• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crack Initiation Modeling of a Directionally-Solidified Ni-base Superalloy

    Thumbnail
    View/Open
    gordon_ali_p_200605_phd.pdf (36.08Mb)
    Date
    2006-03-22
    Author
    Gordon, Ali Page
    Metadata
    Show full item record
    Abstract
    Combustion gas turbine components designed for application in power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material has a chemical composition and grain structure designed to withstand creep damage occurring in blades of gas-powered turbines. The service conditions in these components, which generally exceed 600C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Tests have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via microscopy. A continuum crystal plasticity model was used to simulate the material behavior in the L and T orientations. The constitutive model was implemented in ABAQUS and a parameter estimation scheme was developed to obtain the material constants. A physically-based model was developed for correlating crack initiation life based on the experimental life data. Assuming a unique relationship between the damage fraction and cycle fraction with respect to cycles to crack initiation for each damage mode, total crack initiation life has been represented in terms of the individual damage components observed at the end state of crack initiation.
    URI
    http://hdl.handle.net/1853/10468
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Mechanical Engineering Theses and Dissertations [4086]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology