• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generation and detection of nonlinear Lamb waves for the characterization of material nonlinearities

    Thumbnail
    View/Open
    bermes_christian_200612_mast.pdf (773.6Kb)
    Date
    2006-08-25
    Author
    Bermes, Christian
    Metadata
    Show full item record
    Abstract
    An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation and laser interferometry for detection. The experimentally measured Lamb wave signals are processed with a short-time Fourier transformation (STFT) and a chirplet transformation-based algorithm, which yield the amplitudes of the frequency spectrum as functions of time, allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for two different aluminum alloys. The difference in inherent nonlinearity between both alloys as determined from longitudinal wave measurements can be observed for the Lamb wave measurements, too.
    URI
    http://hdl.handle.net/1853/13986
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Civil and Environmental Engineering Theses and Dissertations [1755]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology