Georgia Tech

Historic Structure Report

D. M. Smith Building

prepared by
Ray & Associates
28 July 2000
Historic Structure Report
D. M. Smith Building

Table of Contents

Chapter 1. The D. M. Smith Building and Its Place in the Early History of the Georgia Institute of Technology

Chapter 2. Dr. David M. Smith - Professors of Mathematics

Chapter 3. The Architects - Robert and Company and Francis P. Smith

Chapter 4. Andrew Carnegie, Carnegie Libraries and Carnegie Corporation Grants

Chapter 5. The D. M. Smith Building (1923)

Chapter 6. Photographs and Photo Key - April 2000
Chapter 1: The D. M. Smith Building and Its Place in the Early History of the Georgia Institute of Technology

Two confederate veterans initiated the drive to open a technical school in Georgia. These two men were Major J.F. Hanson, publisher and manufacturer who later became president of a railroad, and Colonel Nathaniel E. Harris, a Macon attorney who eventually became Governor of Georgia. During the summer session of the Georgia Legislature in 1882, Harris introduced a bill to establish a School of Technology as part of the state’s university system. A bill was passed in the summer of 1885, and $65,000 was appropriated to establish the school. Harris became the first President of the Board of Trustees; and in April 1888 the board elected Dr. Isaac Hopkins, at that time President of Emory College in Oxford, Georgia, as the first President of the school.

Under the tutelage of Hopkins, the first two buildings of the campus were erected in 1888, paid for with state funds. They were the Main or Academic Building with its now famous tower and the Shop Building, which had a similar design. With their prominent twin towers these buildings reflected the philosophy of Tech’s educational system in the early years — equality between the shop and academic curricula. The Shop Building was badly damaged by fire in 1892, but was rebuilt the same year. However, the building was shortened on the south end, eliminating the tower. This building remained in use at least into the 1960s, when it was demolished.

The second President of Georgia Tech was Dr. Lyman Hall, Professor of Mathematics, who remained in that office until his death in August 1905. Dr. Hall’s presidency was marked by a rapid growth in enrollment and a remarkable growth in buildings and equipment. During his presidency, Hall added two temporary dormitory buildings and the first permanent dormitory, Knowles Hall, to the campus. Next came the French Textile Building, which was jointly financed by the State of Georgia, several textile manufacturers from Georgia and Aaron French, a textile manufacturer from Pennsylvania. By 1901 the Swann Dormitory and the Electrical Building had been added to the campus. The Electrical Building was the last structure built during Hall’s tenure. After Dr. Hall’s death, Dr. Kenneth G. Matheson became Chairman of the Faculty on August 23, 1905 and was named President less than a year later. The new President’s first move was toward construction of a library building. On March 12, 1906 Andrew Carnegie donated $20,000 for the building, provided that the school appropriate annual funding of $2,000 for maintenance of the library. This goal was achieved and the library opened in September 1907. The next building constructed was the Whitehead Memorial Hospital. A YMCA building, designed by Morgan and Dillon, was dedicated in June 1912.

In August 1910, the Legislature approved $35,000 for a Mechanical Engineering Building under the provision that $15,000 was to be raised by the school. Through the aid of the Atlanta Chamber of Commerce, $22,000 was raised within two months. The first two units of this building were completed in 1912. Replacing the Old Shop Building, the new structure was called the Mechanical Engineering Building or the New Shop Building. It was officially named the Coon Building, in honor of Dr. Coon, the first head of the Mechanical Engineering Department, after his death in 1938.
The school purchased an additional three acres of land north of the campus in October 1910. In 1911, Charles W. Leavitt was commissioned to design a campus landscape plan. Leavitt was a nationally known civil and landscape engineer with a business in New York City established in 1897. His commissions varied from eclectic private estates for New York millionaires, to public spaces, to campus plans. Leavitt’s Georgia Tech campus plan was completed in April 1912, and included all the land bounded by Techwood Drive, Third Street, Cherry Street and North Avenue. The plan established a system for drives and regular tree plantings on the existing campus. It recommended the demolition of the old shop building and the two temporary dormitories. The sites for unassigned future buildings (the D. M. Smith building was eventually built on one of these spaces) had a uniform set-back from all major streets. Leavitt also attempted to use the topography by creating a series of small terraces in the area between the Hospital and Third Street. However, the improvement of the site and buildings for the football/baseball field was considered his strongest point.

In its first 25 years the school had grown rapidly in both physical size and enrollment. An inventory published in a booklet entitled “A Quarter Century Of Progress” states the initial enrollment of 95 men had grown to 857 by 1913. From the beginning in 1888, with five acres and two buildings, the school had grown to 25 acres and 15 buildings. When Georgia Tech was founded there was only one department, known today as the Mechanical Engineering Department. Academic curriculum and shop classes were given equal importance. The students and faculty worked under a contract system, participating in local competitions with other contractors. This method was one of the main sources of revenue for the school, and gave the students a chance to compete with other manufacturers. The iron columns for the Grant Theater and the gates for Oakland Cemetery were both manufactured under contract in the Georgia Tech foundry. After disputes arose with local Labor Unions, this system was abandoned. A quarter century after it was founded, the school had departments for Mechanical, Electrical, Civil and Textile Engineering, Engineering Chemistry, Chemistry and Architecture.

The next few years saw continuous growth for the university. Phinehas V. Stephens designed a power plant in 1913. His design was greatly enhanced by Francis P. Smith, head of the Department of Architecture, and this second scheme was erected in the years between 1915 and 1918. When the nation became involved in World War I, a new mission started for Georgia Tech, as the Ground Flight Training School became part of the school. In a six-week program pilots were trained in a number of technical disciplines. The Ground School was replaced in 1918 by a training school for supply officers.

After World War I, an increase in both student and faculty populations was inevitable as Tech added a new mission of rehabilitating wounded soldiers for technical civilian jobs. In 1920, major changes occurred. Faced with an increase in student body numbers, President Matheson pressed for completion of phase three of the Coon Building. A movement also began in 1920 to transform Georgia Tech from a trade school into a research institute, and Matheson believed the fundraising necessary to accomplish that change could not be achieved without at least a tentative master plan. Professors Warren Laird and Paul Cret of the University of Pennsylvania and Francis P. Smith of Tech were commissioned to survey the existing campus and other possible locations in Atlanta for a new campus design. Warren Laird was considered to be the leading American educator in the Architectural discipline. Under his care and with the help of
Paul Cret, an Ecole des Beaux-Arts graduate, the University of Pennsylvania's Architecture program became one of the best in the nation. Smith was a graduate of this program, and had studied under both professors before he came to Tech.

The study developed by Laird, Cret and Smith finally recommended keeping the school at its present site and enlarging the campus with purchases of surrounding properties. In 1921 they followed up with a master plan, which identified Collegiate Gothic as the desired campus architecture. The plan recommended that all campus buildings, with the exception of the Mechanical Engineering Building, the Power Plant and the YMCA, be demolished because they did not comply with this style!

In 1921 Lawrence Wood (Chip) Robert, Jr., at that time a member of both the Board of Trustees and the Athletic Association, lobbied for the appointment of Robert and Company as Supervising Engineers and Architects. He was successful in his efforts, and entered into a contract with Georgia Tech as official campus architects. The contract specified their fees (six percent of a building's cost) and gave them responsibility for all campus building and planning. Also, as part of this agreement, Professors Laird and Cret would be employed as consulting architects with their fees paid by Robert and Company. This agreement fell under official scrutiny, and a decision by the Attorney General of the State of Georgia declared "such dealings between a Trustee of the Georgia School of Technology, and a corporation in which he is a stockholder and officer" were illegal. The agreement was voided, but remained in effect for the duration of construction work on the D. M. Smith Building. Instead of Laird and Cret, Francis P. Smith was hired as associate architect.

The D.M. Smith Building was completed in 1923; and at that time was known as the Carnegie Physics Building. In the history of the Georgia Tech this building plays an important role for two reasons. First, the building was the first on campus to be constructed in the Collegiate Gothic style, according to the new campus master plan. Second, almost the entire funding for the building came from the Carnegie Foundation. During the financially strained times of the early 1920s, the Carnegie Foundation offered $150,000 for a campus building. Two proposals by Smith were rejected, but the third, a Physics Laboratory, was accepted as a fitting use for their proposed donation. In order to assure they would build the most up-to-date facility possible, Chip Robert, Jr. and Francis Smith went on a tour of modern physics laboratories in the eastern United States to collect information for the design of this building.
Bibliography

Blue Print, 1922. On file at the Georgia Tech Archives.

City Builder, October 1924, page 11.

Sanborn Fire Insurance maps. On file at the Atlanta History Center.

Attachments

1.) Sanborn Fire Insurance map, 1892. On file at the Atlanta History Center.
2.) Sanborn Fire Insurance map, 1899. On file at the Atlanta History Center.
3.) Sanborn Fire Insurance map, 1911. On file at the Atlanta History Center.
4.) Campus picture with students, 1888. City Builder, 1911.
5.) Rendering, ca.1920
6.) Photo showing first faculty at Georgia Tech, dating from 1890. From Images and Memories.
7.) Photo from the George Woodruff School of Mechanical Engineering Photo Archives.
8.) Charles W. Leavitt landscape plan, April 1912.
9.) Preliminary architectural master plan by professors Laird, Cret and Smith, 1921.
Attachment 1.3: 1911 Sanborn Fire Insurance map. On file at the Atlanta History Center.
Attachment 1.4: Campus picture with students, 1888. 1911 "City Builder."

This Was Tech's Buildings and Student Body in 1888.
Attachment 1.5: Rendering ca.1920. 1911 “City Builder.”
Attachment 1.5: Rendering ca.1920. 1911 “City Builder.”
The first faculty at Georgia Tech in 1890. From left to right: (front row) John Saylor Coon, Professor of Mechanics and Mechanical Drawing; Isaac Hopkins, President from 1888 to 1896; A. Jessop, Superintendent of Shops; the Reverend Charles Lane, Professor of English; (second row) D. B. Oviatt, Professor of Drawing; Ernest E. West, Adjunct Professor of Physics and coach of the first football team in its three games in 1892; Lyman Hall, Professor of Mathematics; (third row) F. O. Spain, Professor of Mathematics and center on the 1892 team; William H. Emerson, Professor of Chemistry and Dean.
Some of the products made in the Wood Shop in 1906. After the contract system ended in 1896, the products were used to furnish offices and dormitories on campus.
Attachment 1.9: Preliminary architectural master plan by professors Laird, Cret and Smith, 1921.
Chapter 2: Dr. David M. Smith – Professor of Mathematics

Dr. David M. Smith came to Georgia Tech as an assistant professor in 1913. A native of Tennessee, he received both his bachelor’s and master’s degrees from Vanderbilt University in Nashville. Upon graduation he taught at Centenary College in Louisiana, at Fort Worth University in Texas, and then went to the University of Chicago, where he taught and simultaneously worked on his Ph.D. After coming to teach at Georgia Tech in 1913 Smith returned to Chicago during the summers to continue work on his degree, and received his Ph.D in 1916. The school appointed him to the position of Director of the School of Mathematics in 1934. He retained this appointment until 1950, when he had to step down as department head because of his age. However, he continued to work until April 1954; and even after his official retirement from the University he continued teaching and tutoring for the athletic department. He died in April 1962 at the age of 78.

Apparently Smith’s love for football started at Vanderbilt University. It is said that he never, during his entire tenure at Tech, missed a football game. Shortly after he came to Tech in 1913, Smith started a tutoring program for athletes. Together with Coach W. A. Alexander, a fraternity brother and fellow member of the math faculty, he took a great interest in the scholastic advancement of the athletes. He felt strongly that the high schools did not prepare their students properly in mathematics for an engineering program, and he also believed most athletes were spoiled. Students, including athletes, who did not meet the academic requirements of Georgia Tech were eventually expelled from the school. Smith was immensely proud of the fact that 75 percent of the athletes graduated from Tech. Chip Robert, Jr., founder of Robert and Company, stated in a letter to Smith on the occasion of his retirement that his work at the school bridged the gap between the athletic and the academic departments, resulting in the almost impossible achievement of having a great football program, and at the same time, an outstanding scientific institution.

Smith became a legend on the Tech campus and was known fondly as Dr. D.M. The long-time professor and his twenty-year-old 1934 Plymouth were referred to as the oldest wrecks on campus. In 1954, a group of Tech people sent a letter to the alumni requesting a five dollar donation to replace his old car. The presentation of the new car was to be made during a football game.

He was a lifelong bachelor and had difficulty dealing with co-ed students who first arrived on campus during the last quarter before his retirement. He felt he had to curb his language too much in the presence of women, and requested a male-only class for his last quarter of teaching.
Bibliography

“Coach Without a Record.” Atlanta Constitution, June 2, 1954.

Attachments

1.) Photo collage of Smith, taken April and September 1952.
2.) Letter written by Lawrence Wood (Chip) Robert, Jr. on the occasion of Professor Smith’s retirement.
3.) Fundraising letter written to alumni to collect money for a new car for Smith.
Attachment 2.1: Photo collage of Smith, taken April and September 1952.

DOCTOR SMITH
Yellow Jackets' Friend

DE' D. M.' SMITH WITH HIS "OLDEST WRECK"
Alabama Tech Math Professor To Retire
Attachment 2.2: Letter written by Lawrence Wood Robert, Jr. at the occasion of Professor Smith's retirement.

ROBERT AND COMPANY ASSOCIATES

Architects and Engineers

96 Poplar St., Atlanta 3, Georgia

April 12, 1954

Dr. D.M. Smith
Georgia Institute of Technology
225 North Avenue, N.W.
Atlanta, Georgia

Dear D.M.:

I want you to know that it is with keen disappointment that I find myself compelled to miss the dinner being given in your honor Wednesday, April 21st.

I have been particularly interested in this affair and looking forward to being among those present to do you honor, but when the date was set for Wednesday evening, April 21st, it exactly conflicted with an important business trip and meeting I am compelled to make to New Orleans and which is impossible for me to change as it involves some business I cannot neglect. I was anxious to be at the meeting to express to you and the group my highest regards and deep affection for you and further to let the group know that as far as I am concerned, I feel Georgia Tech would never have reached her preeminent position in intercollegiate athletics had it not been for you. The coaching has been fine, the relationships with the faculty have been fine, and the sympathetic support of the Alumni has been excellent, but all of these could not have helped Georgia Tech accomplish what it has and get to the position it now holds athletically in this country had it not been for the work you have done for over thirty years back.

Remembering that Georgia Tech is a very exacting scientific institution almost from the start, it looked as if we were undertaking an impossible task to have a great football organization and at the same time a great scientific institution. You have helped span that gap. Your close attention to our boys, your wise and fatherly interest in them, and your never-failing support have made all of this possible.
Dr. D.M. Smith
Atlanta, Georgia

-2- April 12, 1954

I salute you and forever will hold a soft spot in my heart for you. Long may your flag wave!

Sincerely,

[Signature]

Lawrence Wood Robert, Jr.

LWR:EL

cc Dr. D.M. Smith
192 Seventeenth Street, N.E.
Atlanta, Georgia
Attachment 2.3: Fundraiser letter written to alumni to collect money for a new car for Smith.

A quiet, but deeply-etched success has been attained by few. Here is one . . .

Dr. David M. Smith, Professor (in every sense of the word) of Mathematics at Georgia Tech.

He not only taught the stuff — he wrote the books from which it is taught.

Those who were fortunate enough to come under his influence remember him well . . . hold him in the highest regard.

Dr. Smith is one of the world's best mathematicians.

Doc Smith came to Georgia Tech in 1913 as an instructor. In a very short time he was made a full professor.

In 1936 he succeeded Professor Floyd Field as head of the Department and held this position until he reached retirement age in 1951. Now 70, he has continued teaching although he could have retired at 65.

After June 12, 1954, his teaching at Tech will cease — Doc Smith will again be retired.

YOU TOO WILL WANT TO PAY HOMAGE

A group of Tech folks felt that something really concrete should be done to show our appreciation for this man who has done such an outstanding job in his field and who has contributed so much to his students.

We want to replace his 1934 Plymouth with a new car. We feel that you want to, also.

If so, enclose your check for $5.00—or more if you wish—in the enclosed remittance envelope.

Make your check payable to:

"The Dr. D. M. Smith Fund"

The presentation will be made Friday night, April 23, at the "T-Day" football game.

Chairman

[Signatures]

Joe Pittard James Poole

Rod Eaves J. A. Griffin J. L. Brook
Chapter 3: The Architects - Robert and Company and Francis P. Smith

Lawrence Wood Robert, Jr. and Robert and Company

Lawrence Wood Robert, Jr., generally known as “Chip” Robert, was born 1887 in Monticello, Georgia. Beginning in 1904, he attended the four-year program at Georgia Tech and graduated with a degree in Civil Engineering. He was involved in all athletics and served as captain of the football and baseball teams in 1907. After another year in school, he received an additional degree in 1909 in Electrical Engineering. Robert worked in railroad construction before and during his time in college. After graduation he joined an industrial engineering firm in Atlanta.

In 1911 he formed the Dallis-Robert Company, and in 1917 organized Robert and Company, Architects and Engineers. Chip Robert became a strong force in regional industrial growth and lobbied constantly to entice northern businesses to the South. Prior to World War II, Robert and Company had worked in over 250 cities and towns in 37 states, with construction budgets totaling over $350,000,000. Their work included several textile mills that relocated from New England to the South, plus power plants, prisons, hospitals, schools, stadiums and hotels.

In 1933 Chip Robert was appointed to the post of Assistant Secretary of the Treasury in charge of public works under President Franklin Delano Roosevelt. This encompassed overseeing the design and construction of post offices and other public buildings. During World War II, Robert and Company continued to grow and became involved in a wide range of military projects for all the armed forces. Representative military projects designed by Robert and Company during the war included the Naval Training Station at Corpus Christi, Texas; the Naval Training Base at Jacksonville, Florida; the Bermuda Naval Station and the Patrol Station at San Juan, Puerto Rico. In 1943, Robert and Company was one of three firms to receive a citation from the U.S. Navy for outstanding service to the Navy war construction program. A major wartime project in the Atlanta area was the design of the Marietta, Georgia aircraft assembly plant (Lockheed). Robert and Company handled the engineering requirements and, in conjunction with the U.S. Army Corps of Engineers, also provided complete management and supervisory services during the entire construction phase.

By the end of the war, Robert and Company had gained national recognition for their design and engineering services. They served a wide range of clients, such as General Electric, B. F. Goodrich Tire and Rubber Company, the Coca-Cola Company and Westinghouse. Well-known projects in the Atlanta area included work on Hartsfield International Airport, the Atlanta Civic Center, Callaway Gardens, Grady Memorial Hospital and at Georgia Tech.

Chip Robert was always concerned with civic issues and held many local and national public positions. He was elected director of the First National Bank of Atlanta and of the Seaboard Air Line Railway. For eight years, he was Treasurer of the Democratic National Committee. Between the years of 1938 and 1948 he served as a member of the President’s Cabinet Council, the Public Works Administration and the Reconstruction Finance Corporation. After World War II, he held a post with the Marshall Plan in Europe and China.
At Georgia Tech he organized and served as second president of the Alumni Association and served almost continuously on the Athletic Board from the time of his graduation. Before the establishment of the University System, he was a member of the Tech Board of Trustees. He was a member of the Board of Regents of Georgia from March 25, 1937 to January 1, 1943. In 1963 Chip Robert gave the largest undesignated grant the university had received to that date. He considered the $75,000 a memorial gift celebrating 75 years of Georgia Tech. Chip Robert died on June 6, 1976.

Today, under the leadership of Lawrence W. “Chip” Robert IV (grandson of the founder), Robert and Company continues to serve its multitude of clients.

Francis Palmer Smith – Head of the Department of Architecture from 1909 - 1922

Francis P. Smith was appointed as Head of the Department of Architecture in 1909, after the Board of Trustees had established the Department in the fall of 1908. The first Director of Architecture, Preston A. Hopkins, resigned after only one year. During the search for a successor a letter was send to Dean Warren P. Laird of the University of Pennsylvania with a request for a recommendation. Laird highly recommended a former student, Frances P. Smith.

In November 1909 Smith took on his new dual responsibilities as Professor of Architecture and designer of campus buildings. This was a common practice in many schools since it allowed the professor to practice architecture, and also was considered a savings for the University. During his tenure as unofficial campus architect Smith designed three buildings, the Whitehead Memorial Hospital, The Coon Building and the Power Plant. In each of the buildings he designed for Tech, he used a beaux-arts approach with ornamental details such as “T,” “GST” and other Tech symbols prominently featured.

The first building Smith designed at Georgia Tech was the Whitehead Hospital, which was completed and opened for students in November 1911. His second building was the Coon Building, then known as the New Shop Building. He was assisted in this effort by Dr. Coon, head of the Mechanical Engineering Department. According to the minutes of a Board of Trustees meeting, this cooperative effort between Smith and Dr. Coon did not always run smoothly, and the friction thus generated between the two men continued for many years. The architectural firm of King and Walker also assisted Professor Smith with his work on the Coon Building. This firm only operated in Atlanta for about two years. The 1911 Atlanta City Directory has a listing for: King and Walker, B. S. King of New York and Harry L. Walker of Atlanta. B. S. King was a member of the New York firm Whitfield and King, who were responsible for a number of Carnegie libraries, especially the ones built in Georgia.

Following World War I, Francis P. Smith, in collaboration with his former professors from the University of Pennsylvania Warren P. Laird and Paul P. Cret, designed a master plan for Georgia Tech. This plan provided for a more unified style of campus architecture, the Collegiate Gothic style. The D.M. Smith Building, constructed in 1923, is the first example of that style on the Georgia Tech campus.
Francis P. Smith was born March 27, 1886 in Cincinnati, Ohio, the son of Henry Howard and Eva Belle Kendall Smith. He received a Bachelor of Science from the University of Pennsylvania in 1907. Smith started his professional life as a draftsman for the Cincinnati, Ohio firm of Garber and Woodward where he worked from 1907-1908. He then went with Frank P. Packard in Columbus, Ohio, from 1908-1909. From 1909 to 1922 Smith headed the Department of Architecture at the Georgia School of Technology. He married Ella Sorin on June 15, 1910 and eventually had four children. On March 27, 1922 Smith submitted his resignation as the head of the Architecture Department to enter private practice. After leaving Georgia Tech he established a private practice with Robert Smith Pringle (1883-1937). Pringle and Smith operated from 1922-1934 as one of the major Atlanta firms. Smith practiced independently from 1934-1959, and then started a joint practice with his son Henry H. Smith. During World War II he served in the U.S. Army Corps of Engineers from 1942-1945. Smith was named a Fellow of the American Institute of Architects in 1942 and was President of the Georgia Chapter, American Institute of Architects, from 1930-1931. He died in Atlanta, Georgia, on March 5, 1971 at the age of 84.

During his time at Georgia Tech, Smith strove to raise the architectural program of the school to recognition at the national level. In April 1922 Smith submitted an application for Tech to join the Association of Collegiate Schools of Architecture, an association formed to ensure uniform basic knowledge and equal standards for colleges. He also encouraged all his students to participate in a yearly competition, known as the Southern Intercollegiate Architectural Competition. Georgia Tech students from all four years – Freshman to Senior - were represented, and won prizes almost every year the competition was held.

In addition to the buildings Smith designed on campus while at Georgia Tech, major commissions of the firm Pringle and Smith in Atlanta included the Cox-Carlton Hotel (1925), The Rhodes-Haverty Building (1929), and the William-Oliver Building (1930). One of his principle commissions while practicing independently was the church complex for the Cathedral of St. Phillips, which was implemented in three phases. During the time he practiced with his son, the firm concentrated on private homes, banks and church-related structures.
Bibliography

Atlanta Journal, March 6 and March 7, 1971, page 6-A.

Architectural File, “King and Walker.” Located at the Georgia State Historic Preservation Division.

Architectural File, “Pringle and Smith.” Located at the Georgia State Historic Preservation Division.

Minutes of the Board of Trustees meeting, January 7, 1920. On file at the Georgia Tech Archives.

Attachments

1.) Photo of Lawrence Wood (Chip) Robert, Jr.
2.) Collection of photos of projects designed and engineered by Robert and Company.
3.) Photo of Francis P. Smith.
4.) Copy of program for the first Southern Intercollegiate Architectural Competition.
5.) 1920 Campus Master Plan designed by Frances P. Smith.
6.) Excerpt from the Minutes of the Board of Trustees Meeting, January 7, 1920.
Attachment 3.1: Photo of Lawrence Wood (Chip) Robert, Jr.

Lawrence Wood "Chip" Robert, Jr.
Attachment 3.2: Collection of photos of projects designed and engineered by Robert and Company.

Municipal Incinerator Plant
Atlanta, Georgia

Georgia Power Steam Electric Plant
Macon, Georgia

Grady Memorial Hospital
Atlanta, Georgia

Grady Memorial Hospital (during construction)
Atlanta, Georgia
F. P. Smith, Architect, Rites Monday

Funeral for architect Francis Palmer Smith, 84, 1135 Lullwater Road NE, will be held Monday at 11 a.m. in St. Luke’s Episcopal Church with the Rev. David B. Collins officiating. Burial will be in Westview Cemetery.

Smith, who died Friday at his home, was a native of Cincinnati.

He received a bachelor of science degree from the University of Pennsylvania in 1907 and came to Atlanta in 1910 to become the first director of the School of Architecture at Georgia Tech, a position he held until 1922.

He formed an architectural partnership with Robert S. Pringle in 1922 after which they designed many of Atlanta’s early skyscrapers and important residences.

Some of the buildings designed by them included the original First National Bank at Five Points, the Rhodes Haverty Building, the William Oliver Building, the Fox Carlton Apartments, and the W. D. Dr. Doctors Building.

Buildings designed by Smith after Pringle’s death included the Druid Hill Presbyterian Church, the Northside Methodist Church, and various Coca-Cola bottling plants.

Smith served in the Corps of Engineers in World War I and attained the rank of major. After the war and his son, Henry Howard Smith, practiced architecture together until the elder Smith’s retirement in 1968.

They designed the First National North Avenue Building and its 400-car parking deck, other banks, residences, and public works.

Surviving are a daughter, Mrs. Margaret Smith Kingdon of Indianapolis; sons, Dr. Robert Eugene Smith and Henry Howard Smith of Atlanta; 10 grandchildren and four great-grandchildren.
ARCHITECTURAL ARTS LEAGUE OF ATLANTA

Organized November 27, 1909

OFFICERS:

President
HARALSON BLECKLEY

Vice-President
HARRY LESLIE WALKER

Secretary
HAL F. HENTZ

Treasurer
FRANK C. WALTER

EXECUTIVE COMMITTEE:

HARALSON BLECKLEY HARRY LESLIE WALKER
HAL F. HENTZ FRANK C. WALTER
 H. H. OSGOOD

EXHIBITION COMMITTEE:

A. TEN EYCK BROWN, Chairman
E. E. DOUGHERTY E. C. WACHENDORFF
W. A. VERHAS HARRY LESLIE WALKER
HARALSON BLECKLEY, Ex-officio
INDEX OF EXHIBITS

220 Design for Mural Painting.

221 Design for Mural Painting.

222 Bookplates.

223 Design for Decoration of State Capitol, Atlanta, Ga.

224 Design for Stained Glass Window.

225 Design for Wall Paper.

226 Design for Rug for W. F. Winecoff, Atlanta, Ga.

227 Cartoon for the Decoration of a Rathskeller.

228 Design for a Stained Glass Window.

229 Design for Interior Decoration.

230 Mural Painting.

231 Design for Wall Paper.

232 Illustrations.

H. Francis Palmer—Georgia School of Technology, Atlanta, Ga.

233 Hospital for Georgia School of Technology, Atlanta, Ga.

234 "Amusement Park for a Large City."

235 "Maritime Custom House."

236 Notre Dame de Paris, European Sketch.

237 Le Mont St. Michel, European Sketch.

Dr. James Knox—Supervising Architect of the Treasury, Washington, D. C.

238 Government Building, Seattle, Wash.

239 Post Office Building, Dennison, Tex.

240 Post Office Building, Toledo, O.
ULTIMATE PLAN OF THE GREATER GEORGIA TECH

KEY TO VIEW OF GREATER GEORGIA TECH BUILDINGS AND COST.

1. Library, $200,000.00; 2. Chemistry, $200,000.00; 3. Physics, $200,000.00; 4. Civil Engineering, $200,000.00; 5. Electrical Engineering, $200,000.00; 6. Textile, $200,000.00; 7. Metal Ceramics, $150,000.00; 8. Architecture, $150,000.00; 9. Commerce, $150,000.00; 10. Power Plant (additions), $75,000.05; 11. Shops (additions), $75,000.05; 12. Auto and Aeronaut, $75,000.05; 13. Hospital, $75,000.05; 14. Research, $600,000.05; 15-16-17, Dormitories, $210,000.05; 18. Gymnasium, $220,000.05; Property, Grading, Landscape, $150,000.05. Total cost, $1,000,000.05.

TO BE BUILT OR IMPROVED IN FUTURE DEVELOPMENT.

18-29, Academic and Administration Buildings; 31, Mechanical Engineering Building; 32, Experimental Engineering; 33, Drawing and Mechanics; 34, Auditorium; 35, Armory; 36, Y. M. C. A.; 27-28-29, For later expansion; 31, Grant Field; 31, Grandstand; 32, President's house.
Chapter 4: Andrew Carnegie, Carnegie Libraries and Carnegie Corporation Grants

In 1886, steel magnate Andrew Carnegie, wealthy beyond all measure, vowed to utilize his money for benevolent causes, and wrote essays describing his philosophy. In an era when billions were being made from the Industrial Revolution, his philanthropy was unprecedented. He believed the success of a strong civilization and public enlightenment came through knowledge. The education of the masses to promote democratic ideals needed to come through literacy. His desire to provide free lending libraries for the public created a network of libraries throughout the English-speaking world.

Between 1889 and 1916, Andrew Carnegie established over 2500 library buildings in the world; 1681 located in the United States. While some grants were given to large urban areas for main libraries and their branches, he also provided the means for the vast majority of modest jewel-box libraries located in small rural communities. In the beginning he hoped general community center and library combinations would be constructed for various activities, which would be directed by the townspeople. When local personalities and politics created conflicts, Carnegie later preferred his endowments go for a larger number of small libraries in outlying communities throughout the country. The endowments were to be sent in increments as needed to pay their debts, rather than as one large sum.

Carnegie was not interested in buying residences or other buildings for conversion to libraries, insisting on buildings with well-designed exteriors and interiors intended solely for library usage. After many undesirable plans were submitted, and wasteful excesses were running rampant from the inadequacies of local builders, Carnegie and his secretary James Bertram developed a series of “suggested” designs for well-planned libraries. Many communities balked at these restrictions, preferring to utilize this monetary windfall to create monoliths devoted to local heroes or politicians. Other communities were slow to accept the new idea of a free lending library, or did not wish to locate the new library in a central, accessible location. Unbelievably, in some locations, endowments were offered and turned down altogether. For instance, Macon turned down a Carnegie grant, wanting to dedicate their library to a local patron. Funding and locating enough books to stock the shelves, as well as finding trained librarians to manage the library, also created problems in some communities.

In 1911a charitable foundation, the Carnegie Corporation of New York was incorporated; its sole donor is listed as Andrew Carnegie. The focus of this foundation switched from libraries to the broader spectrum of educational issues. Its purpose was stated as the advancement and diffusion of knowledge and understanding for the people of the United States and certain countries that had been members of the British Overseas Commonwealth. No new endowments for libraries were given after 1917, unless previously promised. The corporation has continued its work since Carnegie’s death in 1919. In the United States, grants have gone primarily to academic institutions and organizations in order to improve educational opportunities for Americans from pre-school to university. Other grants were provided for research, monitoring projects designed to advance the causes of social justice and equal opportunity in education. The international program focused on Southern Africa and the Caribbean. As was their common practice during Carnegie’s life, the Corporation took advantage of the opportunity to approve the use and general
design of buildings built from their construction grants. At Georgia Tech two earlier grant applications were turned down by the Corporation before the grant resulting in the D. M. Smith Building was approved. The Carnegie Corporation of New York is still in existence today.
Bibliography

Attachments

Chapter 5: The D. M Smith Building (1923)

The D. M. Smith Building is located on Cherry Street in the City of Atlanta and is a contributing structure in the Georgia Tech Historic District. The three-story building was completed in 1923. The red brick building has a structural system of reinforced concrete with a U-shaped footprint. The main lecture hall occupies the central portion of the first floor. The entire $200,000 construction cost of the building was provided by private funds. Whereas the Collegiate Gothic style is prevalent, classical elements also exist such as the details of the main entrance that features Ionic columns and a bracketed pediment, the cartouches in the gabled ends of the building and the finials above the cornices of the pitched roof. A key characteristic of the building is its perfect symmetry that is found on all façades.

The main elevation is located along Cherry Street. The entrance is centrally placed and emphasized by two Ionic columns with a bracketed pediment. The original paneled wood doors were removed in the 1980s and replaced with metal doors with glass panels. Above the door, the handsome fanlight with turned wood tracery still exists. A limestone plaque reading “Physics Building – A Gift from The Carnegie Foundation – And the Alumni and friends – of the – Georgia School of Technology – 1923” is located on the right side of the entrance and another one reading “N. E. Harris- Chairman Board of Trust – M. L. Britain President – Executive Committee – N. P. Pratt Chairman John Grant – L. W. Robert Jr. J. S. Akers – Robert and Company Inc. Architects – Francis P. Smith Associate” is located on the left side of the entrance. Cant bay windows are located on the first and second floors on either end of the façade. The large red brick surfaces are broken only by the limestone belt courses above the ground floor and the second floor. Fenestration is perfectly symmetrical. Window sills and surrounds are limestone. Limestone cartouche ornamentation is placed in the gabled ends of the building. Limestone finials decorate the cornices. The entire building is finished with limestone corner quoins.

Unfortunately all the original windows were replaced in 1983 with single pane double-hung metal windows with bronze colored insect screens. The original windows were multi-light steel projection type windows. Each window had a multi-light (two, six or eight) projecting panel on the top and bottom with a fixed multi-light panel in the center.

The north and south façades again are perfectly symmetrical and mirror images of each other. Whereas these façades are plainer than the main elevation, design elements like the limestone belt courses and finials are consistent. Bay windows are placed on the third floor on either side. The only difference between the south and north facades are the entrances. On the north elevation the entrance leads into the basement and is located on the right end. This entrance has a limestone surround with quoins and a small pediment. The doors are solid wood doors and could be original to the building. On the north elevation the entrance leads to the first floor and is located on the left side. The doors are a metal and glass panel replacement. The fan light is still original. A temporary metal handicap access ramp was constructed on this elevation.
On the east elevation the two gabled ends of the building are identical. A bay window is placed on the third floor. The center section, which is the back of the lecture hall, has windows only on the ground and first floor levels. A centrally located entrance on this section was not part of the original design, but was converted from a window after 1983. All the decorative elements are also repeated on this façade.

The building has a pitched slate roof, most of which is original. The different colored slate of the roof creates a patterned effect. A section of flat built-up roof over the lecture hall was replaced in the 1980s. Ten skylights in the center section provided natural light for the lecture hall on the first floor. There was a system of horizontal sliding doors with motor drives that allowed them to cover the skylights and darken the hall.

When the building was first completed, the ground, first and part of the second floor housed the Physics Department. The ground floor was mainly used for laboratory work. The first floor housed the main lecture room, five recitation rooms, a library and offices. Two classrooms, a laboratory and research rooms were located on the second floor.

The Civil Engineering Department occupied part of the second floor, and the Architecture Department took up the entire third floor. The third floor housed three drafting rooms, two free-hand studios, offices and classrooms. Although the placement of the Architecture Department in this building was considered only temporary, it remained there until 1952, when the new Architecture Building was completed.

The symmetry of the exterior design is also evident in the interior. Circulation patterns such as halls, stairways and entrances are all symmetrically arranged around the central lecture hall located on the first floor. The same pattern repeats itself on the second and even on the third floor, which has no large central space. The circulation pattern has remained fully intact on all floors. On the second floor part of a classroom in the north wing was changed to a corridor. This explains the area of wood flooring in the second floor corridor. The main laboratory space on the ground floor has been subdivided to accommodate the needs of the Air Force ROTC program. The corridors and the two staircases have been retained.

Originally the lecture room had a capacity of 280 raised seats and was equipped with gas, water, compressed air and electricity. Storage room for lecture equipment was also provided. The floors were wood, walls were plastered and finished with crown molding. Ten generously proportioned skylights which provided natural light to the hall have been removed, the ceiling has been dropped, the floor has been covered with linoleum and the walls have also been covered with a vinyl wall covering. New seats were installed during a major renovation in 1970.

Two identical staircases are located on the south and north ends of the west (main) side of the building. The concrete half-turn stairs with a half space landing are covered with terrazzo. The railings are wood. Today the staircases are closed off from the corridors in order to meet current fire code. The original plans showed them open. Large bay windows provide ample light to the stairs.
The floors of the corridors are terrazzo with wood in the classroom and office spaces. Some of the wood floors have been covered with carpet. The walls are plastered and painted.

Changes to the building and renovation considerations:

Windows

The existing windows were installed in 1983. Although the original openings were used, the new windows unfortunately do not reflect the original windows in style or composition. The original windows were multi-light steel projection type windows. Each window had a multi-light (two, six or eight) projecting panel on the top and bottom with a fixed multi-light panel in the center. The replacement windows are single pane double-hung bronze painted metal windows with bronze colored insect screens. The original windows complemented the gothic style building, which is not achieved by the replacement window. A total window replacement would be the more satisfying solution.

Doors

All three entrances still exist, but have been slightly altered. The main entrance originally had raised panel double wood doors topped by a handsome fanlight with wood tracery. The double doors were replaced with metal and glass doors. Replacement of those metal doors with wood doors matching the originals is highly recommended.

The entrance on the north façade seems less altered; only the panels on the double wood doors are different from the originals. The fanlight was covered or replaced. If the fanlight still exists, uncovering it is recommended.

The entrance on the south façade still has the original fanlight, but unfortunately the wood double doors were replaced with bronze colored metal and glass doors similar to the main entrance. Replacement of the metal doors is recommended.

Roof

At present the patterned slate roof is being repaired, with new mortar and caulk joints. Retention of this roof, if possible, would be highly recommended.

Interior spaces

As is typical for a building in continuous use, many renovations, repairs and changes affecting the interior have taken place over the years. Fortunately all of them were minor, and did not
destroy the character defining elements of the building. Circulation patterns reflected by corridors and staircases were not altered; the original floor plans have not been changed. In general, walls and flooring are original or were repaired in kind. The wood floors on the ground floor were severely rotted and were replaced with concrete in 1984. When the building was centrally air conditioned, ceilings were dropped in classrooms and offices, but the corridors still have their original ceiling heights. Most interior doors have been replaced.

Main Lecture Room

Originally the lecture room had a capacity of 280 raised seats and was equipped with gas, water, compressed air and electricity. Storage room for lecture equipment was also provided. The floors were wood, walls were plastered and finished with crown molding. Ten generously proportioned skylights provided natural light to this hall. Today the skylights have been removed, the ceiling has been dropped, the floor has been covered with linoleum and the walls have been covered with vinyl wall covering. New seats were installed during a major renovation in 1970. At a minimum, it is recommended that the dropped ceiling be removed, and the sliding doors that covered the skylights be retained in the closed position. It would be preferable, although most likely not possible due to fire code requirements, to replace the wall and floor coverings with materials more similar to the original wood and plaster.
Bibliography

Buildings and Grounds File, Georgia Tech Archives.

“Georgia School of Technology Catalog 1924-25,” pages 23, 143.

Georgia Tech Office of Facilities, computerized drawing archives.

Photo Material Folder, VA-230 D, Georgia Tech Archives.

Attachments

1.) Map of Georgia Tech Historic District, 1971.
4.) Historic architectural drawings of the D. M. Smith Building.
5.) 1970 lecture hall renovation drawings.
6.) 1983 window replacement drawings.
7.) Early historic photo of the D. M. Smith Building
8.) 1928 Photo of the southeast corner from the 1928 Blue Print. On file at the Georgia Tech Archives.
9.) Later photo of the D. M. Smith Building; note window air conditioners.
10.) Undated photo of the original entrance door to the building. On file at the Georgia Tech Archives.
11.) 1928 interior photo of the main lecture hall from the 1928 Blue Print. On file at the Georgia Tech Archives.
Attachment 5.1: Map of Georgia Tech Historic District, 1971.