• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Aerospace Systems Design Laboratory (ASDL)
    • Aerospace Systems Design Laboratory Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probabilistic Matching of Turbofan Engine Performance Models to Test Data

    Thumbnail
    View/Open
    GT-2005-68201.pdf (263.0Kb)
    Date
    2005-06-06
    Author
    Roth, Bryce Alexander
    Doel, David L.
    Cissell, Jeffrey J.
    Metadata
    Show full item record
    Abstract
    This paper describes the development of an improved method for reliable, repeatable, and accurate matching of engine performance models to test data. The centerpiece of this approach is a minimum variance estimator algorithm with a priori estimates which addresses both deterministic and probabilistic aspects of the problem. Specific probabilistic aspects include uncertainty in the measurements, prior expectations on model matching parameters, and noise in the power setting parameters. The algorithm is able to produce optimal results using any number of measurements and model matching parameters and can therefore take advantage of all measured data to produce the best possible match. This improves on current matching algorithms which require that the number of measured parameters be equal to the number of model matching parameters. This algorithm has been implemented in the Numerical Propulsion System Simulation (NPSS) and tested on a generic high-bypass turbofan model typical of those used in commercial service. The baseline engine model and simulated test data are described in detail. Several exercises are discussed to illustrate results available from this algorithm including the matching of a typical power calibration data set and matching of a typical production engine data set.
    URI
    http://hdl.handle.net/1853/10610
    Collections
    • Aerospace Systems Design Laboratory Publications [314]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology