• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synergistic Approach to Exploration of the Microstructure of Novel, Tunable Solvents for Reactions, Separations and Catalyst Recycle

    Thumbnail
    View/Open
    Janakat_Malina_E_200605_phd.pdf (3.115Mb)
    Date
    2006-03-03
    Author
    Janakat, Malina Elizabeth
    Metadata
    Show full item record
    Abstract
    Gas-expanded liquids (GXLs) are a new and benign class of pressure-tunable liquid solvents which show tremendous promise as the next sustainable processing medium. In order to realize the potential of GXLs fully, it is necessary to elucidate their cybotactic region and gain an understanding of where properties are different in the bulk and micro-scales and how local structure and order affect both reactions and separations. This work explores the cybotactic region of GXLs and probes the existence and implications of those differences. This study is started by exploring the cybotactic region of ambient liquid mixtures. Thermodynamic models based on intermolecular forces are used to predict the solubility of multi-functional solids in a variety of solvent mixtures. While this part does not lend any insight into GXLs directly, it acts as a stepping stone in both understanding the intermolecular forces that govern the cybotactic region and by opening the gateway to studying solid solubility in GXLs. The rest of the study focuses on the differences between bulk and local properties of GXLs. Different probes of polarity in the cybotactic region are compared and the solute dependence of the local structure is explored. Bulk transport properties are measured with different probes in an effort to see if molecular interactions play a role in governing diffusion processes in GXLs.
    URI
    http://hdl.handle.net/1853/10461
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology