• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An artificial neural network method for solving boundary value problems with arbitrary irregular boundaries

    Thumbnail
    View/Open
    mcfall_kevin_s_200605_phd.pdf (2.369Mb)
    Date
    2006-04-06
    Author
    McFall, Kevin Stanley
    Metadata
    Show full item record
    Abstract
    An artificial neural network (ANN) method was developed for solving boundary value problems (BVPs) on an arbitrary irregular domain in such a manner that all Dirichlet and/or Neuman boundary conditions (BCs) are automatically satisfied. Exact satisfaction of BCs is not available with traditional numerical solution techniques such as the finite element method (FEM). The ANN is trained by reducing error in the given differential equation (DE) at certain points within the domain. Selection of these points is significantly simpler than the often difficult definition of meshes for the FEM. The approximate solution is continuous and differentiable, and can be evaluated at any location in the domain independent of the set of points used for training. The continuous solution eliminates interpolation required of discrete solutions produced by the FEM. Reducing error in the DE at a particular location in the domain does not necessarily imply improvement in the approximate solution there. A theorem was developed, proving that the solution will improve whenever error in the DE is reduced at all locations in the domain during training. The actual training of ANNs reasonably approximates the assumptions required by the proof. This dissertation offers a significant contribution to the field by developing a method for solving BVPs where all BCs are automatically satisfied. It had already been established in the literature that such automatic BC satisfaction is beneficial when solving problems on rectangular domains, but this dissertation presents the first method applying the technique to irregular domain shapes. This was accomplished by developing an innovative length factor. Length factors ensure BC satisfaction extrapolate the values at Dirichlet boundaries into the domain, providing a solid starting point for ANN training to begin. The resulting method has been successful at solving even nonlinear and non-homogenous BVPs to accuracy sufficient for typical engineering applications.
    URI
    http://hdl.handle.net/1853/10506
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Mechanical Engineering Theses and Dissertations [4087]

    Related items

    Showing items related by title, author, creator and subject.

    • Mathematical sciences : solution procedures for three-dimensional crack problems in elasticity : boundary integral equations and boundary elements 

      Stephan, Ernst P. (Georgia Institute of Technology, 1987)
    • An embedded boundary approach for simulation of reacting flow problems in complex geometries with moving and stationary boundaries 

      Muralidharan, Balaji (Georgia Institute of Technology, 2017-05-16)
      Many useful engineering devices involve moving boundaries interacting with a reacting compressible flow. Examples of such applications include propulsion systems with moving components such as Internal Combustion (IC) ...
    • A moving boundary problem with a nonequilibrium interfacial boundary condition 

      Karschner, Dana Wesley (Georgia Institute of Technology, 1984-08)

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology