• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solid Oxide Cell Constriction Resistance Effects

    Thumbnail
    View/Open
    nelson_george_j_200605_mast.pdf (741.1Kb)
    Date
    2006-04-12
    Author
    Nelson, George Joseph
    Metadata
    Show full item record
    Abstract
    Solid oxide cells are best known in the energy sector as novel power generation devices through solid oxide fuel cells (SOFCs), which enable the direct conversion of chemical energy to electrical energy and result in high efficiency power generation. However, solid oxide electrolysis cells (SOECs) are receiving increased attention as a hydrogen production technology through high temperature electrolysis applications. The development of higher fidelity methods for modeling transport phenomena within solid oxide cells is necessary for the advancement of these key technologies. The proposed thesis analyzes the increased transport path lengths caused by constriction resistance effects in prevalent solid oxide cell designs. Such effects are so named because they arise from reductions in active transport area. Constriction resistance effects of SOFC geometry on continuum level mass and electronic transport through SOFC anodes are simulated. These effects are explored via analytic solutions of the Laplace equation with model verification achieved by computational methods such as finite element analysis (FEA). Parametric studies of cell geometry and fuel stream composition are performed based upon the models developed. These studies reveal a competition of losses present between mass and electronic transport losses and demonstrate the benefits of smaller SOFC unit cell geometry. Furthermore, the models developed for SOFC transport phenomena are applied toward the analysis of SOECs. The resulting parametric studies demonstrate that geometric configurations that demonstrate enhanced performance within SOFC operation also demonstrate enhanced performance within SOEC operation. Secondarily, the electrochemical degradation of SOFCs is explored with respect to delamination cracking phenomena about and within the critical electrolyte-anode interface. For thin electrolytes, constriction resistance effects may lead to the loss of electro-active area at both anode-electrolyte and cathode-electrolyte interfaces. This effect (referred to as masking) results in regions of unutilized electrolyte cross-sectional area, which can be a critical performance hindrance. Again analytic and computational means are employed in analyzing such degradation issues.
    URI
    http://hdl.handle.net/1853/10563
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Mechanical Engineering Theses and Dissertations [4008]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology