• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Monte Carlo Modeling of Carrier Dynamics in Photoconductive Terahertz Sources

    Thumbnail
    View/Open
    kim_daesin_200608_phd.pdf (1.482Mb)
    Date
    2006-06-23
    Author
    Kim, Dae Sin
    Metadata
    Show full item record
    Abstract
    Carrier dynamics in GaAs-based photoconductive terahertz (THz) sources is investigated using Monte Carlo techniques to optimize the emitted THz transients. A self-consistent Monte Carlo-Poisson solver is developed for the spatio-temporal carrier transport properties. The screening contributions to the THz radiation associated with the Coulomb and radiation fields are obtained self-consistently by incorporating the three-dimensional Maxwell equations into the solver. In addition, the enhancement of THz emission by a large trap-enhance field (TEF) near the anode in semi-insulating (SI) photoconductors is investigated. The transport properties of the photoexcited carriers in photoconductive THz sources depend markedly on the initial spatial distribution of those carriers. Thus, considerable control of the emitted THz spectrum can be attained by judiciously choosing the optical excitation spot shape on the photoconductor, since the carrier dynamics that provide the source of the THz radiation are strongly affected by the ensuing screenings. The screening contributions due to the Coulomb and radiation parts of the electromagnetic field acting back on the carrier dynamics are distinguished. The dominant component of the screening field crosses over at an excitation aperture size with full width at half maximum (FWHM) of ~100 um for a range of reasonable excitation levels. In addition, the key mechanisms responsible for the TEF near the anode of SI photoconductors are elucidated in detail. For a given optical excitation power, an enhancement of THz radiation power can be obtained using a maximally broadened excitation aperture in the TEF area elongated along the anode due to the reduction in the Coulomb and radiation screening of the TEF.
    URI
    http://hdl.handle.net/1853/11526
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Electrical and Computer Engineering Theses and Dissertations [3303]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology