• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Planning Container Drayage Operations at Congested Seaports

    Thumbnail
    View/Open
    namboothiri_rajeev_k_200608_phd.pdf (847.0Kb)
    Date
    2006-05-19
    Author
    Namboothiri, Rajeev
    Metadata
    Show full item record
    Abstract
    This dissertation considers daily operations management for a fleet of trucks providing container pickup and delivery service to a port. Truck congestion at access points for ports may lead to serious inefficiencies in drayage operations, and the resultant cost impact to the intermodal supply chain can be significant. Recognizing that port congestion is likely to continue to be a major problem for drayage operations given the growing volume of international containerized trade, this research seeks to develop optimization approaches for maximizing the productivity of drayage firms operating at congested seaports. Specifically, this dissertation addresses two daily drayage routing and scheduling problems. In the first half of this dissertation, we study the problem of managing a fleet of trucks providing container pickup and delivery service to a port facility that experiences different access wait times depending on the time of day. For this research, we assume that the wait time can be estimated by a deterministic function. We develop a time-constrained routing and scheduling model for the problem that incorporates the time-dependent congestion delay function. The model objective is to find routes and schedules for drayage vehicles with minimum total travel time, including the waiting time at the entry to the port due to congestion. We consider both exact and heuristic solution approaches for this difficult optimization problem. Finally, we use the framework to develop an understanding of the potential impact of congestion delays on drayage operations, and the value of planning with accurate delay information. In the second half of this dissertation, we study methods for managing a drayage fleet serving a port with an appointment-based access control system. Responding to growing access congestion and its resultant impacts, many U.S. port terminals have implemented appointment systems, but little is known about the impact of such systems on drayage productivity. To address this knowledge gap, we develop a drayage operations optimization approach based on a column generation integer programming heuristic that explicitly models a time-slot port access control system. The approach determines pickup and delivery sequences with minimum transportation cost. We use the framework to develop an understanding of the potential efficiency impacts of access appointment systems on drayage operations. Findings indicate that the set of feasible drayage tasks and the fleet size required to complete them can be quite sensitive to small changes in time-slot access capacities at the port.
    URI
    http://hdl.handle.net/1853/11482
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology