain, a future state is only dependent on the current state and its
transition probabilities. Therefore, under the Markov Chain assumption presentedén Figu
4 the next state is only dependent on whether the current condition is absence or presence

and the transition probabilities for this time increment.
P (Xn+1:j ”Xn:i, Xn1= Kn1, € ) — P ( I, J )

Future State  Current State Past States

Figure4 - Markov Chain Definitia for Transition Probabilities
Analysisof the datas then performed to extrapoldgary transitionprobabilities
from the national surveyrhere are twgrimary states that can exist for any current time
comresponding to either presence (1) or absence (0), respectively. For eackwstate
outcomes represent tpessibilitiesof its futuredevelopmentThe four possible transition

possbilities illustrated in kgure 5areaccordinglyestablished for every tiemincrement.
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Figure5 - Transition Scenarios fdrime Increments

Being driven by probabilitythe model generates a different occupancy schedule
every time it is runOnce the transition probabilities had been establishedmple 100
occupancy schedwdewere generatedusing the modelfor testing purposesThis is
conductedn the grasshopper interfaaosing a random seed selection prodkasis based

on the generated transition probabilities

While the main critique oprobabilistic schedules is their incapability of informing
short term predictions and use for energy regulation purposes, this thesis utilizes their
potential for recreating diverse human activity patterBach of the generated
probabilistically driven ocupancy schedules, depicted in Figyes considered a sample
alternative of how people occupy their residefdde probabilistic model is thus only used
to recreate diverse occupancy presence/absence s@egipéet of a holistic investigation

of thetopic.
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Figure6 - Sample Binary Residential Occupancy Schedules

3.5 Experiment Logic

The thesisaims at understanding the impact of a false positive reading on total energy
consumption. A false positive reading isianident in whichthe presence of a human
falsely detected by a buildidgsensing technologynd the HVAC systems are activated
accordingly.The occurrence of a false positive representech this experimenbn the
previouslygenerated occupancy schedulEse workflow showcasedn Figures7 and8

illustrate the changes maateoccupancy schedulés emulatea false positive.

First, an initial schedule is used as a substitute for reditenobservational data
and is assumed to be a true samplalwhary inhabitancepatternof a space. The original
dataset consisting of 0 and 1, tlatrespond to the absence or presence of individuals at

particular time perioslis then altered. Since sensing technologies shthddretically
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recreate the initial occapcy schedulen the absence of errg@anydeviation or change is

accordingly analogous to a false positive reading registered by the system.

00 10 20 30 40 50 00
1 1 1
T * 0 @ 0 0

Figure7 - Initial Occupancy Schedulgegment

00 10 20 30 40 50 00
i 1 1 11
T 7 & & KW

1

T 1
Figure8 - Modified Occupancy Scheduegment
The example presented Figures7 and 8 showcasg how an initial occupancy
schedule is altere emulatea false positive occurring at 5 priihe schedule is changed
to reflect human presence at those hours dueeterror.This framework is adopted fail

conductedsimulations in thigxperiment

For holistic investigation®rrors were considered random occurring evirttare
liable to occur at any timmcrement giverthe absence of humamsthe householdThe
degree ofthange inthe initial occupancy schedule due to arror and accordinglythe
amount of time the HVAC systesrare operatingin the absence of people tken
determined by the succeeding fhttme scanThe scarfollowing a false positive isvhere

the system can rectifgnerror and shut down thegperaing HVAC building systems.

In this experimentvarious typef configurations are explored for the logiat
governshouseholdull scans In somestudiesthe implementatioof aconsistenscanning

frequency is examinedlhe scanning frequency is the intergéltime that adetection
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systemleaves betweeroutine consecutive scans of tinéerior surroundingsfter human
presence has been detected. Scanning frequentheisfore used asa measure of the
duration of a false positive and assists in quantifying how the occupancy scha@dules

modified.

Other scenarios explored the explicit placement of a restricted number of daily
scansas a means of reducing system inherent energy comsumfn all examined
scenariosthe difference between the total HVAC thermal lgacenthe initial occupancy

schedule anthat ofthe modified one is the impact of a false positive reading.

3.6 Simulation Model

The esidential setting depicted inigare 9 was modeled in the Grasshopper
interface for Rhino3D CAD softwardhe area of the modeled room is 26 (&Bm(L)
x4m(W)), with a height of 3mThe module haa southern facing facadendow located
at the narrow end with a 40% windewrwall ratio. Context modules are placed adjacent

to the focus room to shelter from direct sun radiation exposure from all sides.

Figure9 - 3D Rhino Model for the Experiment
The exterior walls and roofs have amvRlue of 1.94 mZK/W and 3.53 mZ/W,

respectively. All interior surfaces were considered adiabaticladwugHVAC system
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used for théhousehold simulations the Packaged Terminal Air Conditioner Heat Pump
(PTHP. The number of occupantgasset tooneg while lighting and equipmenbdads were

kept constant for all simulation$he stochastically generated schedules were used as the
occupancybaselinefor space.Equipment,lighting, and HVAC schedules were then
matched tahat scheduleThe simulations were performed witlypical Meteaological

Year (TMYx) weather filsfor various climate zone citie¥he targeted temperature range

in the simulated model was 25 °C.

The output being monitoredasspecificallythe thermal load (Heating/Cooling) in
any specified periadThe energy casumptionwas simulated through EnergyPlus using
Ladybug andHoneybee These environmentabpen sourcetools act asplugins for
grasshoppeandfacilitate the interaction witknergyPlugor energy moders. EnergyPlus
is a building energy simulation platfa that was developed by DCQdhd is commonly

usedby various disciplines for energy consumpticaiculation purpos€®OE 2013.

Thesimulatednodelshould be considereprototypefor residentialinitsthatcan be used
to speculateon the behavior ofdiversecontextscenarios A broaderfocus istherefore
placed orthe behavioral trends of results ahe existing relationships lve¢en different
system configurations and their impact on total energy consumpéthrer than specific
numeric energy consumption values that migaty for different household contexts.
These relationships can form the basis of understatigknighpact derrorsand the means

through which they can d@thminimized and controlled.
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CHAPTER 4. RESULTS

This chapter aim# present the simulation and experiment findirgsimulationbased

validation processvaluates the result accuramyd futuredevelopmentsresuggested

4.1 National Occupancy Profile

The first output depicted in FigurelQ, is the assembled national profileor binary
occupancyrepresentatiof residential units. Té percentages are expiolated from the
ATUS with a 5minute increment fidelity. The weekday occupancpattern shows
consisterly high levek of occupancy between 18M and4 AM, where people are most
likely asleep. The occupantyenstarts to declinasaresult of people either going to work
or conducting daily necessary tripstween /AM and2:30PM, reaching a low of 30%.

A gradualincreasas then observeftom 12:30PM until the end of the day.

Percentage Occupied

Time

Figurel0- Weekday National Binary Occupancy Profile
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The weekendrofile presented in Figurél exhibits the sameccupancytrend
between 1AM to4 AM. The decrease in occupartbyatstarsat 5AM, howeveris much
more gradual than that of the weekdd¥ye two dips in the@upancy percentages reflect
people choosing to go out in the morning or afternaowl reach 56% and 65%

respectively

e Occupied

Percentag

Time

Figurell- Weekend Natinal Binary Occupancy Profile
On a holistic nat, the weekend occupancy pattern experiermogsnerdly higher

level of overall residential presenicecomparison tats weekday counterpart

4.2 Potential Savings

It is important to understanti¢ energy savingaschieved byntegrating a sensing system
in aresidentialunit, asboth a product of occupanas well aghe humarHVAC usagen
practice Thisinvestigation entéed an attempt to capture theaximumamount of energy
that can potentiallype saved by the implementation of the systdime simulations

thereforepresumeinefficient human habits in relatioto the HVAC operation in the
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residenceThe assumption beingade here is the full usage of the HVAC systems in the
absence of any sensing platfoas a wayto mimic occuparg leaving the HVAC system
continuously working throughout tlyear.The potential energy savings are accordingly a
measure of the maximum enernggrcentage that can be conserved by the integration of a
human detection platfornn Fgure 12, the markers represém necessamgnnualenergy
consumption othe experimentmodule for differensample occupancgchedulesThese
results were thecompaed to theenergy consumption ftill HVAC operationoccurs.The
simulated example for the city of Atlantiepictedn Figure12, indicateaveragepotential
yearly saving of 19.58% The noticeabledeviation betweethe simulatiorresultscan be
attributed to the varyinggeneral occupanclyabitsof the residential ung. The potential
energy savings are consequently different for the various occupancy modules. The higher
the overall occupancyf a householdhroughouthe year, thdower the potential sangs

regardless of human HVAC usage practice.

1200 :
Savings: 19.58% Baseline 1078 kWh

1000
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Energy Consumption (kWh)
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Sample Schedule Index

Figurel2 - Annual Energy Consumption for Diverse Occupancy Schedules in Atl
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The investigation of the weekly energy savings poterit@lever is different than
its full yeaty counterpartThe expectedavingsin June depicted in Figure3were much
higher than the yearly averagehis highlighs that potential energy savings at any given

week area functionof the location othat weekkhroughouthe year.

Savings: 31.8% Baseline 43.45kWh

Energy Consumption (kWh)

Sample Schedule Index

Figurel3- Weekly Energy Consumption for Diverse Occupancy Schedulafanta
for the Month of June

Thepotentialyearly savings calculated fdifferent climate zoneitiesarecompared
in Figure 14. The averagepotentialenergy savingvaried from 10.98% for the city of
Milwaukee t020.188% for the city ofMiami. It is essentiato understand potentighvings
as botha function of the contexdlimate severityand theprevailing occupancy pattern at
peakclimate severityThis stipulatiorindicates that occupants in Miami are atise peak
climatic conditions. The energy savings that can be achieved lyratitgy a sensing

system follows that governing logicwe normalize human HVAC usage practices.
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Figurel4 - Potential Energy Saving Percentages for Selected Cities

4.3 False Positive Properties

The focus was subsequgnthifted to the analysis @frois and theiimpacton overall
energy conservation. The firgxperiment demonstrateth Figure 15 was a genefa
investigation of error qualitiesf Junefor the city of AtlantaThemonitoredfactor waghe
scanning frequency defined the interval between consecutive futhme scanswvhere an
error wouldpotentially berectified. In this experiment a total of tventy false positives
wererandomly inserted itheweekly occupancy schedules. The results of the experiment
reveaed that shorter time intervals between consecutive scans prqdooedverage
smaller percentages of energy being lost per false positivé0-minute scanning
frequency accounted for a 1.49%ss of energywhile a10-minute scanning frequency
resulted in an average 0.51% weekly energy losemper The percentages cgotentially
contribute tosignificant amounts of energy being lost cumiikely, as six false positives
in the casefahe 60minuteinterval carhave arapproximate 9% weeklpss ramification

While higher timeperiods between consecutive scaasilt inmore significanpercentages
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of energy lossit doesthey do not followthe same ratioThe additionalamount oflost

percentage per added minute between scans falls off with legledurations.
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The relationship between the wiegercentage of energy lost and the time interval

of the scanning system can be best described by a power function indicated in the graph.

The standard deviation from the average percentage of energfotoatl scanning

frequenciesas shown ifTable 1 is noticeablysignificant. Occurrences of false positives

resulted in small quantities of energy being lost in some cases and large quantities in others.

This warranted, in turn, an investigation on the factors driving energy loss.

Tablel Standardeviationof FalsePositive Impad for Diverse Scanning Frequencies

Scanning interval

: 60 50 40 30 20 10
(min)

Weekly energy lost

per false positive 149 | 132 | 1.17 | 1.07 | 0.66 | 0.51
(%)

Standard

Devintion(%) 0.74 | 0.8 0.7 | 0.77 | 0.49 | 0.53
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To understand the number of errors that would contributeigmdisant energy loss
for the system, a simulation experiment was devised to measure the number of weekly false
positives that resulted in a 30% energy loss threshold. The nuarimise sulsequently
required time serve as a measure of the maximum gn&gses that are liable to occur.
The threshold as shown imngire 16, is relativelysubstantialln the case of the é@inute
interval, a weekly 22 hours were required to result in the 30% energy loss benchmark.
These results provide boundary limitatiaghat need to be avoided if any energy savings

by the integration of a sensing system are to be expected.
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Figure16 - Number of Weekly ErrorthatResult in 30% Energy Losa June
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4.4 Energy Loss Parameters

Having established some bagtsepositivepropertiesn relation to scanning frequency
aholistic examination of theimpactwasconductedor thecity of Atlanta For thisstudy,
each error wasituatedrandomlyin both a different time of the year and a different time

of the day and assigned a stochastically generated occupancy schedule.

Thesimulation outputsvere tlen organized in histogrants Matlabasdepicted in
Figure17 and thedistribution of the resulteasplotted The sample distribution was then
compared to the normal referereillustrated in Figur&8. Thedistributionsuccessfully
passedhe Kolmogore-Smirnov test for normalityThis meant thathe effect of errors
followed a normal distributionFinally, the confidence interval was determineg

integrating the area under the probability distribution function (PDF)

False Positive Impact

Number of Occurances
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Figurel7 - Distribution of the Percentage Impact of Errors for Atlanta
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Figure18 Visual Comparison in Kolmogore8mirnov Test

Confidence intervals are means of sayimith a certain percentagd certainty
that a result should lie between two pointsA process of optimization and numeric
integrationdepicted in Figure 1&asconducted in Matlab to receive the 95% desired area
under the curvelhe upper and lower bounds for the 95% confidence intecealsibuted
to -0.53% and 0.93% of weekly energy los per error, respectively The significant
deviation between results can be inferred here by the stidpe and consequenttpe

broadrange of theonfidence interval
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Figure19- MATLAB Output- Energy LesBoundaries
The simulationprocesswasrepeatedor 6 chosercities, that corresporetito US

climate zone 1 to 6. The outcomesllowed a holistic understanding of how errors impact
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energy consumptiom differentclimates.The percentages are calcelatn relation to a
weekly consumption to provide tangible context to the impact of a single hour and allows

us to establish benchmarks in relation to that impact.

Figure 20 illustrates the range for the average percentage energyldest an
error, evduated across the yeafThe 95% confidence interval exhibitedoeoadrange
across all climate zones. This wide range highliggtanthe variatiorin simulationresults
in relation to the timing of the errofhe city of Miami exhibited the smallest rangvhile

the largest range was experienced by the city of Albuguerque.
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Figure20 - Weekly Energy Loss Rangasd Mean for Selected Cities

The smallerangefor Miami indicatesacomparatively constant error impact across
the year. The city of Albuquerque comparisonexperiencedad differences in response
to the timing of the erm The large variatiomvarrantedurther investigation to understand
the key components of both low and high impact eridns. mean percentagaeexgy loss

per erroyr on the other handyascomparableacross the chosen cities. Timeanvalues
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rangedfrom 0.46% in Albuquerque t0.53% in Miami, respectively Theerrors occurring
in Miami shouldaccordinglyhave amore substantidmpact on total p@entage energy
loss than those of its Albuquerque counterpaitie mean of Albuquerque might be
influenced however,by erros that affectedoverall energy consumption positivelfhe
positive effects of some errgiadicated by their inclusion in therrge is experiencedy

multiple climate zoneities

These findingglludeto errorsin particular casegonservingenergy cumulatively
by the activation of the HVAC systems in the absence of the building occuphate
highlighted particular casefhiowever, represent a small percentage af occurring
possibilities The distributionfor the city of Houstonillustrated inFigure 21, shows that
these types of erroisccurred in 15 cases out of the 200 randomly sampled simulations.

The findingsneededurther investigatio to identify specific occurrencexample.

Figure21i Occurrence Number of the Percentage Impact of Errors for Houston
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