• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Clearwater: An Extensible, Pliable, and Customizable Approach to Code Generation

    Thumbnail
    View/Open
    swint_galen_s_200608_phd.pdf (1.418Mb)
    Date
    2006-07-10
    Author
    Swint, Galen Steen
    Metadata
    Show full item record
    Abstract
    Since the advent of RPC Stub Generator, software tools that translate a high level specification into executable programs have been instrumental in facilitating the development of distributed software systems. Developers write programs at a high level abstraction with high readability and reduced initial development cost. However, existing approaches to building code generation tools for such systems have difficulties evolving these tools to meet challenges of new standards, new platforms and languages, or changing product scopes, resulting in generator tools with limited lifespan. The difficulties in evolving generator tools can be characterized as a combination of three challenges that appear inherently difficult to solve simultaneously: the abstraction mapping challenge translating a high-level abstraction into a low-level implementation), the interoperable heterogeneity challenge stemming from multiple input and output formats, and the flexible customization challenge to extend base functionality for evolution or new applications. The Clearwater approach to code generation uses XML-based technologies and software tools to resolve these three challenges with three important code generation features: specification extensibility, whereby an existing specification format can accommodate extensions or variations at low cost; generator pliability, which allows the generator to operator on an extensible specification and/or support multiple and new platforms; and flexible customization, which allows an application developer to make controlled changes to the output of a code generator to support application-specific goals. The presentation will outline the Clearwater approach and apply it to meet the above three challenges in two domain areas. The first area is information flow applications (e.g., multimedia streaming and event processing), a horizontal domain in which the ISG code generator creates QoS-customized communication code using the Infopipe abstraction and specification language. The second area is enterprise application staging (e.g., complex N-tier distributed applications), a vertical domain in which the Mulini code generator creates multiple types of source code supporting automatic staging of distributed heterogeneous applications in a data center environment. The success of applying Clearwater to these domains shows the effectiveness of our approach.
    URI
    http://hdl.handle.net/1853/11585
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology