Scalability and Composability Techniques for Network Simulation
Abstract
Simulation has become an important way to observe and understand various networking phenomena under various conditions. As the demand to simulate larger and more complex networks increases, the limited computing capacity of a single workstation and the limited simulation capability of a single network simulator have become apparent obstacles to the simulationists. In this research we develop techniques that can scale a simulation to address the limited capacity of a single workstation, as well as techniques that can compose a simulation from different simulator components to address the limited capability of a single network simulator.
We scale a simulation with two different approaches: 1) We reduce the resource requirement of a simulation substantially, so that larger simulations can fit into one single workstation. In this thesis, we develop three technqiues (Negative Forwarding Table, Multicast Routing Object Aggregation and NIx-Vector Unicast Routing) to aggregate and compress the large amount of superfluous or redundant routing state in large multicast simulations.
2) The other approach to scale network simulations is to partition a simulation model in a way that makes the best use of the resources of the available computer cluster, and distribute the simulation onto the different processors of the computer cluster to obtain the best parallel simulation performance. We develop a novel empirical methodology called BencHMAP (Benchmark-Based Hardware and Model Aware Partitioning) that runs small sets of benchmark simulations to derive the right formulas of calculating the weights that are used to partition the simulation on a given computer cluster.
On the other hand, to address the problem of the limited capability of a network simulator, we develop techniques for building complex network simulations by composing from independent components. With different existing simulators good at different protocol layers/scenarios, we can make each simulator execute the layers where it excels, using a simulation backplane to be the interface between different simulators.
In this thesis we demonstrate that these techniques enable us to not only scale up simulations by orders of magnitude with a good performance, but also compose complex simulations with high fidelity.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Distributed Network Simulations Using the Dynamic Simulation Backplane
Riley, George F.; Ammar, Mostafa H. (Mostafa Hamed); Fujimoto, Richard M.; Xu, Donghua; Perumalla, Kalyan S. (Georgia Institute of TechnologyInstitute of Electrical and Electronics Engineers, Inc., New York, 2001-04)Presents an approach for creating distributed, component-based simulations of communication networks by interconnecting models of sub-networks drawn from different network simulation packages. This approach supports the ... -
Computational improvements of a multibody dynamic simulation algorithm applied to a landing event simulation of a flexible legged Europa lander
Wachlin, Jacob T. (Georgia Institute of Technology, 2018-05-11)Multibody dynamic simulation is critical to the design and analysis of many mechanical systems. Engineers use these simulations to understand the motion and loading conditions of systems of bodies. The field of dynamic ... -
Collaborative research: ITR: global multi-scale kinetic simulations of the earth's magnetosphere using parallel discrete event simulation
Fujimoto, Richard M.; Pande, Santosh; Perumalla, Kalyan; Omelchenko, Yuri; Driscoll, Jonathan (Georgia Institute of Technology, 2009-11-30)