BUILDING A COLLABORATIVE DIGITAL PRESERVATION NETWORK

Caroline Arms
Office of Strategic Initiatives, Library of Congress

Robert H. McDonald
Associate Director of Libraries for Technology & Research
Florida State University

Lizabeth B. Nicol
Digital Library Coordinator
Auburn University

Tyler O. Walters
Associate Director for Technology and Resource Services
Georgia Institute of Technology
OVERVIEW

• Introduction to the NDIIPP Partnerships
• The MetaArchive Partnership
 • Auburn University
 • Emory University
 • Florida State University
 • Georgia Tech
 • University of Louisville
 • Virginia Tech
• The MetaArchive Metadata Strategy
• The MetaArchive Technical Architecture
INTRODUCTION TO NDIIPP

• Federal legislation in December 2000
• LC to work with public and private sector to support preservation of significant “born-digital” content that is at risk
• $25 million + another $75 million if matched, for potential total of $175 million.
• Started with planning period
 – consultation with stakeholder groups
 – commissioned surveys and reports
 – plan approved December 2002
OVERALL NDIIPP GOALS

• Help identify and preserve at-risk digital content
• Support development of improved tools, models, and methods for digital preservation
• Work with industry, concerned federal agencies, libraries, research institutions and not-for-profit entities
• Develop a national digital collection and preservation strategy
NDIIPP PORTFOLIO

- Plan calls for LC’s actions to be:
 - Catalytic, collaborative, iterative, strategic
- General approach
 - Find smart, willing collaborators. Learn by doing.
- Three areas of focus
 - Network of preservation partners
 - Digital Preservation Partnerships
 - Working with state libraries, archives, CTOs, etc.
 - Architectural framework for preservation
 - Digital preservation research
 - Funding DIGARCH program through NSF
DIGITAL PRESERVATION PARTNERSHIPS

• Competition, cooperative agreements
 – 8 awards announced in September 2004
 – Partners collect/preserve content, collaborate with LC and each other
 – 3 year term, LC to report to Congress

• Primary outcomes for partnerships:
 – Identify and preserve significant at-risk content
 – Leverage resources & experience via collaboration
 – Promote standards and best practices
 – Learn how to build and sustain partnerships
PARTNERSHIPS DIFFER

• In content scope
 – Public television programs (high-definition digital)
 – Dot-com era business records
 – Social science datasets
 – Geospatial information (2 projects)
 – Heterogeneous content
 • harvested from web
 • for which partners are already responsible

• In nature of partnership
 – Partners playing different roles
 – Group of peers
ACTIVITY ACROSS PROJECTS

• LC is providing resources and leadership
 – Individual LC staff as liaison to each project
 – Meetings twice a year
• ‘Affinity groups’ on cross-cutting issues
 – Selection and Collection – appraisal & tools
 – Rights – copyright and privacy
 – Technical Architecture
 – Economic Sustainability - costs and incentives
• Connections to other NDIIPP activities
METAARCHIVE PARTNERSHIP

Project Summary:

• **Six partner institutions:**
 – Emory - Georgia Tech - Florida State
 – Virginia Tech – Auburn - Louisville

• Collaborate with LoC – 3-yr $1.4M effort to develop a cooperative for preservation of digital content.

• Content focus is *southern culture and history*.
MetaArchive Project Goals

• Create a conspectus of digital content within the subject domain held by the partner sites

• Harvest a body of most critical content to be preserved (3 terabytes, w/ capability to expand)

• Develop a model cooperative agreement for ongoing collaboration and sustainability

• Distributed preservation network infrastructure based on the LOCKSS software
Governance & Structure

• Committees:

 – **Steering**: coordination, communication, reporting (original six univs.)

 – **Content**: organize, develop, select content

 – **Preservation**: content retention/transfer, acquisition practices, metadata maintenance, text/image structures, migratability

 – **Technical**: server architecture, software development
Governance & Structure

• Membership Type:

 – **Development partner:**
 Testing and development of hardware, software, networking, and design of Network features. Carry out activities of preservation partner sites as well.

 – **Preservation partner:**
 Network participation -- maintain a node, ingest collections from partners or content contributors. Network development is optional.
Cooperative Agreement

• Develop a simple, flexible agreement as a model for other institutions seeking to cooperate in digital preservation
 – Membership criteria (and member withdrawal)
 – Roles and responsibilities – joint and equal custodians of content harvested
 – Sustainability plan (over time)
 – Ensure broad applicability
Cooperative Agreement

• Issues to Address:
 – New members: by invite only? by application?
 – 3rd member type: content contributor?
 – LOCKSS Alliance membership and fees
 – Central administration vs. decentralized
 – Financial sustainability (need central funds?)
 – Memo of agreement between institutions – detailing what members will do
METADATA OVERVIEW

- The MetaArchive Conspectus Database contains metadata elements that not only describe the collections that are to be collected, but also provide information that will be necessary for storage estimates, format migration, accrual rules, location, ownership and LOCKSS specific elements.

- The Conspectus Database is archived along with the collections.
GENESIS OF MD SPECIFICATION

- Dublin Core Elements & Refinements
- Dublin Core Collection Level Description
- RSLP Collection Level Description
- MODS Physical Description
- MetaArchive Specific Elements
METADATA SCOPE

• Intellectual content of the collection(s) including subjects, spatial and temporal coverage
• Format of contained items - and extent of file sizes and formats
• Relation to other collections
 – Accrual rules (periodicity, open/closed)
 – Rights management rules
 – LOCKSS manifest pages and plugin information
 – Risk assessment
METADATA ELEMENTS

• Multiple name spaces utilized:
 – Dublin Core Elements
 – Dublin Core Refinements
 – Collection Level Description
 • RSLP (Research Support Libraries Programme)
 • MODS (Metadata Object Description Schema)
 • MetaArchive defined terms

• MetaArchive Metadata Specification
COLLECTION LEVEL DESCRIPTION

- DC Collection Description Application Profile
 - Accrual Periodicity [cld:accrualPeriodicity]
 - Accrual Policy [cld:accrualPolicy]
 - Contents Date Range [cld:dateContentsCreated]
 - Is Available Via [cld_gen:isAvailableAt]
 - Spatial Coverage [cld:spatial]
 - Temporal Coverage [cld:temporal]

- MODS
 - Manifestation [mods:physicalDescription] (1/3 of element definition)

- RSLP
 - Accumulation Date Range [rslp:created]
METAARCHIVE SPECIFIC

- Cataloged Status [ma:catalogedstatus]
- LOCKSS Manifest page [ma:manifest]
- MetaArchive Collect. Identifier [ma:collectionid]
- OAI Provider [ma:oaiprovder]
- Recommended Harvest Proc. [ma:harvestproc]
- Risk Rank [ma:riskrank]
TECHNICAL ARCHITECTURE

• Off-the-Shelf Strategy
 – Dell/Intel Based Hardware
 • Could easily be HP or SUN Intel Based Hardware etc.
 • Could be old desktops w/large hard drives.
 – New Low Cost SATA SAN
 • EMC AX100
 – $4.00 per GB (already dropping in price)
TECHNICAL ARCHITECTURE

• Operating System
 – RedHat Linux Enterprise AS v. 3/4
 • Ease of update management and experience w/OS
 – Could easily work on other versions of Linux
 • JAVA SDK

• LOCKSS Content Ingestion/Replication
 – LOCKSS Daemon 1.8.3 – 6-8 week updates w/RPM

• Conspectus Database
 – MySQL/PHP Interface – Integrated w/LOCKSS Plugin Directory

• MetaArchive Collection Description Metadata Schema
TECHNICAL ARCHITECTURE

Online Digital Collections

Auburn Yearbooks
Emory Southern Spaces
FSU ETD Collection

GaTech Node
FSU Node
Emory Node
Auburn Node

LOCKSS for MetaArchive

Admin Interface
LOCKSS ADMIN INTERFACE

Cache Manager

<table>
<thead>
<tr>
<th>Status</th>
<th>Status Last Updated</th>
<th>Institution Name</th>
<th>IP Address</th>
<th>Reverse DNS Entry</th>
<th>Log Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 ImportError</td>
<td>September 20, 2005, 12:02 pm</td>
<td>Louisville University</td>
<td>meta-vault.library.louisville.edu</td>
<td>http://meta-vault.library.louisville.edu</td>
<td></td>
</tr>
<tr>
<td>🚬 ImportError</td>
<td>September 20, 2005, 12:02 pm</td>
<td>Auburn University</td>
<td>meg.lib.auburn.edu</td>
<td>http://meg.lib.auburn.edu</td>
<td></td>
</tr>
<tr>
<td>🚬 ImportError</td>
<td>September 20, 2005, 12:02 pm</td>
<td>Emory University</td>
<td>ndipi.library.emory.edu</td>
<td>http://ndipi.library.emory.edu</td>
<td></td>
</tr>
<tr>
<td>🚬 ImportError</td>
<td>September 20, 2005, 12:02 pm</td>
<td>Florida State University</td>
<td>clockss.lib.fsu.edu</td>
<td>http://clockss.lib.fsu.edu</td>
<td></td>
</tr>
<tr>
<td>🚬 ImportError</td>
<td>September 20, 2005, 12:02 pm</td>
<td>Florida State University</td>
<td>clockss2.lib.fsu.edu</td>
<td>http://clockss2.lib.fsu.edu</td>
<td></td>
</tr>
<tr>
<td>🚬 ImportError</td>
<td>September 20, 2005, 12:02 pm</td>
<td>Georgia Institute of Technology</td>
<td>ndiiplockss.library.gatech.edu</td>
<td>http://ndiiplockss.library.gatech.edu</td>
<td></td>
</tr>
</tbody>
</table>

Issue Tracker

- [] Issue 1
- [x] Issue 2
- [] Issue 3
- [] Issue 4

Refresh Archival Units

- [] Refresh

Filter Manager by Group

- [] All

Filter Manager by Network

- [] All
- [x] Filter

Caches

- [] View All Caches
- [] View Down Caches
- [] View Up Caches
- [] View Unknown Caches
- [] Add New Cache by Field
- [] Add New Cache From Email
TECHNICAL ARCHITECTURE

• STANDARDS
 – OAIS Reference Model
 • LOCKSS Compliance
 – OAI-PMH 2.0 (Submission Information Package)
 • Using as alternative to current LOCKSS AU strategy
 w/ETDs – VaTech, GaTech, FSU
 – MetaData
 • Based on Known Collection Level Namespaces
TECHNICAL ARCHITECTURE

• COLLABORATION
 – Kickstart Installations for Linux Servers
 • Easy to setup all hardware exactly the same.
 – Efficiency of Replication
 • Kickstart can be used with production system as well as
 with any Intel based machine.
 • Currently running several test machines (old desktops) to
 trigger test LOCKSS quorums.
 – Communication Strategies
 • Phone Conference, Video Conference I2 Commons, Wiki
 (MoinMoin), PhpCollab, iVocalize Chat/VOIP Room
MetaArchive NDIIPP Network via I2

University of Louisville

Emory University

Auburn University

Va Tech

Ga Tech

Florida State University

Max Connection to Va Tech
QUESTIONS

- MetaArchive Web
 - http://www.metaarchive.org

- NDIIPP Web
 - http://www.digitalpreservation.gov

- Contacts
 - Caroline Arms – caar@loc.gov
 - Robert H. McDonald – rmcdonal@mailer.fsu.edu
 - Lizabeth B. Nicol – nicollb@auburn.edu
 - Tyler O. Walters - tyler.walters@library.gatech.edu