• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Supporting Distributed Transaction Processing Over Mobile and Heterogeneous Platforms

    Thumbnail
    View/Open
    xie_wanxia_200512_phd.pdf (556.8Kb)
    Date
    2005-11-28
    Author
    Xie, Wanxia
    Metadata
    Show full item record
    Abstract
    Recent advances in pervasive computing and peer-to-peer computing have opened up vast opportunities for developing collaborative applications. To benefit from these emerging technologies, there is a need for investigating techniques and tools that will allow development and deployment of these applications on mobile and heterogeneous platforms. To meet these challenging tasks, we need to address the typical characteristics of mobile peer-to-peer systems such as frequent disconnections, frequent network partitions, and peer heterogeneity. This research focuses on developing the necessary models, techniques and algorithms that will enable us to build and deploy collaborative applications in the Internet enabled, mobile peer-to-peer environments. This dissertation proposes a multi-state transaction model and develops a quality aware transaction processing framework to incorporate quality of service with transaction processing. It proposes adaptive ACID properties and develops a quality specification language to associate a quality level with transactions. In addition, this research develops a probabilistic concurrency control mechanism and a group based transaction commit protocol for mobile peer-to-peer systems that greatly reduces blockings in transactions and improves the transaction commit ratio. To the best of our knowledge, this is the first attempt to systematically support disconnection-tolerant and partition-tolerant transaction processing. This dissertation also develops a scalable directory service called PeerDS to support the above framework. It addresses the scalability and dynamism of the directory service from two aspects: peer-to-peer and push-pull hybrid interfaces. It also addresses peer heterogeneity and develops a new technique for load balancing in the peer-to-peer system. This technique comprises an improved routing algorithm for virtualized P2P overlay networks and a generalized Top-K server selection algorithm for load balancing, which could be optimized based on multiple factors such as proximity and cost. The proposed push-pull hybrid interfaces greatly reduce the overhead of directory servers caused by frequent queries from directory clients. In order to further improve the scalability of the push interface, this dissertation also studies and evaluates different filter indexing schemes through which the interests of each update could be calculated very efficiently. This dissertation was developed in conjunction with the middleware called System on Mobile Devices (SyD).
    URI
    http://hdl.handle.net/1853/14073
    Collections
    • College of Computing Theses and Dissertations [1156]
    • Georgia Tech Theses and Dissertations [23403]

    Related items

    Showing items related by title, author, creator and subject.

    • Towards Transactional Data Management over the Cloud 

      Tiwari, Rohan G.; Navathe, Shamkant B.; Kulkarni, Gaurav J. (Georgia Institute of Technology, 2010)
      We propose a consistency model for a data store in the Cloud and work towards the goal of deploying Database as a Service over the Cloud. This includes consistency across the data partitions and consistency of any replicas ...
    • System Support for Robust, Collaborative Applications 

      Chelliah, Muthusamy; Ahamad, Mustaque (Georgia Institute of Technology, 1995)
      Traditional transaction models ensure robustness for distributed applications through the properties of view and failure atomicity. It has generally been felt that such atomicity properties are restrictive for a wide ...
    • Adaptive Transaction Scheduling for Transactional Memory Systems 

      Yoo, Richard M.; Lee, Hsien-Hsin Sean (Georgia Institute of Technology, 2007)
      Transactional memory systems are expected to enable parallel programming at lower programming complexity, while delivering improved performance over traditional lock-based systems. Nonetheless, we observed that there are ...

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology