Show simple item record

dc.contributor.authorStanley, Raymond M.en_US
dc.date.accessioned2007-03-27T18:16:54Z
dc.date.available2007-03-27T18:16:54Z
dc.date.issued2006-11-03en_US
dc.identifier.urihttp://hdl.handle.net/1853/14023
dc.description.abstractVirtual three-dimensional (3D) auditory displays utilize signal-processing techniques to alter sounds presented through headphones so that they seem to originate from specific spatial locations around the listener. In some circumstances bone-conduction headsets (bonephones) can provide an alternative sound presentation mechanism. However, existing 3D audio rendering algorithms need to be adjusted to use bonephones rather than headphones. This study provided anchor points for a function of shift values that could be used to adapt virtual 3D auditory displays for use with bonephones. The shift values were established by having participants adjust phase and amplitude of two waves in order to cancel out the signal and thus produce silence. These adjustments occurred in a listening environment consisting of air-conducted and bone-conducted tones, as well as air- conducted masking. Performance in the calibration condition suggested that participants understood the task, and could do this task with reasonable accuracy. In the bone-to-air listening conditions, the data produced a clear set of anchor points for an amplitude shift function. The data did not reveal, however, anchor points for a phase shift function the data for phase were highly variable and inconsistent. Application of shifts, as well as future research to establish full functions and better understand phase are discussed, in addition to validation and follow-up studies.en_US
dc.format.extent9218019 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technologyen_US
dc.subjectInteraural attenuationen_US
dc.subjectBone-conduction hearingen_US
dc.subjectBone-conduction headsetsen_US
dc.subjectAir-to-bone shiftsen_US
dc.subjectPsychophysicsen_US
dc.subjectSounden_US
dc.subjectCancellationen_US
dc.subjectBone conductionen_US
dc.subjectSpatial audioen_US
dc.subject.lcshSound Recording and reproducingen_US
dc.subject.lcshBone conductionen_US
dc.subject.lcshAuditory perceptionen_US
dc.titleToward adapting spatial audio displays for use with bone conduction: the cancellation of bone-conducted and air-conducted sound waves.en_US
dc.typeThesisen_US
dc.description.degreeM.S.en_US
dc.contributor.departmentPsychologyen_US
dc.description.advisorCommittee Chair: Walker, Bruce; Committee Member: Corso, Gregory; Committee Member: Davis, Elizabethen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record