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Abstract 

In this report, we present the application of a nonoscillatory second order relaxation scheme to 
simulation of flow in open channel networks. The analysis is based on the Saint Venant equations 
written in conservative form. Junction flow conditions in the channel network are solved explicitly 
using the continuity principle at each junction and the characteristic equations. When compared with 
other models and algorithms, which are based on the Saint Venant equation in non-conservative or 
conservative form, the proposed algorithm is of higher accuracy and is applicable to cases where 
propagation of a shock wave or discontinuity is involved. In this paper we discuss the application 
of the proposed algorithm to both single channel and channel network problems, with or without 
shock waves. Numerical results obtained are presented comparatively with analytical solutions or 
results obtained from other numerical solutions wherever applicable. 

1. Introduction 

Open-channel networks may be encountered in natural river basins, estuaries and in man-made 
drainage systems. Many problems in water resources, river mechanics and environmental hydraulics 
require accurate description of the characteristic parameters of the flow regime in these open-channel 
networks. For example, our research on contaminant and sediment transport simulations in open-
channel networks led us to the investigation of flow simulation in complex channel networks. In this 
paper we will not be going into the detailed description of contaminant or sediment transport 
analysis, but instead we will focus our attention on flow simulation in open-channel networks. 

An open-channel network system may consist of a number of interconnected river channels joined 
at a number of junctions. The presence of internal junctions in this system poses difficulties in 
numerical solution and routing of unsteady flow through the system because these junctions act as 
internal boundary condition for each channel joined to the junctions [Yen, 1979]. The values of the 
flow parameters (stage and velocity) at these internal nodes are a function of the solution and they 
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vary with time. Therefore, flow simulation in open-channel networks is much more complicated 
than single channel solutions, especially for large-scale network systems [Akan and Yen, 1981; Yen 
and Osman, 1976]. Also, as considered in the formulation presented here, channel sections joining 
the junctions may be of irregular geometry and may exhibit variable hydraulic properties at various 
cross-sections. 

Some methods have been proposed in the literature for flow simulation in open-channel networks. 
When classified according to the numerical scheme used in the solution, one may group these 
methods as implicit schemes or explicit schemes. From the perspective of general algorithm 
selection, one may classify these methods as simultaneous solution algorithms [Choi and Molinas, 
1993] and decomposed solution algorithms [Schaffranek, Battzer and Goldberg, 1981]. It has been 
shown in the literature that a conventional simultaneous solution algorithm, which utilizes a finite 
difference approximation, requires substantial computer memory and solution t ime even for simple 
open-channel network systems [Choi and Molinas, 1993]. In a recent study, Choi and Molinas 
[1993] developed a modified simultaneous solution algorithm to overcome this difficulty. They 
introduced a solution algorithm transforming the off-diagonal terms of the solution matrix to 
diagonal terms through recursion equations. Through this procedure, for an open-channel network 
composed of M cross sections, the storage requirement for the coefficient matrix would be reduced 
from (2Mx2M) to (2Mx4). This is a significant advantage, however, their analysis was based on the 
nonconservative form of the governing equations, thus these procedures would not be applicable to 
shock wave propagation problems. 

Because of the large computer storage and solution time requirements, other investigators have 
proposed solutions using the decomposed solution algorithm to solve open-channel network 
problems. In this approach the network system is considered to be a combination of several 
independent channels [Chen, 1973; Barkau, 1985, 1989]. The solution in each channel segment is 
separate and independent from any other segment and iterative solutions based on continuity 
principle at the junctions are required to join the segments properly. The overlapping Y-segment 
method proposed by Sevuk and Yen [1973] was one of the typical methods among these algorithms 
[Yen, 1979; Yen and Osman, 1976]. Schaffranek, Baltzer and Goldbery [1981] proposed another 
decomposed solution approach. In this algorithm, first, junction conditions are solved, then segment 
solutions were achieved based on the junction solutions. This algorithm may save substantial 
computer storage and computational time when compared with the conventional simultaneous 
solution algorithm. However, their solution was also based on the nonconservation form of St. 
Venant equation and computational accuracy was of first order. 

When we review numerical methods used in solution of open-channel network problems, one may 
see that implicit finite difference schemes have been utilized extensively. It is well known that, 
although the implicit scheme will yield inherently stable algorithms for the solution of an open-
channel network problem, a large number of algebraic equations may have to be solved 
simultaneously at each t ime step and large number of iterations may be required in order to solve 
the system at a desired accuracy level when this approach is utilized. On the other hand, in explicit 
schemes no iterations are required and the equations that are solved are not as large when compared 



with implicit schemes. The disadvantage in the explicit solution approach would be the time step 
size required to keep the stability and convergence of the solution under control. Therefore, in 
explicit formulation longer computational time may be needed. Typical applications of this approach 
can be seen in the works of several investigators where the Lax-Wendroff scheme [Murota, 1973; 
Liggett and Cunge,1975], the MacCormack scheme [Fennema and Chaudhry, 1986, 1987; 
Dammuller, et al., 1989] and the lambda scheme [Fennema and Chaudhry, 1986] were used to solve 
the open-channel problem. Although these methods were demonstrated to be successful in general, 
it is known that oscillatory solutions may be obtained at the shock point when Lax-Wendroff and 
MacCormack type schemes are employed to solve shock propagation problems. Larson, Wei and 
Bowers [1971] also applied an explicit scheme to characteristic equations, but in this case 
computational accuracy is again first order. For this approach, the conclusions reached for the shock 
propagation problem were similar. 

Most implicit algorithms developed in the literature are based on the Saint Venant equation in the 
nonconservation form. Therefore, if the shock or discontinuity, such as hydraulic j u m p or surge 
occurs in the solution, these solutions are no longer applicable. Moreover, from the point of view 
of conservation laws, a conservative form of the governing equations should be preferred in 
formulation since in such algorithms various flow quantities are conserved more rigorously and these 
algorithms simulate the wave celerity more accurately than the nonconservation form [Cunge et al., 
1980, Chaudhry, 1993]. In this paper, we base our formulation on the solution of the Saint Venant 
equations in conservative form and on a nonoscillatory second order relaxation scheme [Jin and 
Xin, 1995]. In this approach the junction flow conditions are solved explicitly by using the junction 
flow equations and characteristic equations. The proposed algorithm is applicable to open-channel 
networks with or without the shock waves or discontinuity. Example problems discussed in this 
paper demonstrate the versatility of the proposed method. 

2. Governing Equations for Unsteady Flow 

The governing equations of unsteady flow in open-channel networks are the continuity equation and 
the momentum equation which are based on the conservation of mass and momentum principles. 
The closure of the governing equations is achieved by describing two more equations for the 
conservation of mass and momentum at the channel junctions together with proper initial and 
boundary conditions. 

The governing equations for unsteady one-dimensional flow in the channel segments can be written 
in conservative form as [Liggett and Cunge, 1975]: 


