• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transient Rheology of Stimuli Responsive Hydrogels: Integrating Microrheology and Microfluidics

    Thumbnail
    View/Open
    sato_jun_200612_phd.pdf (3.272Mb)
    Date
    2006-10-30
    Author
    Sato, Jun
    Metadata
    Show full item record
    Abstract
    A new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-response measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. With the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft biomaterials could lead to erroneous conclusions about microstructural dynamics. Systematic investigations by varying key parameters, like molecular structure, gel concentration, salt concentration, and tracer particle size for microrheology, revealed that subtle variations in molecular architecture can cause major structural and microrheological changes in response dynamics. Moreover, the results showed that the method can be applied for studying gel formation and breakup kinetics. The research in this thesis facilitates the design of solvent-responsive soft materials with appropriate microstructural dynamics for in vivo applications like tissue engineering and drug delivery, and can also be applied to study the effect of solvents on self-assembly mechanisms in other responsive soft materials, such as polymer solutions and colloidal dispersions.
    URI
    http://hdl.handle.net/1853/14044
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology