• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface Modifications to Mitigate Refractory Degradation in High-Temperature Black Liquor Gasifiers

    Thumbnail
    View/Open
    pallay_krista_j_200605_mast.pdf (9.078Mb)
    Date
    2006-04-03
    Author
    Pallay, Krista Joy
    Metadata
    Show full item record
    Abstract
    Ceria (CeO2), chromia (Cr2O3), yttria-stabilized zirconia (Y2O3-ZrO2), and sodium cerium oxide (Na2CeO3) were used as barrier coatings on Ufala, an alumina-based ceramic refractory, to determine if they were effective at increasing the life of the refractory in a high-temperature black liquor gasification environment. The ceria, chromia, and yttria-stabilized zirconia coatings were applied at atmospheric pressure using a coating applicator at the Institute of Paper Science and Technology at the Georgia Institute of Technology. The sodium cerium oxide coatings in addition to the three other coating types were applied under atmospheric pressure at C3 International Technologies in Alpharetta, GA. The coated refractory, as well as a set of uncoated refractory used for baseline analysis, were tested using molten synthetic smelt at 1000C for 36 hours. Uncoated refractory samples were also tested for 12, 72, 120, and 168 hours in order to make a kinetic reaction rate determination. The refractory were analyzed using gravimetric and dimensional analysis, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy to determine the severity of the physical changes that occurred after exposure to molten smelt. The data gathered from these experiments were not able to conclude that barrier coatings are sufficient to impede corrosion of the Ufala refractory material in molten smelt.
    URI
    http://hdl.handle.net/1853/10488
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology