• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constrained Coding and Signal Processing for Holography

    Thumbnail
    View/Open
    garani_shayan_s_200608_phd.pdf (1.498Mb)
    Date
    2006-07-05
    Author
    Garani, Shayan Srinivasa
    Metadata
    Show full item record
    Abstract
    The increasing demand for high density storage devices has led to innovative data recording paradigms like optical holographic memories that record and read data in a two-dimensional page-oriented manner. In order to overcome the effects of inter-symbol-interference and noise in holographic channels, sophisticated constrained modulation codes and error correction codes are needed in these systems. This dissertation deals with the information-theoretic and signal processing aspects of holographic storage. On the information-theoretic front, the capacity of two-dimensional runlength-limited channels is analyzed. The construction of two-dimensional runlength-limited codes achieving the capacity lower bounds is discussed. This is a theoretical study on one of the open problems in symbolic dynamics and mathematical physics. The analysis of achievable storage density in holographic channels is useful for building practical systems. In this work, fundamental limits for the achievable volumetric storage density in holographic channels dominated by optical scattering are analyzed for two different recording mechanisms, namely angle multiplexed holography and localized recording. Pixel misregistration is an important signal processing problem in holographic systems. In this dissertation, algorithms for compensating two-dimensional translation and rotational misalignments are discussed and analyzed for Nyquist size apertures with low fill factors. These techniques are applicable for general optical imaging systems
    URI
    http://hdl.handle.net/1853/11540
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology