• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Utilization of FBRM in the Control of CSD in a Batch Cooled Crystallizer

    Thumbnail
    View/Open
    barthe_stephanie_c_200605_ms.pdf (1.128Mb)
    Date
    2006-04-12
    Author
    Barthe, Stephanie Cecile
    Metadata
    Show full item record
    Abstract
    Controlling crystal size distribution (CSD) is important to downstream processing and to product quality. It is well-recognized that selective removal functions can be used to influence CSD, for example by manufacturing a product with a larger dominant size or narrower distribution. Early work on the use of feedback control to manipulate the residence time distribution functions of fines in a continuous crystallizer demonstrated the utility of such an approach in handling process upsets and cycling that resulted from system instability. These efforts were extended to batch crystallization, although there remained significant difficulty associated with on-line analysis of the size distribution. The development of new technologies, such as Focused Beam Reflectance Measurement (FBRM), provides a methodology for on-line monitoring of a representation of the crystal population in either batch or continuous crystallization systems. The FBRM technology is based on laser light scattering; properly installed, it allows on-line determination of the chord length distribution (CLD), which is statistically related to the CSD and depends on the geometry of the crystal. The purpose of the present study is to use the FBRM to monitor the evolution of CSD characteristics and to implement a feedback control scheme that provides the flexibility to move the CSD in a preferred direction. Cooling batch crystallizations of paracetamol has been chosen to investigate implementation of the control scheme. The work will show how fines removal and varying cooling rates provide reliable and practical control of crystal size distribution.
    URI
    http://hdl.handle.net/1853/10552
    Collections
    • Georgia Tech Theses and Dissertations [22398]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1438]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology

    • About
    • Terms of Use
    • Contact Us
    • Emergency Information
    • Legal & Privacy Information
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    • Login
    Georgia Tech

    © Georgia Institute of Technology