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NOMENCLATURE

This table contains the definitions of the symbols used through-

It does not contain symbols defined and used locally

within the body of this work. Dimensional variables are primed to

distinguish them from dimensionless variables. Units are designated

by @ for thermal units, M for mass units, L for length units, t for

time and T for thermal degrees,

Symbol

Definition
expansion coefficient, defined by Equation IV-5.
heat capacity, 8’/6’ é‘ [=] Q/MT.
» po P
constants in density equation.
mean diffusivity, D'/D; D’ [=] M/Lt.

energy of activation for reaction rate constant,

'
AH&
T,
energy of activation for flow consistency index,
s’ T/ - T
Vi W o
-ﬂ,,(T T )'
w o
Ur2
Eckert number, ETQTT .
po o

P # -p
free convection number, out( 0ut+ O)
(o] pout p0

y’e

Froude number, Evgzﬁv .

Z

e.

acceleration due to gravity in the z direction,

g/ [=] 1/t°.




Symbol

as]]

AH,

A,
ﬂﬂi

Pr

Xiv

Definition
enthalpy of pure species i per mole, H{/C;OTQ
H' [=] q/M.
partial molal enthalpy of species i, Hi/CéOT;
B [=] o/M.
heat of reaction per mole of species 1,
¢
ol [=1 /M.
heat of reaction per mass unit of species i,
aft! [=] g/M.
activation enthalpy for reaction rate constant,
! —
&, (=] q/m.
activation enthalpy for flow consistency index,
B [=] o/M.
thermal conductivity, k'/ké k' [=] q/1Tt.
'
reaction rate constant, Kr/K’ K'_ [=] £t
TO r

. A K.! i ’ 2-1
flow consistency index, V/KvO L (=] M/Lt™ ",
molecular weight of species i, Mi (=] M/Mole.
integers defined in Equation IV-7.
flow behavior index, dimensicnless,.

local Nusselt number defined by Equation A-31.

Nusselt rnumber based on the entering temperature
drop, defined by Equation A-39.

arithmetic mean Nusselt number defined Ty
Equation A-U41.

log mean Nusselt number defined by Equation A-L3.
F F f2 K M
pressure, P /pOU0 P’ [=] =
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Cp Kvo oR' 1-n

Prandtl number, -_}2"_ (*I-J-r—)
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Z
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Z

Greek Symbols
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(SN

Definition
tube radius, R’ [=] L.
tube radius, r'/2R’ r’ [=] L.
function of r defined by Equation IV-5.
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> T T -T

°
LUt
average velocity, 5 U [=] 1/t.
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’

axial velocity, %T u’ [=] L/t.
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radial velocity, —~E§ v/ [=] /¢,
O

average mass fraction, dimensionless.
mass fraction, dimensionless.
radial distance defined by Equation IV-8.

axial distance, z’/2R'Re.
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RIQKJ ’
roto
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o

reaction rate parameter,

coefficient in power series solution, defixed
by Equation IV-10C,
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density, p'/p. P (=] 3
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Greek Symbols

9

rz’

Subscripts

AM

Superscript

xvi

Definition

ratio of Reynolds number and Froude nunber,
Re/Fr.

shear stress, T , [=] M/t2L.

axial distance, 16(%$§E) £ or 16(%%%;) & -

non-Newtonisn viscosity, defined by Equation
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arithmetic mean.
radial grid coordinate.
axial grid coofdinate.
local wvalue,

log mean value.

mean value.

entrance value,

wall value.

denotes a quantity per massg unit as opposed to
molal unit.




xvii

SUMMARY

Although non-Newtonian fluids occur often in the chemical indus-
try, few studies have been reported in which the effects of the non-
Newtonian characteristics of the fluid are considered in a realistic
manmer, In particular, the fields of heat and mass transfer accompany-
ing a reacting non-Newtonian fluid have received little attention. The
primary cbjective of this study was to consider the operation of a
laminar flow, nonisothermal, tubular reactor. Secondary objectives were
the study of heat transfer to a non-Newtonian fiuid from a constant tem-
perature wall and mass transfer to a non-Newtonian fluid from a constant
composition wall.

The specific objective of this work was to solve the equations
of continuity, motion, energy and diffusion for the situstions described
above. The physical properties were ©to be considered realistic func-
tions of tempersture and concentration, and the inertial terms in the
equation of motion and the radial wvelocity terms in the equations of
energy and diffusion were to be retained. The equations were simplified
by a boundary-layer analysis to the Prandtl boundary-layer equations.
The axial conduction of heat and diffusion of mass were neglected,

Before sclutions to the complete equations were obtained, several
simplified models were studied. For the tubular reactor problem, a
"plug flow" model representing infinite radial diffusion and a "para-
bolic flow" model representing no radial diffusion were considered.

These models showed that diffusion reduces the length of tube required
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for a given conversion. These models were also extended to include
varying density and heat effects, PFor a simple model for the heat-and
mass~-transfer problem, an extension of the Lévgque solution to non-
Newtonian fluids is proposed,

Analytical solutions were obtained to the problems considered for
the case of constant properties and fully developed flow. These solu-
tiong permit interpolation between the results of the limiting simpli-
fied models,

The solutions to the complete equations for varisble properiies
and fully developed flow were determined numerically by a finite differ-
ence technique. The method consists of replacing the partial deriva-
tives with finite difference approximations. This produces a system of
simultaneous algebraic equations which must then be solved implicitly
for the velccity, temperature and concentration profiles. Systems of
equatiocns similar to these used in this work have been shown to be
stable and convergent by earlier workers, The accuracy of the scheme
was checked by comparison of the results with the analytical results and
the 1little experimental data available, Variable property heat transfer
results agreed well with those of Wilkins (15). A step by step check
of the energy equation showed the tubular reactor problem to be a much
more stable problem numerically than the heat-transfer problem., Since
the heat-transfer problem gave results in good agreement with those of
Wilkins (15), the tubular reactor problem was felt to be stable and
accurate,

The numerical results were correlated by the simple models

discussed previously. Tables of results are presented which permit
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interpolation between the limiting simple mcdels for constant properties
and for varying density. The effect of a developing velocity profile
was found to be important for

R'%’p’ U’ 1-n

r

o O
T TvE &) o<n
The exothermic heat of reaction of reaction situation could be

bounded by the isothermal "parabolic flow" model and the adisbatic

"plug fiow" model. The results were correlated by a heat of reaction,

A
AH =

=
1
]

a parameter Ev representing the rate at which the reaction rate constant

changes with temperature and defined by

_ T -1
K - exp(Ev T )

r

a group controlling the heat-transfer rate

12,4 / /
aPr qugpopo

Sc L’
Q

i

and a length parameter

* ntl, o
= 26(37) 56 2

-3
|

f 4
= ( n+l) Kr 2
3n+l’ U
Concentration and temperature profiles and average concentration and
temperature are presented for gases, Newtonianuliquids and non-Newtonian
fluids,

Heat-transfer results for non-Newtonian fluids are presented for




constant properties and fully developed flow. The effect of varying
rheological properties is also considered, The parameters here are

Ev which is defined by
K, = exp(Ev T)

and

n+ly 2
€ =167 5

l-l-( n+l) k =
3n+l R;2U:OP;C£O

which is a length parameter,




CHAPTER I
INTRCDUCTION

Many chemical engineering operations reguire the solution to
problems associated with the individual or combined effects of fluid
flow, heat transfer and mass transfer, One approach to such problems
congists of the mathematical solutions to the general equations of
continuity, motion, energy and diffusion., However, for complicated
problems involving variable properties and developing flows, analytical
solutions are practically impossible. Although numerical methods lmple-
mented on electronic computers are less rigorous, many useful results
can be obtained by these techniques. This study was a numerical investi-
gation of three problems involving a non-Newtonian fluid flowing in
laminar flow in & vertical tube, These prcblems are:

(1) A tubular reactor.

(2) Heat transfer from a constant temperature wall,

(3) Mass transfer from a constant composition wall,

Homogeneous Tubular Reactor

The primary problem was that of a fluid reacting with a homoge-
neous first order reaction, Fuller (1) has studied this problem for
turbulent flow of Newtonian fluids and discussed most of the previous
work. However, no studies have been reported on this topic for laminar
flow of non-Newtonian fluids and only a few have been reported for New-

tonian fluida, Theae are summarized bhelow,




Bosworth {2) was the first to consider the effects of diffusion
oo corversiorn by a complicated but intuitive argument. Although the
regilts are of great value, they do not represent the solution to the
diffusicon equation.

Teuwerier (3) considered the diffusion equation for the case of
sorstant physical properties and fully developed flow, neglecting axial
diffusior and radial convection, and determined the form of the analy-
tical solutior. Wissler and Schechter (4) completed this problem with
the determination of eigenvalues, expansion coefficients and norms.

Glelard and Wilhelm (5}, using an electronic computer, solved the
diffusion equation numerically and compared the results with experimental
data. This work showed that free-convection effects based on corcentra-
tior and temperature differences could be significant and indicated a
nesd for variable property solutions. Vignes and Trambouze (6), study-
ing a second order reaction, attacked the problem in almost the same
marzer as Cleland and Wilhelm (5) and cbtained similar results,

Jlrichson and Schmitz (7) studied the effect of developing flow
or homogernecus reaction by assuming the approximate veloelty profiles of
Lacghaar 3. This technigue, although gquite valuable, cannct be exten-
ded to include variable properties or non-Newtonian fluids.

The effect of axial diffusion on conversion was studied experi-
mer.tally by Dickens et al. (9) and analytically by Walker (1C). The
reguits irndicgred that this effect is unimportant except for very slow
Flows.

The orly reported works which consider energy effects are those

of Chembré (i3, 12). His earlier paper discusses the "plug filow" model




wrick, is discussed in the third chapter of this work. The later paper
cor.siders the rore involved problem but the assumptions used severely
iimit the usefulress of the eguations, Actually the problem is merely
red.ced t) a Sturm-Liouville problem which must be solved for each case,

Tre objectives of this work were to cobtain the analytical sciution
for the gereral power-law fluid and to develop numerical solutions to

irciude the variable property, developing flow cases.

Heat Transfer from a Constant Temperature Wall

The second problem studied was that of heat transfer {rom a wall.
The analytical solution, assuming constart properties and fully developed
flew, was first reported by Graetz (13) for Newtonian fluids. For mary
practical situations these assumptions are not valld and attempts have
tLew made to remove these restrictions. Lee (14%) has summarized most of
these attempts and has presented a numerical sclution for variable
physical properties, Wilkins (15) has extended this to include the
trertial terms in the eguation of motion and the radial velocity term
iv. the energy equation. This work is valid in the hydrodynamic extrance
region «f the tibe as well as in the thermal entrance region.

Non-Newtonian fluids have only recently received much attention.
Tyche and Bird (1€) have extended the Graetz solution to the special
cagse of power-law fluids of n = 0.5 and n = 0,2, Pigford (17) has
exterded the Lévgque solution to non-Newtonian fluids.

Metzner, Vaughan and Houghton (i8) have presented experimental
data ard correlated it to within 13.5 per cent. The physical properties

for agiec.s sciutions of Carbopol and sodium carboxymethylcellulcse




("™} are giver. as functions of temperature,

Craig {19) has also obtained a large amount of experimental data.
He compared this to a numerical solution of the equations of motion and
erergy in which orly the rheclogical properties were allowed to vary and
fully developed flow was assumed. The mean deviation between calculated
ard experimertal results was 7 per cent,

Lemmon (20) has rumerically solved the equations of motion and
energy for the developing flow case considering the rheological properties
13 be functions of temperature. However, he did not cover a wide range
of conditions.

The objectives of this work were to obtain an analytical solutlon
for the case of a general power-law fluid and to develop numerical solu-
tions without the restriction of fully developed flow or constant pro-

perties.

Mass Transfer from a Soluble Wall

The +hird problem considered was that of masgs transfer from a
wall, This study was restricted to isothermal conditions ard low mass
+ransfer rates so that the radial velocity was assumed to be negligible
at the wall, This problem is very similar mathematically to the heat.-
trassfer proklem, and indeed if constant properties and fully developed
flow are assumed, the heat-transfer solution can be used for the mass-
trarafer protlem merely by substituting the Schmidt number for the
Prardil runmber and concentration for temperature.

Tirtorn and Sherwood (21) studied the diffusion of acids from

soiudble tube walls into a stream of water. This work indicated good




agrecment with the Graetz solution. Saunders (22) studied the diffusion
of acids from soluble tubes into non-Newtonlan fluids. The results were
correlated by the Lévgque equation corrected with a term involving the
viscogity of the non-Newtonian fluid divided by the viscosity of the
soivent,

Since non-Newtonian fluids involve very low concentrations, vari-
atle property soluticns are probably not highly significant, The purpose
of this work was to cobtain solutions %o the diffusion egquation which are

valid for low concentrations.

Physical Properties

Ir a study of this type it is important to keep in mind the range
of interest of the physical properties and the various parameters such
as the Reyrolds number, the Prandtl mumber and the Schmidt number.
Accordingly, a literature search was made to obtain this informetion

ith special emphasis being placed on how these properties vary with
temperature and concentration.

Although non-Newtonian fluids are of many diverse types such as
polymer melts and solutions and agueous solutions, suspensions, and
sturries, primery interest here was placed on polymer melts and agueous
solutions of 2ellulosic polymers.

Nou-Newtonian fluids are characterized by their rheological be-
havior and, although this study assumed a power-law relationship between
shear stress and shear rate, it must be remembered that real fluids
follow this relationship only approximately. Many non-Newtonlar fluids

have elastic praoperties and/or time-dependent properties which are not




adequately described by this simple model. However, many engineering
problems can be studied successfully using this assumption and many
rheological studies are available, both for polymer melts (23, 24) and
agqueous solutions of celiulosic polymers (18, 19), from which the
necessary properties can be characterized as functions of temperature.
Studies of concentration effects are limited (25).

Density measurements (26) and heat capacity measurements (26, 27)
have heen reported for polymer melts as functions of tempersture. Simi-
lar measurements on agqueous solutions (18, 19} have indicated these
properties to be very close to those of water.

Thermal conductivity measurements on polymer melts (25, 28) indi-
cate little change with temperature but do indicate a low value of
thermal conductivity approaching that of an insulating material, Mea-
surements on agueous solutions {28) have indicated the thermal conduc-
tivity to be equal to that of water, while others (18) have determined
this value to be as much as 25 per cent below that of water,

Heats of reaction can be calculated by standard methods. Typical
values for heats of polymerization (2%) have been reported.

Values of diffusivity are the most difficult to obtain., Experi-
mental values are tabulated as functions of temperature for gases (29),
and as functions of temperature and concentration for certain organic
liguids {30). However, only a few values are available (31, 22) for
ron-Newtonian fluids which are of primary interest.

The range of interest for the various parameters can be deter-

ired by combiring values of the physical properties. Ranges of para-

meters used in this study are:




Parameter

Re

1o

Range
100-2200

0.7-1.0
5-100
10-1000

0.7-2.5
800-1200
10,000

Gases

Tiguids
Non-~-Newtonian
Fluids

Gases

Liquids
Non-Newtonian
Fluids




CHAPTER Ii

DEVELOPMENT OF EQUATIONS

In this chapbter the physical situation is described in detail,
The general equations of continmuity, motion, energy, and diffusion are

simplified and the assumptions are discussed.

Physical Description

A non-Newtonian fluid is flowing in laminar flow in a vertical
circular tube and reacting in a homogeneocus reaction. It can produce
or absorb heat and exchange energy with its surroundings., At the tube
irlet the velocity profile is either flat or parabeolice and the fluid
temperature is some constant value To' The tube wall temperature is
maintained at a constant value Th which can be equal to or different

from T .
o

Mathematical Degcription

Tubular Reactor

The flow ig considered to be steady and axially symmetric. In
addition the boundary-layer assumptions are made. Applicability of the
boundary-layer assumptions to non-Newtonian fluids has been discussed
by Acrivos (32), Schowalter (33), and Collins (3%)., With these assump-

tions the z-component of the equation of motion becomes

i 4 !
JE SRTCRRE B T SCRNE PV




For isotropic, non-Newtonian fluids the shear stress is given by

'
= _ m’ ou -
'Trzf = L 3 II-2

where T’ is a scalar function of temperature, composition and the velo-
city field. The equation of motion then becomes

]

du’ au’ dp’ 103 sou
p (vt uir) = - Gt e ) e, I1-3

The empirical functional relationship used in this work between

N’ and the velocity field is the power-law model. Thus
II-b

where K; and n are functions of temperature and composition alone. For
r=1 the fluid is Newtonian and K; reduces to the Newtonian viscosity,

Casting the equation in non-dimensional form yields

P
i, L duy . B, 3w, M, 30 )
plv 5r T 4 az) =-3t Ll Br2-+ (r * ar) ar + 8p II-5

Considering the enthalpy to be a function of temperature and com-

position, the energy equation (Equation E, Table 18.3-1, Bird (35))

becomes
2 - ;
d - . oW
rmtgor BT’ - D NN SPTURPRY. | 1 3 i, T4
v v ) = e E ar’)“”l 7 5T 5
i:]_ 1
3 B w
¥
-pZ.I\‘T{(V -a?r+12 'a—“r)
i=1
au"re gﬂ
+ K; [(3;7) 2 II-6

where the axial conduction of heat and the axial diffusion of mass have
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Leer. neglected and the reaction mixture is limited to two components.

Heat effects assoclated with pressure forces in the term

, dP’
u

Pz’

are also neglected. The last term in Equation ITI-6 represents viscous
digsipation, If the equation i1s cast into non-dimensional form, the

summation terms expanded and the relation
W, +w, =1 IT-7

used, the result is

2
pé (V-Q—T-+u-§-l']; —--}—(k-é—q‘1+(§+§E oI

jo! ar ag Pr ar2 ar’ ar
1,43% D 3D ow N
- gg(ﬁH(g;g + (; + ) g;) +Dr 5

A dw W au, 2Pt
an(v&»fug-E) + Be Kvkar) ]2 II-8

+

where

s H H
(—2 - —i) W TI-9

My My
Since data on the partisl molal enthalpies is limited, the enthalpies of
the pure components are usually used. For this sgituation :}.% becomes
&ﬁ which is the heat of reaction per pound of component A reacted.
Although this assumption 1s not really justified, the use of a mean
value of Aﬁ would probably represent the data adequately., Numerical
solutions allowing &fi to vary with composition and temperature would

present no problems if sufficient data were availsble to characterize
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h - -
AH as functions of temperature and composition.
The diffusion equation, assuming a first order homogeneous reac-
tior and ne axial diffusion, becomes

f

aEW;

: ow’ v’y aw’ ¢ iy
p (V —-'I-l'r + U 'a—Z-r) =D Br!g + (‘—r + -a—f"-r) - K rp W IT-10
In non-dimensional form this equation becomes
u , v 3% D . 3Dy aw
p(V’ 5'-1': az = -STC'(;E + (? E:) "51': - l6Q’pKrW) JI-11

The three equations -- the Equation of motion II-5, the Equation
of energy II-8, and the Egquation of diffusion II-11 -- are to be solved

in conjunction with the eguation of continuity

1oprv  3pu _ 4 I1-12
r ar dz

and the overall mass balance

§%§3 dr = constant 11-13

O t——n

to determine the values of u, v, w, T and P. The boundary conditions

for this system of eguations are

T z=0 K, =9 = CP =k=D=K =1 (0srsd) P=v=0,
T=1
. _ ¢3n+l n+1
Either a. = (n+l J(1 - (er) —
oY b, u=1
ou _ aT dw
T = — U r— = = — =
IT r=20 Sr T v OT St 0
W oW
11T r = 3 vE=us=0,T=5 £-=0

s}
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Some of the dimensicnless variables used in these equations are

listed below. A complete listing may be found in the nomenclature

section.
B r! . = Z! P ~ P:
T e R 2R Re g2
o)
u = u’ v = v'Re P = T’
T e T
Re = 7 Fr = g=7—r
, KVO g% %
5 2Rr 1-n OKVO 2R: l-n
c = (= Pr = (=)
DO Ub k U0
K’ R:p: UIS
ro o Q
¥ = —-E—p—-—-—D EC S p—
o jela e

Heat Transfer from & Constant Temperature Wall

For n = 1 {Wewtonian fluid) this is the well-known Graetz problem.
The fiuid is not reacting and the diffusion equation is not required.
For this situation the equation of motion and energy for non-Newtonian

fluids becomes

2
duy _ 4P 9 T _ﬂ
(V——-T-UE EE+T|——2 ( ) II-14
ar
and
2
O L.y I SN AN )
pCp(v =t az) o (k Br2 + (= + ST ar) I1-15
where
i
T = cp—n
T -7
W o

and viscous dissipation has been neglected.
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The boundary cenditions are

1 z =0 K,=p=1 (0sr<3)
v=T=20
n+l ntl
Either a. u = (_E:T)(l - {2R) n )
or b. u=1
o AT
T = = e — =
IL r =0 Vo= T Sr ]
113 r=3% u=v=0,T=1

Mass Transfer from a Wall

This problem is similar to the heat-transfer problem except that
the wall is maintained at constant composition. This study was limited
to isothermal conditions. Therefore, the equations of motion and diffu-
sion are to be golved with special emphasis on the entrance region. The
equation of motion retains the same form as Equation II-5 and the diffu-

sion equatior becomes

2
oW oWy 1 AW D , 3Dy 3w
(v = Vs T 5 (D 5;5 + (r + ar) ar) 11-16
The boundary conditions are
I z=0 D=K=p=1 (0=r<$)
v=w=0
3n + 1 nel
. _ ¢3n _ o
Either a. u-.(-—-——n+l)(l (er) * )
or b. u=1
U _ oW
T = I m— D m—
IT r =20 v St Sr 0

=
ki
H
N
1]

=
<
]
o
i
o

k]
=
1l
}_J
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CHAPTER IIT
SIMPLIFIED MODELS

Before proceeding to the solution of the general equations, it
is worthwhile to consider two simple models of the tubular reactor,
These models usually establish upper and lower bounds for the solutions
to the complete problem. The first model, termed the "plug flow™ model,
assumes that diffusion is rapid compared to the reaction and that the
concentration is uniform across the tube. The second model, termed the
"parabolic flow" model, assumes that diffusion is negligible and that
the concentration profile is established by the velocity profile which
exigts in the tube. This model predicts zero concentration at the wall
and a maximum concentration at the tube axis.

The equaticons for these models may be obtained by deleting the
less important terms from the general equations, Heat exchange with
the environment is accounted for by a heat transfer coefficient. The

equations become

dw _ 16
pu SE = = 5 Q'Krpw III-1
\ )
pu%=-aﬂpu§-‘z‘-'-8ip‘;(m-l) ITT-2

where the last term in the energy equation represents the heat exchange

with the environment. Defining

* n+ 1, o
Z = 16(—3~m) S Z I1I-3
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gives
el 3n + 1
pu ox = - (= — l) K pw IIT-4
and
u Ly oo aflpu - oty MuSe 1I1-5
PU3z* = PUaz* " “\3n+ 1/ o or
The "plug flow" model assumes
u=1 I1I-6
while the "parabolic flow" model assumes
n+l
= (2EHA- (e ™) I71-7

n+ 1

Congtant Properties

For corstant properties only the diffusion equation is of inter-

est. The "plug flow" model reduces to

oW (3n + l)
Se*x =~ T

and the solution is

xp(- (3r + l) z*)

n+ 1

The "parabolic flow" model becomes

n+1
. : n aw _
(1 - {or) SE =W
and the solutior. is
%*
= ( -z
W o= exp n+l

(1- (ar) 1)

ITI1-8

III-9

ITT-10

) TIT-11
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The average concentration is found by an integration across the tube

n+l

r(1 - (2r) ¥ )w dr ITI-12

=
i
@ 9]
Pt
Lo
=
+
P_l
S
O —— il

For Newtonian fluids Cleland and Wilhelm (5) have shown that this
integral can be expressed ir terms of the exponential integral, & tabu-
lated function, For other values of n the integration can be performed
numerically. A comparison of the two models for several values of n is

presented in Table 4 of Appendix D.

Varying Density

If a linear variation of density with concentration ls assumed
p = Cl + cC. W III-13
where
c, + ¢, =1 ITI-1k4

ther the diffusion equation for the 'plug flow" model becomes

dw o _ . (ntl
x = - ( — l)(cl *+ ¢, W) W III-15

The solution %o this equation is found to be

c + C W
¥  {(L+n) 1 2
7z = Cl(l - 3n)ln - III-16
L&
W = T 1 — III-17
exp((Sr7 ey 27) - o

The "parabolic flow" model yields a solution as follows:
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nel
n c., + Cc, W
o) )y, 1 2 I17-18
c w '
1
&
v = 1 III-19
C.Z
1
exa ) - o,
(1-(er) ™)

The average concentration is found by a straightforward numerical inte-
gration across the tube, A comparison of the two models is given in

Tables 5 and 6 of Appendix D.

Adiabatic Flow

For this case the energy equation can be integrated to give
A
T=1-aH(1-w) I11-20

Agsuming that the variation of Kr can be expressed by

Ea(T - 1)
K, = exp(-——T—) ITI-21
The soluticons become
W
* n+ 1y o aw
7 = (3n — l) J TIT-22
1 ﬂﬁEa(l - W)
w exp(- > )
1 - AH(L - w)
for the "plug flow" model and
n+l w
* r
77 = {1 - (2r) ) J f“ III-23
1 AHE (1 - W)
w exp( ~
1 - aH(1 - w)

for the "parabolic flow" model. The average concentration is found by
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a trial and error integration of Equation ITTI-19., A comparison of the
two models can be made from the results presented in Tables 7 and 8 of

Appendix D.

General Flow

Solutions to Equations ITI-4 and III-5 have been presented for

limiting values of Nz ii approaching infinity (isothermal flow) and
approaching zero (adiabatic flow). The solution of these equations for
Nu Sc

for the "parabolic flow" model would pre-

intermediate wvalues of
o Pr

gsent a number of problems. However, solution to the "plug flow" case

is simple and several solutions are given in Tables 9, 10 and 11 of

Appendix D,

Heat and Mass Transfer

A simplified model for the heat- and mass-transfer problems is
the well-known Lévéque solution. This solution has been extended to
include non-Newtonian fluids by Pigford (17). The results can be

summarized by

1+ 3n)l/3 1+ 3n 2/3 2/3
I 2 + 2n
/3 -1/3
l+n
—) &

Tm = 1,615 ( IIT-24

NuAM = 3.23 {( ITI-25
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CHAPTER IV
AVALYTICAL SOLUTIONS

In this chapter analytical solutions are devéloped and the results
compared with numerical solutions. Analytical solutions for the three
problems congidered in this study can be cbtained for the case of a
general power-law fluid flowing in fully developed flow and having
constant properties. For these assumptions the eguation of motion
can be uncoupled from the eguations of energy and diffusion and the

velocity profile determined to be

n+l

n + 1 n
= (&I - (e ™) -1

Homogeneous Tubular Reactor

The diffusion equation under these assumptions becomes

2
2w + Low _ Scu o l6ow = © Iv-2
2 r or 3z
or
with the boundary conditions
I z = 0 w =1
I r=0 WM _ g
ar
oW

Substituting Bquation IV-1 into Eguation IV-2 and defining

16z
E = i
(3n + l)

n+ 1

-3
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gives
- 0+l |
3% , L g ny dw _
N 16(1 - (2r) ) Y 160w = O Iv-h
or
Proposing a solution of the form
W =Z ¢, exp(- A E)R, (x) V-5
I=1
gives
n+l
# 1 1 n _
R + TRy + 16(11(1 - {2r) 7)) - a)Ri =0 V-6

where the primes indicate differentiation with respect to r., In order

to solve this equation it will be assumed that Eii ig a rational num-

ber, i,e., it can be expressed as a ratic of two integers,

N
n+ 1 -1 V-7
n N2
Making the substitution
i
x = (2r)e V-8
Equation IV-6 becomes
R+ LR/ 4 BNl (1 - le) - )R, =0 V-9
Tix o ox ix 2 it ix 7 -

where the sub x denotes differentiation with respeect to x. Assuming =

power series solution to Equation IV-9 of the form
=]
i K ]
R = Z Bg IV-10
k=0

gives the recurrence relation
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2
WNZ({e - .08 A B )
2 i k-2N2 + i k-ENé - Nl

(x-1)%

kz3 Iv-11

jasl
e
i

B, =0 k€0 Iv-12

where Bl ig arbitrarily set equal to unity and 82 is equal to zero by
bourdary condition at r = 0.
To determine the infinite set of positive eigenvalues, the

boundary condition at r = % is used.

i
2}k B,y = O IV-13
k=1

In order to determine the expansion coefficients, Ci, the follow-

ing orthogonality relation is used

n+1l

{1 - (2r) ™) RE dr =0 m#n Iv-1h

O — e

Jsing Equation IV-14 and the boundery condition at z = 0, the expansion

coefficients are found to be

% n+1
k| r(1 - (2r) ™) Ry dr .
;= — - V-15
' N.
L
where the norm, ﬁi’ is defined by
5 n+l
= B n 2 .
W, =4 J r(1 - {2r} = ) RS dr IV-16
i i
0

The average concentration is then found to be given by

2

_ 3n + 1 2 =
WM(§) = 2(‘;7:“3? ¢, N, exp (- Kig) v-17

=1
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This solution has been reported for Newtonian fluids by Lauwerier (3)

and Wissler (4).

Heat Transfer from a Constant Temperature Wall

The energy equation under the assumptions of constant properties

ard fully developed flow becomes

2
R 1v-18
r 3r az
or
with the boundary cornditions
I z =0 T=1
II r=20 %% = 0
171 r =% T =0
Defining
16z
g:m IV-19
n+1

converts Equation IV-18 into the same form as Bquation IV-4 with o = 0.
The sclution to this equation and boundary conditions proceeds exactly
ag the soluticn to the previous equation with o = 0 and the equation for

determination of eigenvalues changed o

w
Z By = O IV-20
k=0

This sclution has been reported by Lyche (16) for the special cases

n=1. 2= 0.5 and n = 0.2,
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Mass Transfer from & Soluble Wall

The solution to this problem is the same as the solution to the
heat-transfer problem if Sc is substituted for Pr and concentration for

temperature,

Resu%ig

Tubular Reactor

Eigenvalues, expansion coefficients and norms were calculated
for n = 0.2, 0.5, 1, and 1.5 for values of o from 0.25 to 25. The
results are presented in Table 12 of Apperdix E. These results may be
used with Equation IV-17 to calculate the average concentration as a
function of distance.

. Eigenvalues for n=1 have been reported by Wissler and Schechter
(4) and are in good agreement with those presented here. Comparison of
the radial concentration profiles with those of Cleland and Wilhelm (5)
and the numerical results presented in this work is given in Figure 1.
The average axial concentration profiles are compared with numerical
solutions in Figure 2. Comparison of caleculated results and the
experimental results of Cleland (5) is found in Figure 3.

The analytical solutions presented here are valid for o« less than
about 25 and for Z* greater than gbout 0.2. Attempts to extend these
golutions to higher values of « and lower values of z¥ by the defer-
mination of more eigenvalues was unsuccessful due t¢ round-off errors.
However, in Figure 4 it is apparent that the solution for o = 25 differs
from the simple model, "parsbolic flow" model, by only a few per cent
and that larger values of o are less important for the constant property

solutions,
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Heat and Mass Transfer

Eigenvalues, expansion coefficients and norms are presented for
values of n = 0.2, 0.4, 0.5, 0.6, 0.8, 1.0 and 1.5. The results are
presented in Table 13 of Appendix E. Values of various Nusselt numbers
and the mean temperature tabulated as a function of £ in Table 14 of
Appendix E.

Eigenvalues for n = 1, ¢.5 and C.2 have been reported by Bird
(16) and are ir good agreement with those presented here. Comparison

of numerical and analytical gsolutions is given in Figures 5, 6 and 7.
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Figure k.

Z

Effect of o for the Tubular Reactor Problem.
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FMgure 5. Comparison of Analytical and Numerical Solutions
Radial Temperature Profiles
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CHAPTER V
NUMERICAL SOLUTIONS

The primary purpose of this study was tc obtain solutions to prob-
lems involving non-Newtonian fluids, Solutions for several simplified
gituations were presented in Chapter ITII and analytical solutions for
the constant property, fully developed flow problems were presented in
Chapter IV. In this chapter numerical solutions to Equations II-k4, II-9,
and Ti-12 which are valid in the enirance region of the tube and which
consider the fluid properties to be realistic functions of temperature
and concentration are discussed. Detalls of the solution may be found
in Appendix A and the results presented in tabular form may bhe found in
Appendices F and G,

A complete solution to Equations IT-Y4, IT-9, and II-12 involves

ix parameters and elght property variables., These are

Parameters Properties
@ BSec 6 p K n C
v P
Pr Br T k K D H
W r

The primary distinction hetween the parameters and the properties is
that the parameters are constant for sny given program, while the pro-
perties are often functions of temperature and composition., A complete
study of all ranges of varisbles would require an excessive amount of
compater time. The results of this study should be considered more as

an outline thar as an exhaustive anslysis.
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Validity of Scheme

Before a numerical scheme can be accepted as correct, some criteria
mist be used to test the validity of the solution obtained. A rigorous
stability and convergence analysis of the schemes used in this study
would be difficult if not impossible at this time. An analysis proce-
dure for single partiasl differential equations based on intuitive argu-
ments has been presented by O'Brien (36) and outlined by Hildebrand (37).
This procedure is based on the unpublished work of von Neumann. This
method has been extended to systems of equations by Lax (38} and Richt-
meyer (39). Bodoia {40) has given a thorough adaptation of this method
to the solution of the momentum and continuity equations. Wilkins {(15)
has extended this to include the energy equation. Addition of the diffu-
sion equation presents no new analysis. The conclusion is that the scheme
used here is unconditionally stable and convergent.

In addition, the accuracy of the scheme can be tested by compari-
son with the results of the analytical solutions and experimental data.
These comparisons have been presented in Figures 1, 2, 3, 5, 6, and 7.
The solution to the momentum equation gives results identical to those
of Wilkins (15). The heat transfer results for varisble viscosity for
Newtonisn fluids agree well with those of Wilkirs (15).

Further, by the use of varicus internal checks it was found that
the tubular reactor problem is a far more stable problem than the heat-
transfer problem, For the heat-transfer problem the heat added to an
element of fluid can be determined either by the axial rise in the mean
temperature for a given step or by the slope of the temperature profile

at the tube wall. The agreement between these two independent methods
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provides a good check for the accuracy of the solution. For the reactor
problem & similar check can be made if account is made of the heat
liberated or absorbed by the reaction. These featureg are discussed in
Appendix A. These checks were used to determine the step size used to
march down the tube. The time required for a given run was therefore a
strong function of the stability of the sclution.

In this study it wag found that a tubular reactor program could
be run on & Burroughs B-5500 computer in sbout 100 seconds for fully
developed flow and about 200 seconds for developing flow. The heat-
transfer programs required about 250 seconds for fully developed flow
and about 600-800 seconds for developing flow. For heat-transfer pro-
grams the first step requires that the temperature at the wall take a
step functicn change. The velocity profile alsc changes most drasti-
cally very close to the wall, To achieve accurate solutions, small
steps must be taken, The reactor problem is a homogeneous reaction
that occurs all the way across the tube., The vioclent changes which
occur at the wall occupy such a small part of the total volume that
larger steps may be taken and still achieve accurate sclutions.

In summary the equations of motion and energy can easily be docu-
mented to show the validity of the solutions. Wilkins (15) has presented
numerous comparisons of his results with experimental data and the scheme
used here is similar in many respects to the one used by Wilkins (15).
The solution to the diffusion equation has been compared to the little
experimental data available in Figure 3. Therefore, it is felt that
the solutions presented here are stable, convergent and accurate and do

in fact represent the physical situation,
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Tubunlar Reactor

Corstant Properties - Fully Developed Flow

For constant properties and fully developed flow the only para-
meter of interest is «. The two simple models representing limiting
values as « approaches zero and infinity are given in Table 4 of
Appendix D. The numerical solution presented in Tables 15 and 16 of
Appendix F provides a convenient means of interpolating hetween the
two limiting values. This effect has been illustrated in Figure &,

It ig seen that diffusion is important for o = 25. Notice that for
large values of « the average concentraticn profile is independent of
o but that the radial concentraticn profile continues to change, and
the wall concentration approaches zero.

At thig point it is worthwhile to consider the range of interest
of the parameters. It is assumed in this work that many reactions of
interest will be at least 90 per cent complete at a tube length of be-
tween 10 and 500 diameters., Considering the extreme values of the

Reynolds number to be 100 and 2200 gives
0,005 <z =5

Using the "plug flow" and "parabolic flow” models, the values of «fSc

are determined to be approximately

24
—
0.05 = 5o 25

Since gases normally have Schmidt numbers of about cne, it is seen that
diffusion effects for gases can be significant. Liguids normally have

much higher Schmidt numbers. Therefore, even for low values of a/Sc,
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@ is relatively high and diffusion effects are small., For liguids the
"parabolic flow" model results presented in Taeble 4 of Appendix D
represent a good correlation, The effect of the flow consistency index
is shown in Figure 8,

Constant Properties - Developing Flow

If the entering velocity profile is considered to be uniform,
then the velocity profile changes as the fluid moves down the tube,
The results of many investigators indicate that the length required for

the centerline velocity to reach 99 per cent of its final value is about
z = 0.060

for Newtonian fluids. Since this process occurs asymtotically most of the
effect of the developing velocity profile on the concentration profile has
occurred in a much shorter distance. From these remarks it is expected

that developing flow will affect the result only if
o
E-C_‘El

For non-Newtonian fluids the hydrodynamic entrance length is longexr
than 0,060 for values of n less than one and shorter than 0.060 for
values of n greater than one, Entrance lengths results for nomn-

Newtonian fluids are presented below.

n Entrance length, z (99% Criteria)
1.5 0,022
1.0 0,060
0.5 0.11
0.2 0.16
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Figure B8, Effect of Flow Consistency Index on Conversion
Parabolic Flow Model,
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These entrance lengths agree well with those of Collins (34). Developing
axial veloclty profiles for non-Newtonian fluids are presented in Table 1
and illustrated in Figure 9.

The effect of developing axial velocity profiles on the concentra-
tion profiles is given in Tables 17 and 18 of Appendix F and is illustra-
ted in Figures 10, 11 and 12, The "plug flow” model represents the lower
bound for the developing flow problem. Therefore, for liguids the curve
will usually rest on the "parabolic flow" model but will move towards
the "plug flow" model for high values of a/Sc. The limiting cases are
presented in Figure 13. Although a larger difference 1s possible for values
cf n greater than one, the entrance length is so short that no effect is
felt except for very high values of Q/Sc. Although the solutions are
functions of «/Sc and Sc, the effect of Sc can be taken into account by
using separate tables for gases and liquids.

Most of the results reported in this work are for a parabolic
entrance velocity profile, and usually these results will be adeguate.

For non-Newbtonian fluids, developing flow will affect the results for

gle

For reactions which occur substantially in the entrance region a correc-
tion must be made towards the "plug flow" model

Variable Density

If the density is allowed to vary with concentration, then the
parameters of the solution are o, Se and 8. A change in density pro-
duces a change in the residence time in the tube. This effect has been

determined by the simple models of Chapter III. In addition, the con-



Table 1. Developing Velocity Profiles for Non-Newtonian Fluids

u 1n 1 u 1
zx:LO2 r=20 r=90.2 r=0.3 r=0..4 1r=Lks
0.001 1.028 1,028 1.028 1,028 1.025
0.028 1.226 1.226 1.226 1.11% 0.685
0.092 1. 360 1.360 1.348 1.948 0.522
0.508 1.739 1.642 1.320 0.754 0. 396
0.918 1.958 1.688 1.288 0.714 0.373
1.327 2.081 1.705 1.273 0.698 0.363
2.249 2,168 1.719 1.261 0.645 0.356
3,478 2.195 1.725 1.263 0.685 0.355
0.382 1.157 1.150 1.1ke 1.078 0.856
1.12h 1.302 1.292 1.249 1.021 0.654
2,455 1.438 1.405 1.292 0.930 0.550
4,503 1.543 1.481 1.308 0.874 0.499
6.961 1.600 1.520 1.310 0.84%4 o. 475
11.%67 1.642 1.548 1.306 0.824 0.461
24,574 1.669 1.560 1.308 0,815 0.453
1.532 1.131 1.131 1.124 1.070 0.887
4,002 1.221 1,221 1.197 1.046 0.767
7.369 1.274 1.271 1.235 1.025 0.694
16.380 1.319 1.315 1.26k% 0.994 0.639
26,211 1.331 1.326 1.270 0.985 0.627
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centration profile across the tube establishes free- convective forces
which also affect the yield.

The results for gases may be correlated by the simple models.
Interpolation between the two curves is aided by the information in
Table 19 of Appendix F and illustrated in Figures 14 and 15. For low
values of a/Sc, free-convection effects are negligible and the results
are independent of Sc. For high values of «/Sc, free-convection effects,
although not highly significant, are noticeable. These effects are cor-
related by a parameter, Fc where

p

Pout ® Pout ~
-5 G ) v
o out To

These results are given in Table 20 of Appendix F.

The results for liquids may be correlated to within a few per
cent by the "“parabolic flow" model. Since Sec is large for liquids, even
small values of Q/SC correspond to large values of o.

Reactions with Heat Effects

Since the rate of a chemical reaction is a strong function of
temperdture, the processes controlling heat transfer will also determine
the yield of the reaction. The simple model approach suggests that the
heat transfer with the enviromment may be characterized by the group
«Pr/Sc. For low values of this group, heat transfer is large and the
gsolution tends towards that of isothermal flow. For high values of
aPr/Sc, heat transfer is low and the solution tends toward the adiabatic
flow solutions. Indication of this group as a correlating parameter is
given in Table 2. It was found that separate correlations for gases and

liquids was advisable since the factors comprising the correlating group
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