Aerobraking Cost/Risk Decisions

David A. Spencer
Jet Propulsion Laboratory
California Institute of Technology

Robert Tolson
North Carolina State University
National Institute of Aerospace

Deep Space Systems Session
Georgia Tech Space System Engineering Conference
Atlanta, Georgia
November 10, 2005
Agenda

- Motivation for this Paper
- A Brief History of Aerobraking
- Aerobraking Risk
- Cost
- Aerobraking Cost/Risk Trades
- Conclusions
Discover Magazine Award for Technological Innovation, 1994
Odyssey Orbit Period During Aerobraking

- Actual
- Plan
Odyssey Aerobraking Periapsis Altitude
Key Aerobraking Risk Areas

- Orbit-to-orbit density variations
- Structural loads and thermal cycling
- Communications failure
- Spacecraft safing
- Human error
Orbit-to-Orbit Density Variations
Probabilistic Risk Assessment

• Assumptions: Generic aerobraking orbiter
 – 90-day aerobraking phase
 – 300 main-phase orbits with Odyssey-like heating corridor
 – 150 walk-out orbits targeting lower heating

<table>
<thead>
<tr>
<th>Aerobraking Risk Area</th>
<th>Prob. of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit-to-orbit density variations</td>
<td>0.018</td>
</tr>
<tr>
<td>Structural loads & thermal cycling</td>
<td>0.011</td>
</tr>
<tr>
<td>Communications failure</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Spacecraft safing</td>
<td>3×10^{-4}</td>
</tr>
<tr>
<td>Human error</td>
<td>2×10^{-5}</td>
</tr>
</tbody>
</table>

• Estimated reliability of aerobraking phase: 0.97
Generic Orbiter Mission Risk

<table>
<thead>
<tr>
<th>Mission Phase</th>
<th>Success Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Launch)</td>
<td>0.96</td>
</tr>
<tr>
<td>P(Cruise)</td>
<td>0.99</td>
</tr>
<tr>
<td>P(Orbit Insertion)</td>
<td>0.95</td>
</tr>
<tr>
<td>P(Aerobraking)</td>
<td>0.97</td>
</tr>
<tr>
<td>P(Science)</td>
<td>0.99</td>
</tr>
<tr>
<td>P(Success</td>
<td>Aerobraking)</td>
</tr>
<tr>
<td>P(Success</td>
<td>No Aerobraking)</td>
</tr>
</tbody>
</table>

- Inclusion of aerobraking for our generic orbiter mission lowers overall probability of mission success from 89.4% to 86.7% (2.7%)
Odyssey Aerobraking Cost Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost (FY’02$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobraking Planning & Development</td>
<td>$1450 K</td>
</tr>
<tr>
<td>Navigation, Spacecraft Team, Mission Planning & Sequencing, Test & Training</td>
<td></td>
</tr>
<tr>
<td>Aerobraking Operations</td>
<td>$4810 K</td>
</tr>
<tr>
<td>Mission Management, Navigation, Spacecraft Team, Mission Planning & Sequencing, Atmospheric Advisory Group, DSN Scheduling, Ground Data System</td>
<td></td>
</tr>
<tr>
<td>Science Team</td>
<td>$3050 K</td>
</tr>
<tr>
<td>Science Operations & Data Analysis</td>
<td></td>
</tr>
<tr>
<td>Total Aerobraking Costs (FY’02$)</td>
<td>$9310 K</td>
</tr>
</tbody>
</table>

Note: Costs are estimated based upon number of people and duration of work period. Costs shown are in FY’02$. DSN costs not included.
Generic Orbiter Aerobraking Cost

• To generate a cost estimate for a generic (Odyssey-like) 90-day aerobraking phase…
 – Odyssey aerobraking ops and science costs are scaled up to a 90-day mission phase; planning costs stay the same
 – Costs are inflated from FY’02$ to FY’06$
 – DSN costs are estimated assuming continuous 34m coverage, based on DSN rate table ($2.6M)

• Resulting estimated cost is $15M.
Aerobraking Cost/Risk Trade

• If actual costs were the only consideration, the decision on whether to baseline aerobraking would be straightforward.
 – Compare estimated cost of aerobraking ($15M for our generic mission) with the cost of a larger launch vehicle to enable purely propulsive capture. Choose the lower cost option.
 – This is the approach commonly taken by proposal teams.

• However, this decision process completely ignores the added risk introduced by the addition of the aerobraking phase.

• The key question is: how much is it worth to “buy down” the risk of aerobraking through buying a larger launch vehicle?
How Much is it Worth to Buy Down Aerobraking Risk?

• Assume our generic mission has a total mission cost cap of $450M.
 – Roughly $425M (including L/V) will be invested in the mission by the point of aerobraking completion.
 – Remaining $25M represents cost of flight operations and data analysis during the science mission.

• The Probabilistic Cost of Failure is calculated by multiplying the amount invested ($425M) by the reduction in mission success probability due to aerobraking (0.027). Result: $11.5M
 – This is how much aerobraking risk is worth.

• The “effective cost” of aerobraking is equal to the planned cost of aerobraking ($15M) plus the probabilistic cost of failure ($11.5M). Result: $26.5M

• The Project Manager should be willing to spend up to $26.5M to procure a larger launch vehicle, to enable purely propulsive capture.
Conclusions

- Aerobraking is an enabling technology that allows significant propellant savings (typically 300-600 kg), and lowers launch costs.

- There are inherent risks with aerobraking.
 - Strawman PRA indicates that the probability of failure for a 90-day aerobraking phase with Odyssey-like heating rates is about 3%.

- The increase to the mission risk posture should be considered when making the aerobraking cost/risk decision at the inception of the mission.

- The “effective cost” of aerobraking is the planned aerobraking cost plus the probabilistic cost of failure.

- The effective cost of aerobraking should be compared with the incremental cost for a larger launch vehicle to enable purely propulsive capture.
 - If the incremental cost for a larger launch vehicle is less than the effective cost of aerobraking, the larger launch vehicle is a wise investment.

- Applying this concept to early mission trade studies and proposal evaluations is a necessary step toward making appropriate cost/risk decisions...and it’s good system engineering!