• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Materials Science and Engineering (MSE)
    • Polymers and Nano Science Chemistry
    • Polymers and Nano Science Chemistry Publications
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • School of Materials Science and Engineering (MSE)
    • Polymers and Nano Science Chemistry
    • Polymers and Nano Science Chemistry Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Study of Contact Resistance of Conductive Adhesives Based on Anhydride-Cured Epoxy Systems

    Thumbnail
    View/Open
    CPWongIEEE15.pdf (120.4Kb)
    Date
    2000-09
    Author
    Wong, C. P.
    Lu, Daoqiang
    Metadata
    Show full item record
    Abstract
    Electrically conductive adhesives (ECAs) are an environmentally friendly alternative to tin/lead (Sn/Pb) solders in electronics packaging applications. However, current conductive technology is still in its infancy and limitations do exist. One of the critical reliability issues is that contact resistance of silver flake-filled ECAs on nonnoble metals increases in elevated temperature and humidity environments. The main objective of this study is to investigate the contact resistance behaviors of a class of conductive adhesives, which are based on anhydride-cured epoxy systems. Curing profiles, moisture pickup, and shifts of contact resistance of the ECAs on a nonnoble metal, tin/lead (Sn/Pb), during aging are investigated. Also, two corrosion inhibitors are employed to stabilize the contact resistance. The effects of these corrosion inhibitors on contact resistance are compared. It is found that: 1) this class of ECAs shows low moisture absorption, 2) the contact resistance of the ECAs on Sn/Pb decreases first and then increases slowly during 85 C/85% relative humidity (RH) aging, 3) one of corrosion inhibitors is very effective to stabilize contact resistance of these ECAs on Sn/Pb, and 4) the corrosion inhibitor stabilizes contact resistance through adsorption on Sn/Pb surfaces. From this study, it can be concluded that ECAs based on anhydride cured epoxy systems are promising formulations for electronics packaging applications.
    URI
    http://hdl.handle.net/1853/11287
    Collections
    • Polymers and Nano Science Chemistry Publications [61]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology