• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physiologically Motivated Methods For Audio Pattern Classification

    Thumbnail
    View/Open
    ravindran_sourabh_200612_phd.pdf (1.754Mb)
    Date
    2006-11-20
    Author
    Ravindran, Sourabh
    Metadata
    Show full item record
    Abstract
    Human-like performance by machines in tasks of speech and audio processing has remained an elusive goal. In an attempt to bridge the gap in performance between humans and machines there has been an increased effort to study and model physiological processes. However, the widespread use of biologically inspired features proposed in the past has been hampered mainly by either the lack of robustness across a range of signal-to-noise ratios or the formidable computational costs. In physiological systems, sensor processing occurs in several stages. It is likely the case that signal features and biological processing techniques evolved together and are complementary or well matched. It is precisely for this reason that modeling the feature extraction processes should go hand in hand with modeling of the processes that use these features. This research presents a front-end feature extraction method for audio signals inspired by the human peripheral auditory system. New developments in the field of machine learning are leveraged to build classifiers to maximize the performance gains afforded by these features. The structure of the classification system is similar to what might be expected in physiological processing. Further, the feature extraction and classification algorithms can be efficiently implemented using the low-power cooperative analog-digital signal processing platform. The usefulness of the features is demonstrated for tasks of audio classification, speech versus non-speech discrimination, and speech recognition. The low-power nature of the classification system makes it ideal for use in applications such as hearing aids, hand-held devices, and surveillance through acoustic scene monitoring
    URI
    http://hdl.handle.net/1853/14066
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology