By Narendertha Seethadri
Contributing Writer

Ferst wall of fame preserves arts history

The Robert Ferst Center for the Arts brings renowned programs and performers to enrich the Tech community. In addition to leaving memories, these visitors have left more permanent marks on the Ferst facility itself.

By Shan Pesaru
Contributing Writer

Inside Focus

Bone repairs grow at Tech
Take a look at the efforts of Dr. Peter Goldberger, whose research involves new skeletal repair technology. Goldberger’s efforts have won him national acclaim and could lead to a future without casts. See page 8.

Student earns Goldwater
A profile of Tech’s latest Goldwater Scholar, Mikhail Lubarshi. A Biology senior who was born in Russia, read why Lubarshi first came to Tech and find out what inspired him to push for academic greatness. See page 5.

State and Tech rule on fake IDs
Recent additions to Georgia Tech law aim to punish users of any type of falsified document, and Tech has upped its game to prevent and activity. For information about the modifications and the impact they could have on your social life, turn inside. See page 7.

Tech pros expose fuzzy accounting
By Shan Pesaru
Contributing Writer

Recently two Tech professors have been in the spotlight for their book titled The Financial Numbers Game: Detecting Creative Accounting Practices. The book comes in a timely fashion with recent press about the Enron and WorldCom scandals and other companies still being investigated for involvement in what is now called “aggressive accounting.”

Charles W. Mulford and Eugene E. Comisky are both accounting professors at the DuPree College of Management. Both men have doctorates in Accounting and are Certified Public Accountants. Mulford earned his doctorate at Florida State University while Comisky completed his at Michigan State University.

This was not the first time that Mulford and Comisky wrote a book together. In 1996 they co-authored a book titled Financial Warnings and in 2000 they wrote Guide to Financial Reporting and Analysis.

Mulford and Comisky’s most recent endeavour highlights special problem areas in the accounting practices of companies. The purpose of the book is to help people that read financial statements to avoid being misled by financial results that have been altered by aggressive accounting practices. Creative accounting practices are sometimes referred to by other titles such as See Predict, page 6.

Jackets impressed with width of world
By Jen Schur
Focus Editor

As the summer draws to a winding close, the responsibilities of Tech call its students who have traveled far and away back to life in America. This was approximately the twenty-fifth year of the Office of International Education (OIE) and its myriad of study abroad programs. 3,354 Georgia Tech students have participated since 1993. The just past three semesters, 783 students on more than 50 different programs have represented the Institute abroad.

OIE offers several methods for traveling outside the country, including Tech’s satellite campus in Metz, France, the International Co-op. Study Abroad, Work Abroad and Exchange programs; the Study Abroad program operates; the option to be a most popularways students chose to earn Tech credits while seeing the world.

This past summer, numerous trips were available. One such program took its Virginia base into foreign waters led by Dr. Kirk Bowman; another program visited the heart of Europe for the fourth time under the direction of Dr. Vicki Birchfield and Dr. Adam Snellberg; yet another program explored the European continent and England in-depth. This article highlights and chronicles this mere sampling of the options available.

For the first time in Tech history, a group of 25 students obtained permission to travel to Cuba. The group explored the effect of tourism and dollarization on Cuban economic and political structures. Jimmy Carter, former president and perhaps one of Georgia Tech’s most famous alumni, was visiting the tiny is-
Account

From page 3

as aggressive accounting, fraudulent financial reporting, income-smoothing and earnings management.

Companies that employ creative accounting practices may do so to make their earnings seem more appealing to investors than they actually are. Mulford and Comiskey’s new book highlights some of the methods and tricks that companies use to attract and retain investors. Five specific problems are addressed in the book: channel stuffing, side letters, bill-and-hold, related party sales and lease revenue. Channel stuffing is when a company ships inordinate amounts of inventory while possibly offering large discounts to encourage over-buying. Side letters are special provisions offered to customers outside normal channels such as provisions for non-payment and unlimited return privileges. Bill-and-hold is the term used to describe when a selling company holds merchandise to accommodate a customer. An abuse of this practice occurs when a company includes shipments to its own warehouse as part of its revenues. Related party sales refer to a financial link or other relationship between the company and the customer. Lastly, abuses of revenue recognition under leasing transactions can occur when a company overstates the amount of up-front revenue on sales-type leases.

There are many reasons why companies may choose to engage in creative accounting practices. The potential rewards for playing the financial numbers game are growing; this type of fraud has been around for many years. The general idea is that investors will seek out companies that show high earning power and that have earnings that are less volatile. Creative accounting practices can help companies report higher earnings to attract investors. Another reason a company might use aggressive accounting is to boost stock bonuses received by managers. Furthermore, a company might even use creative accounting practices to lower their current income to avoid higher taxes, as oil companies did in the 1970s.

The big push towards ending the creative accounting practices really started in 1998 when former chairman of the Securities and Exchange Commission (SEC), Arthur Levitt, declared war on the numbers game which he referred to as “abusive earnings management.” Mulford and Comiskey used much of the work done by the SEC to write their latest book.

In fact, they studied some of the nearly 1,500 Accounting and Auditing Enforcement Releases (AAER) of the SEC that dealt with companies using creative accounting practices.

The future for companies using aggressive accounting is not yet clear at this time, but it is certain that companies that attracted with false numbers will have to be restructured and that may include bankruptcy, Mulford said.

Right now, with the government’s big emphasis on ending aggressive accounting, it may seem to investors that the economy was doing just fine with companies cooking the books a little.

That may seem true, but “our system of capitalism requires accurate financial information for the efficient allocation of resources...you need good information and trust in the information we receive,” Mulford said. “We would see a much greater loss in our financial reporting system [if the government let aggressive accounting continue to occur].”

So what can investors expect of the economy in the coming months? “If we can avoid what is often referred to as a double-dip recession and get the economy growing in a healthy fashion with continued improvements in productivity, Wall Street will be fine,” predicts Mulford.

“Investors should stay the course while maintaining a properly diversified and balanced portfolio of equities and fixed-income securities while not neglecting proper insurance against whatever unexpected events life might throw their way,” Mulford advised.
The Robert Ferst Center for the Arts, located in the center of Tech's campus, is home to two new art galleries just within its entrance doors. The Robert Ferst Center for the Arts, located in the center of Tech's campus, is home to two new art galleries just within its entrance doors. The Robert Ferst Center for the Arts, located in the center of Tech's campus, is home to two new art galleries just within its entrance doors.

“...The Ferst Center continues on its mission to supplement and compliment the Institute’s goals, its administrators seem dedicated to developing strong, productive links with local and international artistic, corporate, cultural and educational communities. The signature wall embodies this goal. In addition to the unique wall-signing tradition, the Ferst Center stands out for a number of other reasons. Frey noted that the auditorium is extremely versatile. “No theatre with our seating capacity has so many capabilities because it is so flexible and provides such a great enriching experience,” said Frey. For the Ferst’s schedule of events, www.ferstcenter.gatech.edu/"

By Kimberly Rieck
Senior Staff Writer

An native of Russia, Michael Lubarsky emigrated to Israel when he was 10. His family then became Israeli citizens and lived in Israel until Michael finished high school. His father, Eugene Lubarsky, is an Aerospace engineer who then took a research job in Georgia Tech’s AE department. His father’s decision was the impetus for Michael’s decision to attend Tech as a biology major.

Michael was surprised he earned faculty honors during his first semester at Tech; he expected to earn a “B” in English. “I didn’t expect to get an “A” in English. I was really surprised and afterwards I didn’t want to mess it up. Once I got a 4.0, I knew I had to keep it,” said Lubarsky. Since then, Lubarsky has tried not to overstudy for his classes but study just enough to maintain his GPA, which is still a perfect 4.0 as he enters his senior year.

He won the Howard Hughes Internship after his sophomore year. The internship is funded by the Howard Hughes Medical Institute and directed by the Georgia Tech School of Biology. Students spend up to ten weeks from mid-May to August carrying out research with a faculty mentor and graduate students. The program also includes research presentations, discussions and social activities in Atlanta. It includes students from other schools besides Georgia Tech.

Lubarsky worked with Dr. Nael McCarthy to complete the internship. Their research focused on the molecular physiology of cystic fibrosis, the functional architecture of the chloride channel pore and how the chloride channel helps control fluid secretion in the lung. McCarthy’s group aims to help identify and develop new therapies for cystic fibrosis patients.

After he completed his internship, Lubarsky decided to continue to pursue research during the school year so he found a position with Dr. Sheldon May. Lubarsky worked with May to create biodegradable plastics using bacteria, which would allow everyday products to decompose instead of taking up space in unsightly landfills for hundreds of years.

Lubarsky quickly realized that he needed to find scholarships to help defray the expenses of college. “I wasn’t getting. Hope so my dad suggested that look for scholarships."

Lubarsky quickly realized that he needed to find scholarships to help defray the expenses of college. “I wasn’t getting. Hope so my dad suggested that look for scholarships."

Michael Lubarsky completes an experiment with bacteria in his quest for his undergraduate degree in biology. Lubarsky won a Goldwater Scholarship this year for his work.

Photo courtesy Institute Communications and Public Affairs
Hazy Atlanta skies have become the norm as we move through the peak of the smog season this month. Students should be aware of possible health risks and ways in which they can aid in the reduction of smog levels.

By Jennifer Lee
Contributing Writer

[Editor's note: This article is reprinted, with modifications, from the May 31 issue of the Technique.]

While summer didn’t officially begin till June 21, smog season began March 1. Smog season doesn’t mean that smog is a problem all the time. Instead, it signifies a period where the status of smog levels in Atlanta is monitored and made known to residents. However, it is still an issue to be aware of.

The primary component of smog is ozone, which is formed as a byproduct of two other air pollutants, nitrogen oxides and volatile organic compounds, which in turn come from vehicle emissions, industrial plants, and other sources.

From May 1 to September 30 a team of forecasters, as part of The Clean Air Campaign, issues Smog Alerts on days when the ozone level is expected to exceed federal limits. Smog alerts fall into color-coded categories, based on an Air Quality Index, which is a measure of ozone levels. The Green category (AQI 0 to 50) signifies the cleanest air, followed by the Yellow (AQI 51 to 100), Orange (the category at which a smog alert is issued because the AQI has exceeded 100, meaning the air is unhealthy for sensitive groups), Red (unhealthy) and the worst category, Purple (very unhealthy).

At the beginning of May, ozone levels were in the Green level. Since then, there have been 21 Orange alerts, 7 Red or unhealthy alerts and even 1 Purple or very unhealthy alert. Sensitivity to smog varies from person to person. Elise Beckeiser, an aerospace engineering major who recently returned from out of town, comments, “I got back from Colorado on Sunday, and as soon as I stepped off the plane, I noticed the haze and the smell.”

For native Atlantans, smog is nothing new. Ken Cheng, a biomedical engineering major who is living on campus this summer, says she doesn’t really notice the smog. “I guess we’re used to it,” said Cheng.

Dr. Jim St. John, an Earth and Atmospheric Science professor who is also a member of the Partnership for a Smog-Free Georgia, says that the worst smog usually happens from mid- to late July through mid-August. The reason, he explains, is because during these months the air above Atlanta magnifies unlike other months, there are no large air currents to push the air through Georgia.

“It’s a little like not flushing a toilet,” said St. John.

The heat also plays a part because it allows the reactions that create smog to take place more easily. Also, in hotter weather, there is more demand for energy, which causes power plants to produce more pollution.

So what exactly should students be aware of? Ground-level ozone is harmful to one’s health. When inhaled, ground-level ozone can irritate and inflame the passages that carry air from the mouth and nose to the lungs. Scientific tests have demonstrated that exposure is probably a good idea anyway, because, as St. John cautions, “we don’t really know anything about the long-term effects.

Lastly, is there anything students can do to help the problem? The Clean Air Campaign’s website www.cleanaircampaign.com claims that conditions have improved in the past few years. Atlanta is exceeding the smog limit less times each year, due to cleaner cars and stricter regulations on industry, auto manufacturers and on us. Other factors, such as population and the distance the average person commutes to get to work, have increased.

“When you take everything into account, the statistics are still more or less the same,” said St. John. He says old advice still holds: save energy by turning off lights, and drive less. He strongly feels that something bigger needs to change: “We need to get away from burning fossil fuels. The way we’re treating the problem now does not really make sense,” said St. John.

Right now, the EPA passes 3-4 year initiatives. St. John asserts that 3-4 year initiatives is not enough time.

“Atlanta is never going to meet standards,” what we need is a 50-year plan,” said St. John.

For more information on daily Smog Alerts, www.air.dnr.state.ga.us/pag
Chem researchers utilize "shared" computing

By Jennifer Lee Contributing Writer

Recently, a lot of attention has been given to Internet sites like SETI@Home and Folding@Home, site@home.ssl.berkeley.edu and folding.stanford.edu that are part of a phenomenon known as "distributed computing." Researchers needing a lot of computing power can now employ anyone with a computer and an Internet connection: all the user has to do is download some software, such as a screensaver, that will run while his or her computer is idle.

With Georgia Tech being at the forefront of all things technological, one wonders if there is any initiative here to jump on the distributed computing bandwagon.

Well, not really. However, Tech is doing its own kind of "shared computing," in a sense.

"Even though we're using our own hardware, we are in agreements with other universities and government laboratories to share computers," said Dr. David Sherrill, a physical and theoretical chemistry professor.

This collaboration involves using other national laboratories' even more powerful computers to run simulations as well as other labs donating computer time to run tests.

"So it's more like we're sharing blocks of time on our supercomputers, as opposed to the kind of sharing where a lot of students are donating a lot of CPU time," Sherrill explains.

The kind of computing that takes place also depends on what kind of simulation that is being run. "The kind of simulations I run are based on quantum mechanics, and they would not work if they just ran for a few minutes on someone's Pentium or PC. They require a lot of memory and a lot of disk storage, and can't be broken up into little pieces," says Sherrill.

Lubarsky plans to intern at the Jet Propulsion Laboratory (JPL) at the California Institute of Technology this coming summer. At JPL, he will study bacteria that live in extreme environments, environments like those that would be found on the International Space Station or along the edges of volcanoes.

Lubarsky plans the internship to apply to medical school, after which he would like to become a research physician and study infectious diseases. "I really like working with people, not just doing research. Being a doctor is the only way I can contribute to society," said Lubarsky. He also plans to apply for U.S. citizenship when he becomes eligible in two years. "The thing I like about being a doctor is the fact that you get to help other people. In other places it's not necessarily like that."
By Robert Hill / STUDENT PUBLICATIONS

The development of new skeletal repair technology is currently underway thanks to the efforts of Dr. Robert Goldberg with the Georgia Tech-Emory Center for the Engineering of Living Tissues (GTEC). His current project: to develop bioengineering bone repair have been approved already such as certain synthetic scaffold materials and others are nearing approval such as the use of isolated growth factors that stimulate bone repair.

Changes in modern technology may be credited for aiding Goldberg in his endeavors. For instance, his team uses “image-based finite element modeling”—a three-dimensional computer imaging of the bone at the cellular level—and a more recent bioreactor system to gather data to perfect the biomechanical side of the research. As for the scaffolding, “We have demonstrated that microCT can be used to nondestructively image the internal architecture of 3D scaffolds, quantify new bone formation within tissue-engineered constructs in vitro and in vivo, and even measure the formation of blood vessels following an injury,” Goldberg said.

So are the days of signing casts over? Not just yet. “Our research is still in the pre-clinical testing stage,” said Goldberg, “[But] our hope is that the new advances in our laboratory will be further developed into products for clinical use by our industry partners in the next 5-10 years, depending on the application... advances involving stem cells or genetic engineering techniques are likely still several years away. The clinical realization of engineering other tissues such as cartilage or vital organs such as the heart, pancreas, or liver is even further down the road.”

However, the early forerunners of Goldberg’s vision of tissue regeneration are already or close to being in practice. “Tissue-engineered skin has already received FDA approval and is being used to treat burn victims and patients with diabetic ulcers. Some methods for engineering bone repair have been approved already such as certain synthetic scaffold materials and others are nearing approval such as the use of isolated growth factors that stimulate bone repair.”

Dr. Karsten Schwan, a professor in the College of Computing and the director of the IHPCL, said, “We are seeking funds from the National Science Foundation to upgrade campus networking to permit multiple campus supercomputers to interact (with the IHPCL) to form a large, campus-wide high performance machine.” Schwan notes that there are several existing campus computers that can participate, including the IBM SP machines in Physics and Chemistry, and cluster machines in Aerospace Engineering and Electrical and Computer Engineering.

“Now is a fun time to be a theorical chemist,” said Sherrill, praising the technological advancements in computing resources. “It’s important to remember that it’s always two things that are improving. It’s not just that computers are getting faster—the way we use computers is getting better; the algorithms and models are getting better. And both of those combined are really what’s exciting.”

FOCUS

• Friday, August 23, 2002 • Technique

Campus Research Review

Biomedical professor looks to a future without casts

Dr. Robert Goldberg examines the subject of his latest research, a piece of polyactic acid polymer scaffold for filling bone defects. Such technology may make it possible to rebuild bone without the use of casts.

By Joshua Cuneo
Contributing Writer

The development of new skeletal repair technology is currently underway thanks to the efforts of Dr. Robert Goldberg with the Georgia Tech-Emory Center for the Engineering of Living Tissues (GTEC). His current project: to develop bioengineering techniques for the repair of musculoskeletal tissues typically includes the ability to withstand physical forces and deformations in the body.

Essentially Goldberg and his associates have proposed the injection of a hybrid of biodegradable plastic and living cells to aid in bone growth and repair. The injected material hardens within a week, eliminating the need for bone grafting or, more commonly, casts. Some of the cells included in the mixture serve to encourage the surrounding cells to grow into new bone, and some may be stem cells derived from adults, capable of transforming into bone growth cells for patients devoid of them.

Since earning his doctorate in 1995 and arriving at Georgia Tech in 1996, Goldberg has made significant progress in his field of research. “We recently collaborated with a company called BioAmide to develop a porous polymer scaffold with a novel oriented microstructure and strength similar to bone,” Goldberg said. Furthermore, many of his recent studies have suggested that the application of mechanical stress helps the damaged tissue heal with greater efficiency, another important aspect of his research. He’s based these conclusions in part from “a hydraulic bone chamber implant model that allows us to study the interactions between controlled mechanical stimuli and tissue repair.”

Advances in modern technology may be credited for aiding Goldberg in his endeavors. For instance, his team uses “image-based finite element modeling”—a three-dimensional computer imaging of the bone at the cellular level—and a more recent bioreactor system to gather data to perfect the biomechanical side of the research. As for the scaffolding, “We have demonstrated that microCT can be used to nondestructively image the internal architecture of 3D scaffolds, quantify new bone formation within tissue-engineered constructs in vitro and in vivo, and even measure the formation of blood vessels following an injury,” Goldberg said.

So are the days of signing casts over? Not just yet. “Our research is still in the pre-clinical testing stage,” said Goldberg, “[But] our hope is that the new advances in our laboratory will be further developed into products for clinical use by our industry partners in the next 5-10 years, depending on the application... advances involving stem cells or genetic engineering techniques are likely still several years away. The clinical realization of engineering other tissues such as cartilage or vital organs such as the heart, pancreas, or liver is even further down the road.”

However, the early forerunners of Goldberg’s vision of tissue regeneration are already or close to being in practice. “Tissue-engineered skin has already received FDA approval and is being used to treat burn victims and patients with diabetic ulcers. Some methods for engineering bone repair have been approved already such as certain synthetic scaffold materials and others are nearing approval such as the use of isolated growth factors that stimulate bone repair.”

By Robert Hill / STUDENT PUBLICATIONS

The development of new skeletal repair technology is currently underway thanks to the efforts of Dr. Robert Goldberg with the Georgia Tech-Emory Center for the Engineering of Living Tissues (GTEC). His current project: to develop bioengineering bone repair have been approved already such as certain synthetic scaffold materials and others are nearing approval such as the use of isolated growth factors that stimulate bone repair.

Dr. Robert Goldberg examines the subject of his latest research, a piece of polyactic acid polymer scaffold for filling bone defects. Such technology may make it possible to rebuild bone without the use of casts.

By Robert Hill / STUDENT PUBLICATIONS

The development of new skeletal repair technology is currently underway thanks to the efforts of Dr. Robert Goldberg with the Georgia Tech-Emory Center for the Engineering of Living Tissues (GTEC). His current project: to develop bioengineering bone repair have been approved already such as certain synthetic scaffold materials and others are nearing approval such as the use of isolated growth factors that stimulate bone repair.

Dr. Robert Goldberg examines the subject of his latest research, a piece of polyactic acid polymer scaffold for filling bone defects. Such technology may make it possible to rebuild bone without the use of casts.

By Robert Hill / STUDENT PUBLICATIONS

The development of new skeletal repair technology is currently underway thanks to the efforts of Dr. Robert Goldberg with the Georgia Tech-Emory Center for the Engineering of Living Tissues (GTEC). His current project: to develop bioengineering bone repair have been approved already such as certain synthetic scaffold materials and others are nearing approval such as the use of isolated growth factors that stimulate bone repair.

Dr. Robert Goldberg examines the subject of his latest research, a piece of polyactic acid polymer scaffold for filling bone defects. Such technology may make it possible to rebuild bone without the use of casts. You can read more about Dr. Goldberg’s research at his web site at www.me.gatech.edu/peopl e/academic_faculty/Goldberg_Robert.html, and on a recent CNN article at www.cnn.com/2001/HEALTH/01/15/growing_bone/index.html.
Tech Up Close

This photo is an “up close” view of something on Tech’s campus. Do you know what it is?

email:
focus@technique.gatech.edu

Winner will be selected randomly from correct entries and receives a Technique T-shirt and free Papa John’s pizza.
from the people. Many participants were thrilled to be among the small number of Americans allowed to legally travel to Cuba with the chance to witness the island as it is today, given the rapid political, economic and cultural transitions constantly taking place.

A small group of the students were even lucky enough to meet the former president, who stopped to pose for a picture with the yellow jackets when they caught his attention by singing "Ramblin’ Wreck."

A hemisphere away from Cuba, another popular study abroad adventure was taking place, the eleven-week Oxford study abroad program. The program is unique in that each of three groups of students begin their travels in different locations throughout Europe and meet halfway through the program in Oxford, England to complete their studies. Wes Reynolds, a fourth year CS major, took advantage of one of the great opportunities studying abroad offers—the ability to study subjects outside his major not typically available on campus—by taking an eclectic mix of art history, history of musical composers, e-commerce and the history of medieval England.

Another Oxford program participant remembers the many quirks of European culture she discovered simply by being abroad, a sentiment echoed by almost every student who travels beyond our borders. Food was a lesson in and of itself, what with fees for ketchup and Coke that was different in taste and packaging; a charge for toilet use added to the differences. One student remembers how she and a group of friends overcame their language barrier in Munich, Germany by emphatically making techno backbeat noises and gyrating their lower bodies in order to ask a local for the location of the closest dance club. Being able to overcome such challenges, acclimating to world differences and having increased self-confidence are some of the benefits students who study abroad gain. The Oxford Program is just one more opportunity afforded to Tech students as an enriching way to explore the world.

Across the Atlantic, the Brussels summer program brought another 23 students with a variety of majors to Europe for two classes, one to examine the workings of the European Union and the other to evaluate the changing landscape of transatlantic relations and security issues. Past participants laud one of the unique aspects of the program, the homestay. Students live with Belgian families during their studies, which "allows for a higher level of interaction with the people of the country and a deeper immersion into European culture," participants boast. Free time for weekend treks around Europe as well as the foundation of the seminar classes, nearly daily site visits to evolving political institutions, completed the six-week Brussels summer program.

Another well-earned lesson learned by one student who was a part of the Brussels program was the importance of his passport—the fourth year INTA major was refused entry into the Czech Republic from Germany when the train’s ticket checker found him without this crucial piece of identification. Although the setback merely resulted in extra time to explore Germany, the experience is a perfect example of the kinds of life-lessons not learned in the classroom that are to be gained from studying abroad.

This incident also exemplifies the uniqueness of America’s security situation in the wake of reforms due
The Eiffel Tower in Paris, France is just one famous international landmark. Most students who visited Europe during a study abroad made sure to see. Although America has changed in reaction to the events of 9/11 by increasing airport security and immigration law enforcement, most Tech students who traveled abroad did not notice any appreciable differences in security around the world. The dominant method of transportation for students in the Brussels program was the widely-accessible and cheaply available train system that traverses Europe; security for this system was virtually non-existent (except for accidental breaches of political borders), yet none of the students were fearful that terrorism would affect their travels. Reynolds noticed that he was able to freely walk through security with his laptop still in its bag in European airports, unlike the United States where computers must be taken out of their cases and placed through security screening checks. Cuban study abroad program participants merely noted hyped-up security in returning to the States from the Cancun International Airport; one student even had to remove his shoes for inspection before boarding his plane. Heightened security was prevalent in American political institutions abroad. The U.S. Embassy building in France is surrounded by armed guards both outside and inside the embassy’s wrought-iron fence. Increased American security was one of the furthest things from the minds of study abroad students. Instead, students focused on classes, museums, building international memories and the many benefits they were gaining from traveling.

Aside from offering the chance to compare political reactions to world events from the perspective of the rest of the world outside of the United States, studying abroad is also an excellent way to earn an edge in the competitive job market. Getting a meaningful international experience is one way to prepare for entering the workforce with skills in collaborating or working with foreign teams or working as part of a multi-cultural or multi-national team. Beyond even these obvious lessons learned in cultural differences and lifestyle, studying abroad is also an amazing lesson in how the rest of the world views this country and its leaders.

"The best part about the trip is knowing that I'm now a worldwide person. I see the world as being a smaller place. I know my education from Tech is more well-rounded now."

Wes Reynolds
CS Major

For more information about how you can study abroad, contact the Office of International Education at www.oie.gatech.edu.

The Eiffel Tower in Paris, France is just one famous international landmark. Most students who visited Europe during a study abroad made sure to see.