• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constraining global biogenic emissions and exploring source contributions to tropospheric ozone: modeling applications.

    Thumbnail
    View/Open
    shim_changsub_200608_phd.pdf (3.233Mb)
    Date
    2006-06-26
    Author
    Shim, Changsub
    Metadata
    Show full item record
    Abstract
    Biogenic isoprene plays an important role in tropospheric chemistry. We use HCHO column measurements by the Global Ozone Monitoring Experiment (GOME) to constrain isoprene emissions. Using the global Goddrad Earth Observing SystemChemistry (GEOS-Chem) as the forward model, a Bayesian inversion of GOME HCHO observations from September 1996 to August 1997 is conducted. Column contributions to HCHO from 12 sources including 10 terrestrial ecosystem groups, biomass burning, and industry are considered and inverted for 8 geographical regions globally. The a posteriori solution reduces the model biases for all regions, and estimates the annual global isoprene emissions of 566 Tg C yr-1, ~50% larger than the a priori estimate. Compared to the Global Emissions Inventory Activity (GEIA) inventory (~500 Tg C yr-1), the a posteriori isoprene emissions are generally higher at mid latitudes and lower in the tropics. This increase of global isoprene emissions significantly affects tropospheric chemistry, decreasing the global mean OH concentration by 10.8% to 0.95106 molecules/cm3. The atmospheric lifetime of CH3CCl3 increases from 5.2 to 5.7 years. Positive matrix factorization (PMF), an advanced method for source apportionment, is applied to TRAnsport of Chemical Evolution over the Pacific (TRACE-P) measurements and it is found that cyanogenesis in plants over Asia is likely an important emission process for CH3COCH3 and HCN. This approach also is applied to estimate source contributions to the tropospheric ozone (O3) with Tropospheric Ozone Production about the Spring Equinox (TOPSE) and TRACE-P measurements. The corresponding GEOS-Chem simulations are applied to the same factor-projected space in order to evaluate the model simulations. Intercontinental transport of pollutants is most responsible for increasing trend of springtime O3, while stratospheric influence is the largest contributions to troposperic O3 variability at northern middle and high latitudes. On the other hand, the overall tropospheric contributions to O3 variability are more important at northern low latitudes by long-range transport, biomass burning, and industry/urban emissions. In general, the simulated O3 variabilities are comparable with those of observations. However, the model underestimates the trends of and the contributions to O3 variability by long-range transport of O3 and its precursors at northern middle and high latitudes.
    URI
    http://hdl.handle.net/1853/11530
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Earth and Atmospheric Sciences Theses and Dissertations [543]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology