• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantum Mechanical Effects on MOSFET Scaling

    Thumbnail
    View/Open
    wang_lihui_200608_phd.pdf (2.899Mb)
    Date
    2006-07-10
    Author
    Wang, Lihui
    Metadata
    Show full item record
    Abstract
    This thesis describes advanced modeling of nanoscale bulk MOSFETs incorporating critical quantum mechanical effects such as gate direct tunneling and energy quantization of carriers. An explicit expression of gate direct tunneling for thin gate oxides has been developed by solving the Schroinger equation analytically. In addition, the impact of different gate electrode as well as gate insulation materials on the gate direct tunneling is explored. This results in an analytical estimation of the potential solutions to excessive gate leakage current. The energy quantization analysis involves the derivation of a quantum mechanical charge distribution model by solving the coupled Poisson and Schroinger equations. Based on the newly developed charge distribution model, threshold voltage and subthreshold swing models are obtained. A transregional drain current model which takes into account the quantum mechanical correction on device parameters is derived. Results from this model show good agreement with numeric simulation results of both long-channel and short-channel MOSFETs.The models derived here are used to project MOSFET scaling limits. Tunneling and quantization effects cause large power dissipation, low drive current, and strong sensitivities to process variation, which greatly limit CMOS scaling. Developing new materials and structures is imminent to extend the scaling process.
    URI
    http://hdl.handle.net/1853/11580
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology