• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dray Optimization in Truck/Rail Networks

    Thumbnail
    View/Open
    ileri_yetkin_200612_phd.pdf (760.8Kb)
    Date
    2007-02-06
    Author
    Ileri, Yetkin
    Metadata
    Show full item record
    Abstract
    Daily drayage operations involve moving loaded or empty equipment between customer locations and rail ramps. Drayage orders are generally pickup and delivery requests with time windows. The repositioning of empty equipment may also be required in order to facilitate loaded movements. The drayage orders are satisfied by a heterogeneous fleet of drivers. Driver routes must satisfy various operational constraints. In the first part of the dissertation, our goal is to minimize the cost of daily drayage operations in a region on a given day. We present an optimization methodology for finding cost-effective schedules for regional daily drayage operations. The core of the formulation is a set partitioning model whose columns represent routes. Routes are added to the formulation by column generation. We present numerical results for real-world data which demonstrate that our methodology produces low cost solutions in a reasonably short time. The second part of the dissertation addresses minimizing total empty mileage when driver capacity is not restrictive and new orders are added to the problem in an online fashion. We present a lower bound for the worst case guarantee of any deterministic online algorithm. We develop a solution methodology and provide results for the performance of different scheduling policies and parameters in a simulated environment. In the third part of the dissertation, we study a system with one rail ramp and one customer location which is served by a single driver. The problem has discrete time periods and at most one new order is released randomly each time period. The objective is to maximize the expected number of orders covered. With this simple problem, we seek to learn more about route planning for a single driver under uncertainty. We prove that carrying out an order ready to be picked up at the driver's current location is optimal for the case with one customer location. We show that the structure of the optimal policies is not simple and depends on various parameters. We devise a simple policy which yields provably near-optimal results and identify a case for which that policy is optimal.
    URI
    http://hdl.handle.net/1853/13968
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology