Comparison of Return to Launch Site Options for a Reusable Booster Stage

Barry Mark Hellman

Space System Design Lab (SSDL)

School of Aerospace Engineering

USAF ASC/XRE

barry.hellman@wpafb.af.mil

Advisor

Dr. John R. Olds

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering

Presentation Overview

- Motivation of Study
- Historical Background
- Study Conclusions
- Technical Approach
- Staging Point Comparison
- Results of Trajectory and Vehicle Sizing
- Future Plans

Study Motivation

- Current desire to develop reusable booster
 - Study uses expendable upper stage (ARES)
- Booster recovery options
 - Return to Launch Site (RTLS)
 - Land at a site downrange
- RTLS Requirements
 - Velocity direction must be reversed
 - Staging occurs in near vacuum
 - Enough margin to land safely
 - 15,000 ft over launch site (KSC)

Booster RTLS Methods

Glideback

- Re-enter at high alpha, aerodynamic turn, and glide to launch site
- Completely unpowered after staging

• Flyback

- Re-enter at high alpha, aerodynamic turn
- Glide to subsonic cruising altitude
- Use airbreathing engine to cruise back to launch site
- Currently felt to be the proper solution

Boostback

- Pitch booster around after staging
- Fire ascent engine until booster's velocity vector points towards launch site
- Unpowered re-entry and glide to launch site
- Compare methods based on gross and dry weight
- 15,000 lb payload direct insertion into 100 nmi circular

Boostback Shows Significant Potential

Historical Look at Reusable Boosters

- Glideback
 - Future Space Transportation System (early 80's)
- Flyback
 - Liquid Flyback Space Shuttle Boosters (80's 90's)
 - Tokyo University Flyback vs. Glideback Study ('03)
- Boostback
 - Kistler K-1 (late 90's present)

Which is Best for a Hybrid System?

Technical Approach Baseline Configuration (Hybrid)

Technical Approach Branching Trajectories

- Three branches of flight
 - Ascent
 - Orbital
 - RTLS
- Requires an MDO method handle growth of booster due to RTLS

Technical Approach Design Structure Matrix

Space Systems Design Lab Georgia Tech Aerospace Eng.

Trajectories

Minimum Dry Mass Vehicles

RTLS Booster Required MRs

Gross Mass Comparison

Gross Mass is not a Direct Indicator of Cost

Dry Mass Comparison

Unfortunately Dry Mass is not a Direct Indicator of Hybrid System Cost

A Cost Trade will be Needed

Space Systems Design Lab Georgia Tech Aerospace Eng.

Optimal Staging Points

Parameters from Optimal Staging Point	Glideback	Flyback (Lowest Dry Mass)	Boostback (Lowest Dry Mass)
Staging Ideal ΔV (ft/sec)	7,248	11,200	10,200
Staging Mach Number	3.23	6.35	5.20
Staging Altitude (ft)	106,944	178,938	172,224
Staging FPA (deg)	44.6	20.0	31.0
Max Re-Entry Mach	1.86	6.93	2.72
Total Gross Mass (lbm)	822,600	872,800	915,300
Upper Stage Dry Weight (lbm)	20,100	17,200	18,600
Total Dry Mass (lbm)	78,100	95,800	81,000
Booster Length (ft)	74.4	85.7	84.9
Upper Stage Length (ft)	80.0	72.6	73.2
RTLS Time (sec)	846	4651	750

Too Close to Call: Need Cost Study

Results

Glideback

- Lowest dry and gross mass
- Low Complexity
- Requires No TPS (Re-entry Mach 1.8)
- Probably not lowest cost due to large expendable upper stage

Flyback

- Very low RTLS propellant required
- Flyback requires turbofan and installation hardware
- Highest dry mass
- Powered landing and go-around capability
- Long Return TOF ~ 78 min
- Requires Significant TPS (Re-entry Mach 6.9)

Boostback

- Requires Minimal TPS (Re-entry Mach 2.7)
- Short Return TOF ~ 13
- Boostback requires more return propellant
- Unpowered landing

Boostback Deserves Consideration Cost Study Needed

Future Work

- Need to pick staging point based on cost for hybrid system
 - − Booster cost is amortized over 100 − 200 flights
 - New upper stage for each launch
- Staging concerns
 - Rocket relight vs. continuous burn
 - Separation
- More in depth look at TPS requirements
- Compare maintenance requirements between Boostback and Flyback

• Backup

Previously Studied RTLS Boosters

- Future Space Transportation System (Glideback)
 - Space Shuttle Replacement (80's Design)
 - Stage at Mach 3
- Liquid Flyback Space Shuttle Boosters (Flyback)
 - Stage at Mach 5.2 at 163,000 ft
 - Coast to apogee of 270,000 ft
 - Cruise at 18,500 ft and Mach 0.48

Previously Studied RTLS Boosters

Kistler K-1 (Boostback)

Technical Approach Contributing Analyses

- Aerodynamics
 - APAS
- Airbreathing Propulsion
 - Isp ~ 3600 sec SFC $\sim 1/hr$
- Rocket Propulsion
 - Spaceworks Engineering Inc.'s REDTOP 2
 - LOX/RP, Gas-Generator, 2500 psi
- Weights & Sizing
 - Booster weights based on MER from Dr. Ted Talay
 - NASA LARC
- Trajectory
 - POST 3D

Glideback Final Altitude

Ground Track

Boostback Booster and Upper

