• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Procedural Reduction Maps

    Thumbnail
    View/Open
    vanhorn_robert_b_200705_phd.pdf (6.527Mb)
    vanhorn_robert_b_200705.mov (66.01Mb)
    Date
    2007-01-16
    Author
    Van Horn, R. Brooks, III
    Metadata
    Show full item record
    Abstract
    Procedural textures and image textures are commonplace in graphics today, finding uses in such places as animated movies and video games. Unlike image texture maps, procedural textures typically suffer from minification aliasing. I present a method that, given a procedural texture on a surface, automatically creates an anti-aliased version of the procedural texture. The new procedural texture maintains the original textures details, but reduces minification aliasing artifacts. This new algorithm creates an image pyramid similar to MIP-Maps to represent the texture. Whereas a MIP-Map stores per-texel color, however, my texture hierarchy stores weighted sums of reflectance functions, allowing a wider-range of effects to be anti-aliased. The stored reflectance functions are automatically selected based on an analysis of the different functions found over the surface. When the texture is viewed at close range, the original texture is used, but as the texture footprint grows, the algorithm gradually replaces the textures result with an anti-aliased one. This results in faster development time for writing procedural textures as well as higher visual fidelity and faster rendering. With the optional addition of authoring guidelines, the analysis phase can be sped up by as much as two orders of magnitude. Furthermore, I developed a method for handling pre-filtered integration of reflectance functions to anti-alias specular highlights. The normal-centric BRDF (NBRDF) allows for fast evaluation over a range of normals appearing on the surface of an object. The NBRDF is easy to implement on the GPU for real-time results and can be combined with procedural reduction maps for real-time procedural texture minification anti-aliasing.
    URI
    http://hdl.handle.net/1853/14484
    Collections
    • College of Computing Theses and Dissertations [1191]
    • Georgia Tech Theses and Dissertations [23877]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology