• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comprehensive Approach for Bulk Power System Reliability Assessment

    Thumbnail
    View/Open
    yang_fang_200705_phd.pdf (499.0Kb)
    Date
    2007-04-03
    Author
    Yang, Fang
    Metadata
    Show full item record
    Abstract
    Abstract The goal of this research is to advance the state of the art in bulk power system reliability assessment. Bulk power system reliability assessment is an important procedure at both power system planning and operating stages to assure reliable and acceptable electricity service to customers. With the increase in the complexity of modern power systems and advances in the power industry toward restructuring, the system models and algorithms of traditional reliability assessment techniques are becoming obsolete as they suffer from nonrealistic system models and slow convergence (even non-convergence) when multi-level contingencies are considered and the system is overstressed. To allow more rigor in system modeling and higher computational efficiency in reliability evaluation procedures, this research proposes an analytically-based security-constrained adequacy evaluation (SCAE) methodology that performs bulk power system reliability assessment. The SCAE methodology adopts a single-phase quadratized power flow (SPQPF) model as a basis and encompasses three main steps: (1) critical contingency selection, (2) effects analysis, and (3) reliability index computations. In the critical contingency selection, an improved contingency selection method is developed using a wind-chime contingency enumeration scheme and a performance index approach based on the system state linearization technique, which can rank critical contingencies with high accuracy and efficiency. In the effects analysis for selected critical contingencies, a non-divergent optimal quadratized power flow (NDOQPF) algorithm is developed to (1) incorporate major system operating practices, security constraints, and remedial actions in a constrained optimization problem and (2) guarantee convergence and provide a solution under all conditions. This algorithm is also capable of efficiently solving the ISO/RTO operational mode in deregulated power systems. Based on the results of the effects analysis, reliability indices that provide a quantitative indication of the system reliability level are computed. In addition, this research extends the proposed SCAE framework to include the effects of protection system hidden failures on bulk power system reliability. The overall SCAE methodology is implemented and applied to IEEE reliability test systems, and evaluation results demonstrate the expected features of proposed advanced techniques. Finally, the contributions of this research are summarized and recommendations for future research are proposed.
    URI
    http://hdl.handle.net/1853/14488
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology